organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1247-o1248

7-Benzyl-3-methyl-6-phenyl­imidazo[2,1-b][1,3]thia­zol-7-ium chloride 0.75-hydrate

aSchool of Chemistry and Chemical Engineering, Yunnan Normal University, Knuming 650050, People's Republic of China
*Correspondence e-mail: hgli2005@126.com

(Received 13 April 2013; accepted 8 July 2013; online 13 July 2013)

Theasymmetric unit of the title salt, C19H17N2S+·Cl·0.75H2O, contains two symmetrically independent formula units of the carbenium salt along with three water mol­ecules. The water mol­ecules are only 50% occupated, and one of them is positioned in a hydro­phobic pocket not forming any hydrogen bonds. The conformation of the independent cations is very similar, with dihedral angles of 61.0 (2) and 61.5 (3)° between the benzene rings. They form quasi-centrosymmetric couples via ππ stacking inter­actions between the benzene and imidazo[2,1-b]thia­zole rings [centroid–centroid distances = 3.718 (3) and 3.663 (3) Å]. In the crystal, O—H⋯Cl hydrogen bonds lead to the formation of a helical anion–water chain along the c-axis direction. The cations connect to the anion–water chain through C—H⋯Cl inter­actions, generating a three-dimensional supra­molecular network. O—H⋯S hydrogen bonds and C—H⋯O inter­actions also occur.

Related literature

For applications in catalysis of abnormal N-heterocyclic carbenes, see: Mattson et al. (2006[Mattson, A. E., Zuhl, A. M., Reynolds, T. E. & Scheidt, K. A. (2006). J. Am. Chem. Soc. 128, 4932-4933.]); Liu et al. (2008[Liu, Q., Perreault, S. & Rovis, R. (2008). J. Am. Chem. Soc. 130, 14066-14067.]); Padmanaban et al. (2011[Padmanaban, M., Biju, A. T. & Glorius, F. (2011). Org. Lett. 13, 98-101.]). For related structures, see: Huang et al. (2011[Huang, G. L., Sun, H. S., Qiu, X. J., Jin, C., Lin, C., Shen, Y. Z., Jiang, J. L. & Wang, L. Y. (2011). Org. Lett. 13, 5224-5227.]); Akkurt et al. (2011[Akkurt, M., Güzeldemirci, N. U., Karaman, B. & Büyükgüngör, O. (2011). Acta Cryst. E67, o184-o185.], 2007[Akkurt, M., Yalçın, Ş. P., Gürsoy, E., Güzeldemirci, N. U. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3103.]); Song et al. (2008[Song, G. Y., Zhang, Y. & Li, X. W. (2008). Organometallics, 13, 1936-1943.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17N2S+·Cl·0.75H2O

  • Mr = 354.37

  • Trigonal, P 32

  • a = 13.211 (1) Å

  • c = 19.555 (3) Å

  • V = 2955.7 (6) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.936

  • 16250 measured reflections

  • 6594 independent reflections

  • 4827 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.123

  • S = 1.00

  • 6594 reflections

  • 476 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.04 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯Cl1i 0.94 2.75 3.208 (6) 111
O1W—H1WA⋯S2ii 0.94 2.88 3.819 (6) 174
O1W—H1WB⋯Cl2 0.86 2.61 3.240 (7) 132
O3W—H3WA⋯Cl2iii 0.85 2.68 3.275 (10) 129
O3W—H3WB⋯Cl1i 0.85 2.60 3.301 (10) 141
C8—H8⋯Cl1 0.93 2.78 3.664 (5) 159
C10—H10⋯Cl1iv 0.93 2.72 3.390 (5) 130
C18—H18⋯O3Wv 0.93 2.52 3.320 (9) 144
C27—H27⋯Cl1 0.93 2.72 3.642 (5) 175
Symmetry codes: (i) x, y+1, z; (ii) [-x+y, -x+1, z+{\script{1\over 3}}]; (iii) [-y+1, x-y+1, z-{\script{1\over 3}}]; (iv) [-x+y+1, -x+1, z+{\script{1\over 3}}]; (v) x+1, y, z.

Data collection: SMART (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Heterocyclic carbenes (NHCs) have become ubiquitous ligands in organometallic chemistry and also serve as excellent organocatalysts primarily due to their inherent strong σ-donor ability and nucleophilicity. Recently, Mattson et al. (2006), Liu et al. (2008), Padmanaban et al. (2011) and other researchers have designed new abnormal NHCs compounds and used them as organocatalysts to catalyze umpolung reactions. According to the reports on the synthesis of imidazo[2,1-b]thiazoles (Akkurt et al. (2011, 2007), Huang et al. (2011), Song et al. (2008)), herein we report the synthesis and structure of the title compound. The molecular structure of the title compound is depicted in Fig. 1. The crystallographic asymmetric unit of I, contains two 7-benzyl-3-methyl-6-phenyl-imidazo[2,1-b]thiazol-7-ium cation, two chlorine anion and three water molecule. As shown in Fig.2, the dihedral angle between benzene ring A and B is 60.85, while C and D is 61.66, indicating the two cations in the unit cell are not equivalent. The two symmetrically independent cations are stabilized by ππ stacking interactions, with a separation of 3.718 and 3.663 Å between the centroids of the benzene and thiazole rings. Another interesting part of the structure of title compound is the helical chain (Cl1—O3w—Cl2—O1w) formed entirely by the O—H···Cl hydrogen-bonding interactions (Fig.3 & Fig.4) hydrogen-bonding interactions along c axis in this molecule. O(3w) and O(1w) atoms bridges Cl(1) and Cl(2) atoms with the bond distances of O(3w)···Cl(1) 3.300 (2) Å, O(3w)···Cl(2) 3.275 (1) Å, O(1w)···Cl(1) 3.203 (6) Å, O(1w)···Cl(2) 3.236 (6) Å, while O(2w) doesn't involve in the formation of the helical chain. Probably because O2W water molecules is disordered and isolated, lead to some OH groups without acceptor and can't form hydrogen bonds. The cations connect to the anion-water chain through C—H···Cl hydrogen bonds, and each chloride ion binds to four cations with the average bond distances of 3.389 Å. Thus in the solid-state of title compound, the cation binds to the helical anion-water chain linked by intermolecular hydrogen bonds of O—H···Cl, generating a three-dimensional supramolecular network, and the space between them are occupied by some lattice water molecules.

Related literature top

For applications in catalysis of abnormal N-heterocyclic carbenes, see: Mattson et al. (2006); Liu et al. (2008); Padmanaban et al. (2011). For related structures, see: Huang et al. (2011); Akkurt et al. (2011, 2007); Song et al. (2008).

Experimental top

A mixture of 3-methyl-6-phenylimidazo[2,1-b]thiazole (1.071 g, 5.0 mmol) and benzyl chorlide (0.759 g, 6.0 mmol,1.2 equiv) was dissolved in CH3CN, and stirred under reflux for 12 h. The solvent was then removed under vacuum. The white solids obtained were washed with diethyl ether and the crude product was re-crystallized from chloroform / toluene. The yield was 1.45 g, 85%. 1H NMR (δ, 300 MHz, CDCl3): 8.35 (s, 1H), 7.71–7.68 (m, 2H), 7.54–7.52 (m, 3H), 7.41–7.29 (m, 6H), 5.53 (s, 2H), 2.64 (d, J = 1.2 Hz, 3H); 13 C NMR (δ, 75 MHz, CDCl3) 146.9, 140.3, 131.0, 130.8, 130.7, 130.1, 129.8, 129.4, 129.3, 129.1, 125.2, 114.4, 112.3, 51.5, 13.0.

Refinement top

All H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, and Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and 1.2Ueq(C) for other H atoms. Positions of the methyl atoms were optimized rotationally. The water H atoms were located from a Fourier map and their distances were constrained to 0.86 Å and the Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The pi···pi stacking between two symmetrically independent cations.
[Figure 3] Fig. 3. The hydrogen bonded helical anion-water chain and the hydrogen bonding between Cl- ion and the cations.
7-Benzyl-3-methyl-6-phenylimidazo[2,1-b][1,3]thiazol-7-ium chloride 0.75-hydrate top
Crystal data top
C19H17N2S+·Cl·0.75H2ODx = 1.195 Mg m3
Mr = 354.37Mo Kα radiation, λ = 0.71073 Å
Trigonal, P32Cell parameters from 25 reflections
Hall symbol: P 32θ = 1.8–26.0°
a = 13.211 (1) ŵ = 0.31 mm1
c = 19.555 (3) ÅT = 291 K
V = 2955.7 (6) Å3Block, colourless
Z = 60.28 × 0.24 × 0.22 mm
F(000) = 1113
Data collection top
Bruker SMART APEX CCD
diffractometer
6594 independent reflections
Radiation source: fine-focus sealed tube4827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
phi and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1613
Tmin = 0.919, Tmax = 0.936k = 1416
16250 measured reflectionsl = 2416
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0606P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.30 e Å3
6594 reflectionsΔρmin = 0.28 e Å3
476 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
15 restraintsExtinction coefficient: 0.0045 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (7)
Crystal data top
C19H17N2S+·Cl·0.75H2OZ = 6
Mr = 354.37Mo Kα radiation
Trigonal, P32µ = 0.31 mm1
a = 13.211 (1) ÅT = 291 K
c = 19.555 (3) Å0.28 × 0.24 × 0.22 mm
V = 2955.7 (6) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6594 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4827 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.936Rint = 0.053
16250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.30 e Å3
S = 1.00Δρmin = 0.28 e Å3
6594 reflectionsAbsolute structure: Flack (1983)
476 parametersAbsolute structure parameter: 0.04 (7)
15 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4467 (3)0.4753 (4)0.1467 (2)0.0415 (10)
C20.4721 (4)0.4083 (4)0.1030 (3)0.0456 (11)
H20.51820.37740.11740.09 (2)*
C30.4258 (4)0.3880 (4)0.0358 (3)0.0523 (12)
H30.44340.34550.00490.068 (17)*
C40.3542 (4)0.4317 (4)0.0161 (3)0.0517 (12)
H40.32230.41680.02760.035 (11)*
C50.3301 (4)0.4974 (4)0.0613 (2)0.0464 (11)
H50.28270.52700.04740.039 (12)*
C60.3763 (3)0.5200 (4)0.1282 (2)0.0437 (10)
H60.35970.56360.15880.073 (17)*
C70.4878 (4)0.4879 (4)0.2189 (2)0.0454 (11)
C80.4919 (4)0.4010 (4)0.2554 (3)0.0457 (11)
H80.46730.32550.24030.040 (12)*
C90.5679 (4)0.4122 (4)0.3779 (3)0.0441 (10)
C100.6201 (4)0.5055 (4)0.4246 (3)0.0436 (10)
H100.64680.49850.46740.08 (2)*
C110.5674 (4)0.5640 (4)0.3202 (3)0.0527 (12)
C120.5438 (4)0.2894 (4)0.3879 (3)0.0521 (12)
H12A0.46090.23660.38820.069 (17)*
H12B0.57650.28400.43070.047 (13)*
H12C0.57870.26900.35130.12 (3)*
C130.5599 (4)0.7050 (4)0.2358 (3)0.0517 (13)
H13A0.51810.73080.26530.051 (14)*
H13B0.53050.69910.18970.057 (15)*
C140.6892 (4)0.7956 (4)0.2372 (2)0.0466 (11)
C150.7271 (4)0.8950 (4)0.2777 (3)0.0501 (12)
H150.67420.90770.30220.075 (18)*
C160.8460 (4)0.9743 (4)0.2803 (3)0.0566 (14)
H160.87301.04080.30730.068 (17)*
C170.9239 (4)0.9570 (4)0.2442 (3)0.0577 (13)
H171.00331.01160.24600.077 (18)*
C180.8834 (5)0.8563 (5)0.2042 (3)0.0560 (13)
H180.93610.84320.17950.10 (2)*
C190.7675 (4)0.7778 (4)0.2014 (2)0.0510 (11)
H190.74110.71100.17470.043 (12)*
C200.2128 (4)0.2665 (4)0.3611 (2)0.0458 (10)
H200.17640.18780.34950.072 (17)*
C210.2639 (4)0.3027 (4)0.4241 (3)0.0495 (11)
H210.26140.24790.45490.046 (13)*
C220.3199 (4)0.4213 (4)0.4430 (2)0.0425 (10)
H220.35510.44500.48570.078 (19)*
C230.3219 (3)0.5016 (4)0.3973 (2)0.0393 (9)
H230.35700.58000.40960.072 (17)*
C240.2720 (4)0.4666 (4)0.3328 (2)0.0456 (11)
H240.27630.52220.30200.044 (13)*
C250.2153 (3)0.3487 (3)0.3139 (2)0.0399 (9)
C260.1701 (4)0.3145 (4)0.2445 (2)0.0413 (10)
C270.1880 (3)0.2417 (4)0.2030 (2)0.0403 (10)
H270.22970.20440.21390.056 (15)*
C280.1186 (4)0.1747 (4)0.0804 (2)0.0423 (10)
C290.0565 (4)0.2059 (4)0.0319 (2)0.0423 (10)
H290.04030.17970.01300.054 (14)*
C300.0853 (3)0.3017 (4)0.1444 (2)0.0378 (7)
C310.1685 (4)0.0966 (4)0.0659 (3)0.0487 (11)
H31A0.23880.12260.09200.073*
H31B0.18600.09960.01810.073*
H31C0.11260.01780.07850.073*
C320.0523 (4)0.4200 (4)0.2318 (3)0.0473 (12)
H32A0.09130.49400.20760.09 (2)*
H32B0.07300.43720.27970.069 (17)*
C330.0755 (4)0.3745 (4)0.2263 (3)0.0472 (11)
C340.1550 (4)0.2597 (4)0.2394 (2)0.0462 (11)
H340.12820.20970.25300.040 (12)*
C350.2734 (4)0.2163 (4)0.2330 (3)0.0538 (13)
H350.32590.13750.24040.064 (16)*
C360.3133 (4)0.2921 (4)0.2153 (3)0.0510 (12)
H360.39320.26510.21370.056 (15)*
C370.2339 (4)0.4087 (4)0.1998 (3)0.0505 (12)
H370.26020.45860.18540.040 (12)*
C380.1169 (4)0.4485 (4)0.2061 (3)0.0542 (13)
H380.06380.52650.19680.060 (15)*
Cl10.34178 (9)0.08248 (9)0.23677 (6)0.0415 (2)
Cl20.50410 (9)0.85717 (10)0.41839 (6)0.0492 (3)
N10.5403 (3)0.4474 (3)0.3202 (2)0.0499 (9)
N20.5361 (3)0.5880 (3)0.2585 (2)0.0486 (10)
N30.1327 (3)0.2340 (3)0.14208 (19)0.0392 (8)
N40.1037 (3)0.3502 (3)0.20746 (19)0.0383 (6)
O1W0.4476 (5)0.9150 (5)0.2668 (3)0.0474 (15)0.50
H1WA0.40760.93670.29790.057*0.50
H1WB0.47540.87800.28840.057*0.50
O2W0.7938 (8)0.2009 (7)0.4080 (5)0.072 (2)0.50
H2WA0.85870.22620.38570.087*0.50
H2WB0.74940.22720.39240.087*0.50
O3W0.1192 (8)0.8296 (9)0.1880 (6)0.100 (3)0.50
H3WA0.11960.76540.18900.121*0.50
H3WB0.16340.87440.21940.121*0.50
S10.63072 (10)0.63434 (11)0.39577 (6)0.0498 (3)
S20.01587 (10)0.30059 (9)0.07018 (6)0.0448 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (2)0.037 (2)0.043 (2)0.0083 (18)0.0137 (18)0.0120 (18)
C20.038 (2)0.044 (2)0.049 (3)0.016 (2)0.0088 (19)0.022 (2)
C30.048 (3)0.040 (2)0.049 (3)0.008 (2)0.026 (2)0.015 (2)
C40.041 (2)0.044 (2)0.046 (3)0.004 (2)0.018 (2)0.016 (2)
C50.043 (2)0.040 (2)0.043 (3)0.0101 (19)0.011 (2)0.024 (2)
C60.0264 (19)0.035 (2)0.052 (3)0.0021 (17)0.0154 (19)0.007 (2)
C70.031 (2)0.037 (2)0.047 (3)0.0011 (17)0.0121 (19)0.0010 (19)
C80.041 (2)0.042 (2)0.050 (3)0.018 (2)0.012 (2)0.009 (2)
C90.035 (2)0.041 (2)0.056 (3)0.0188 (18)0.007 (2)0.012 (2)
C100.033 (2)0.036 (2)0.048 (3)0.0079 (18)0.0031 (19)0.0041 (19)
C110.039 (2)0.047 (3)0.069 (3)0.019 (2)0.014 (2)0.010 (2)
C120.051 (3)0.036 (2)0.043 (3)0.002 (2)0.016 (2)0.007 (2)
C130.051 (3)0.028 (2)0.068 (4)0.014 (2)0.016 (2)0.020 (2)
C140.041 (2)0.035 (2)0.051 (3)0.0094 (19)0.002 (2)0.011 (2)
C150.042 (2)0.051 (3)0.047 (3)0.015 (2)0.006 (2)0.020 (2)
C160.048 (3)0.042 (3)0.059 (3)0.008 (2)0.028 (2)0.002 (2)
C170.035 (2)0.055 (3)0.063 (3)0.007 (2)0.007 (2)0.023 (3)
C180.053 (3)0.067 (3)0.051 (3)0.032 (3)0.000 (2)0.002 (2)
C190.052 (3)0.053 (3)0.037 (3)0.017 (2)0.002 (2)0.005 (2)
C200.034 (2)0.043 (2)0.050 (3)0.0107 (18)0.0118 (19)0.0110 (19)
C210.054 (3)0.040 (2)0.042 (3)0.015 (2)0.001 (2)0.005 (2)
C220.041 (2)0.040 (2)0.041 (3)0.0166 (18)0.0011 (19)0.0033 (18)
C230.032 (2)0.037 (2)0.041 (2)0.0120 (18)0.0115 (18)0.0145 (18)
C240.040 (2)0.033 (2)0.046 (3)0.0052 (18)0.0034 (19)0.0038 (19)
C250.034 (2)0.034 (2)0.044 (2)0.0115 (17)0.0133 (18)0.0089 (17)
C260.038 (2)0.034 (2)0.040 (2)0.0092 (18)0.0019 (18)0.0015 (18)
C270.0193 (17)0.048 (2)0.039 (2)0.0055 (17)0.0006 (16)0.0057 (19)
C280.049 (2)0.042 (2)0.033 (2)0.0211 (19)0.0004 (19)0.0074 (18)
C290.040 (2)0.041 (2)0.038 (2)0.0144 (18)0.0121 (18)0.0122 (18)
C300.0324 (14)0.0343 (14)0.0412 (16)0.0124 (12)0.0032 (13)0.0015 (12)
C310.053 (3)0.051 (3)0.044 (3)0.028 (2)0.012 (2)0.013 (2)
C320.035 (2)0.055 (3)0.055 (3)0.025 (2)0.019 (2)0.027 (2)
C330.043 (2)0.041 (2)0.056 (3)0.020 (2)0.024 (2)0.018 (2)
C340.047 (3)0.031 (2)0.056 (3)0.0168 (19)0.017 (2)0.011 (2)
C350.048 (3)0.047 (3)0.048 (3)0.010 (2)0.008 (2)0.016 (2)
C360.048 (3)0.043 (2)0.055 (3)0.018 (2)0.006 (2)0.020 (2)
C370.047 (3)0.054 (3)0.050 (3)0.025 (2)0.014 (2)0.011 (2)
C380.051 (3)0.045 (3)0.058 (3)0.018 (2)0.016 (2)0.018 (2)
Cl10.0466 (6)0.0407 (5)0.0405 (5)0.0243 (5)0.0168 (4)0.0141 (4)
Cl20.0390 (5)0.0467 (6)0.0495 (7)0.0121 (5)0.0010 (5)0.0196 (5)
N10.046 (2)0.046 (2)0.048 (2)0.0151 (17)0.0070 (17)0.0076 (17)
N20.0363 (19)0.0349 (19)0.066 (3)0.0113 (16)0.0117 (18)0.0056 (18)
N30.0315 (17)0.0290 (16)0.048 (2)0.0081 (14)0.0022 (14)0.0012 (15)
N40.0330 (13)0.0344 (14)0.0434 (15)0.0137 (11)0.0028 (12)0.0029 (11)
O1W0.055 (4)0.043 (3)0.046 (4)0.026 (3)0.011 (3)0.001 (3)
O2W0.092 (6)0.058 (4)0.078 (6)0.045 (4)0.012 (5)0.007 (4)
O3W0.069 (5)0.114 (7)0.138 (9)0.060 (6)0.011 (5)0.027 (7)
S10.0370 (6)0.0464 (6)0.0500 (7)0.0089 (5)0.0067 (5)0.0070 (5)
S20.0416 (6)0.0377 (5)0.0446 (6)0.0119 (5)0.0134 (5)0.0021 (5)
Geometric parameters (Å, º) top
C1—C61.376 (7)C21—C221.406 (6)
C1—C21.387 (7)C21—H210.9300
C1—C71.493 (6)C22—C231.378 (6)
C2—C31.417 (7)C22—H220.9300
C2—H20.9300C23—C241.389 (6)
C3—C41.385 (7)C23—H230.9300
C3—H30.9300C24—C251.399 (6)
C4—C51.383 (7)C24—H240.9300
C4—H40.9300C25—C261.460 (6)
C5—C61.411 (7)C26—C271.365 (6)
C5—H50.9300C26—N41.390 (6)
C6—H60.9300C27—N31.374 (6)
C7—C81.376 (7)C27—H270.9300
C7—N21.382 (6)C28—N31.399 (6)
C8—N11.413 (6)C28—C291.441 (6)
C8—H80.9300C28—C311.504 (7)
C9—N11.339 (6)C29—S21.756 (5)
C9—C101.407 (7)C29—H290.9300
C9—C121.502 (6)C30—N31.324 (5)
C10—S11.731 (5)C30—N41.354 (6)
C10—H100.9300C30—S21.713 (4)
C11—N21.363 (7)C31—H31A0.9600
C11—N11.395 (6)C31—H31B0.9600
C11—S11.723 (5)C31—H31C0.9600
C12—H12A0.9600C32—N41.471 (5)
C12—H12B0.9600C32—C331.486 (6)
C12—H12C0.9600C32—H32A0.9700
C13—N21.483 (6)C32—H32B0.9700
C13—C141.519 (6)C33—C341.370 (6)
C13—H13A0.9700C33—C381.393 (7)
C13—H13B0.9700C34—C351.377 (7)
C14—C191.362 (7)C34—H340.9300
C14—C151.396 (7)C35—C361.388 (8)
C15—C161.386 (7)C35—H350.9300
C15—H150.9300C36—C371.396 (7)
C16—C171.358 (8)C36—H360.9300
C16—H160.9300C37—C381.367 (7)
C17—C181.399 (8)C37—H370.9300
C17—H170.9300C38—H380.9300
C18—C191.355 (7)O1W—H1WA0.9407
C18—H180.9300O1W—H1WB0.8555
C19—H190.9300O2W—H2WA0.8657
C20—C211.370 (6)O2W—H2WB0.8731
C20—C251.414 (6)O3W—H3WA0.8501
C20—H200.9300O3W—H3WB0.8502
C6—C1—C2122.9 (4)C22—C23—C24120.6 (4)
C6—C1—C7119.1 (4)C22—C23—H23119.7
C2—C1—C7117.7 (4)C24—C23—H23119.7
C1—C2—C3118.2 (4)C23—C24—C25120.8 (4)
C1—C2—H2120.9C23—C24—H24119.6
C3—C2—H2120.9C25—C24—H24119.6
C4—C3—C2119.9 (5)C24—C25—C20118.4 (4)
C4—C3—H3120.1C24—C25—C26120.0 (4)
C2—C3—H3120.1C20—C25—C26121.3 (4)
C5—C4—C3120.3 (5)C27—C26—N4106.9 (4)
C5—C4—H4119.9C27—C26—C25125.7 (4)
C3—C4—H4119.9N4—C26—C25127.5 (4)
C4—C5—C6120.9 (5)C26—C27—N3107.2 (4)
C4—C5—H5119.5C26—C27—H27126.4
C6—C5—H5119.5N3—C27—H27126.4
C1—C6—C5117.8 (5)N3—C28—C29110.0 (4)
C1—C6—H6121.1N3—C28—C31124.4 (4)
C5—C6—H6121.1C29—C28—C31125.5 (4)
C8—C7—N2108.4 (4)C28—C29—S2110.1 (3)
C8—C7—C1124.2 (4)C28—C29—H29124.9
N2—C7—C1127.3 (4)S2—C29—H29124.9
C7—C8—N1107.5 (4)N3—C30—N4108.5 (4)
C7—C8—H8126.2N3—C30—S2113.4 (3)
N1—C8—H8126.2N4—C30—S2138.1 (3)
N1—C9—C10110.0 (4)C28—C31—H31A109.5
N1—C9—C12122.6 (4)C28—C31—H31B109.5
C10—C9—C12127.4 (4)H31A—C31—H31B109.5
C9—C10—S1114.4 (4)C28—C31—H31C109.5
C9—C10—H10122.8H31A—C31—H31C109.5
S1—C10—H10122.8H31B—C31—H31C109.5
N2—C11—N1108.4 (4)N4—C32—C33120.7 (4)
N2—C11—S1139.0 (4)N4—C32—H32A107.2
N1—C11—S1112.5 (4)C33—C32—H32A107.2
C9—C12—H12A109.5N4—C32—H32B107.2
C9—C12—H12B109.5C33—C32—H32B107.2
H12A—C12—H12B109.5H32A—C32—H32B106.8
C9—C12—H12C109.5C34—C33—C38118.5 (4)
H12A—C12—H12C109.5C34—C33—C32121.4 (4)
H12B—C12—H12C109.5C38—C33—C32120.1 (4)
N2—C13—C14112.6 (4)C33—C34—C35121.7 (5)
N2—C13—H13A109.1C33—C34—H34119.2
C14—C13—H13A109.1C35—C34—H34119.2
N2—C13—H13B109.1C34—C35—C36119.0 (5)
C14—C13—H13B109.1C34—C35—H35120.5
H13A—C13—H13B107.8C36—C35—H35120.5
C19—C14—C15120.5 (4)C35—C36—C37120.2 (5)
C19—C14—C13120.5 (4)C35—C36—H36119.9
C15—C14—C13118.9 (4)C37—C36—H36119.9
C16—C15—C14118.0 (5)C38—C37—C36119.1 (5)
C16—C15—H15121.0C38—C37—H37120.5
C14—C15—H15121.0C36—C37—H37120.5
C17—C16—C15121.4 (5)C37—C38—C33121.4 (5)
C17—C16—H16119.3C37—C38—H38119.3
C15—C16—H16119.3C33—C38—H38119.3
C16—C17—C18119.3 (5)C9—N1—C11114.8 (4)
C16—C17—H17120.3C9—N1—C8138.3 (4)
C18—C17—H17120.3C11—N1—C8106.9 (4)
C19—C18—C17119.9 (5)C11—N2—C7108.8 (4)
C19—C18—H18120.0C11—N2—C13125.2 (4)
C17—C18—H18120.0C7—N2—C13125.8 (4)
C18—C19—C14120.8 (5)C30—N3—C27109.5 (4)
C18—C19—H19119.6C30—N3—C28115.6 (4)
C14—C19—H19119.6C27—N3—C28134.9 (4)
C21—C20—C25120.1 (4)C30—N4—C26107.9 (3)
C21—C20—H20120.0C30—N4—C32124.2 (4)
C25—C20—H20120.0C26—N4—C32127.7 (4)
C20—C21—C22121.2 (4)H1WA—O1W—H1WB108.8
C20—C21—H21119.4H2WA—O2W—H2WB113.8
C22—C21—H21119.4H3WA—O3W—H3WB109.5
C23—C22—C21118.9 (4)C11—S1—C1088.3 (2)
C23—C22—H22120.5C30—S2—C2990.8 (2)
C21—C22—H22120.5
C6—C1—C2—C31.9 (6)C36—C37—C38—C331.3 (8)
C7—C1—C2—C3175.1 (3)C34—C33—C38—C370.4 (8)
C1—C2—C3—C42.1 (6)C32—C33—C38—C37179.2 (5)
C2—C3—C4—C51.6 (6)C10—C9—N1—C110.8 (6)
C3—C4—C5—C60.8 (6)C12—C9—N1—C11179.1 (4)
C2—C1—C6—C51.1 (6)C10—C9—N1—C8177.4 (5)
C7—C1—C6—C5174.2 (3)C12—C9—N1—C82.7 (9)
C4—C5—C6—C10.5 (6)N2—C11—N1—C9179.3 (4)
C6—C1—C7—C8138.1 (5)S1—C11—N1—C90.0 (5)
C2—C1—C7—C835.4 (6)N2—C11—N1—C80.6 (5)
C6—C1—C7—N247.5 (6)S1—C11—N1—C8178.7 (3)
C2—C1—C7—N2138.9 (5)C7—C8—N1—C9179.9 (5)
N2—C7—C8—N12.0 (5)C7—C8—N1—C111.6 (5)
C1—C7—C8—N1177.3 (4)N1—C11—N2—C70.7 (5)
N1—C9—C10—S11.3 (5)S1—C11—N2—C7179.6 (5)
C12—C9—C10—S1178.6 (4)N1—C11—N2—C13174.3 (4)
N2—C13—C14—C1956.6 (6)S1—C11—N2—C134.6 (9)
N2—C13—C14—C15120.9 (5)C8—C7—N2—C111.7 (5)
C19—C14—C15—C160.0 (7)C1—C7—N2—C11176.8 (4)
C13—C14—C15—C16177.5 (4)C8—C7—N2—C13173.3 (4)
C14—C15—C16—C170.6 (7)C1—C7—N2—C131.8 (7)
C15—C16—C17—C180.9 (8)C14—C13—N2—C1157.4 (6)
C16—C17—C18—C190.6 (8)C14—C13—N2—C7116.8 (5)
C17—C18—C19—C140.0 (8)N4—C30—N3—C272.9 (4)
C15—C14—C19—C180.3 (8)S2—C30—N3—C27179.0 (3)
C13—C14—C19—C18177.7 (5)N4—C30—N3—C28178.4 (3)
C25—C20—C21—C220.3 (7)S2—C30—N3—C280.3 (5)
C20—C21—C22—C230.7 (7)C26—C27—N3—C301.9 (4)
C21—C22—C23—C241.6 (7)C26—C27—N3—C28179.8 (4)
C22—C23—C24—C252.1 (7)C29—C28—N3—C301.7 (5)
C23—C24—C25—C201.7 (6)C31—C28—N3—C30177.9 (4)
C23—C24—C25—C26176.0 (4)C29—C28—N3—C27176.5 (4)
C21—C20—C25—C240.8 (7)C31—C28—N3—C270.3 (7)
C21—C20—C25—C26175.0 (4)N3—C30—N4—C262.8 (4)
C24—C25—C26—C27131.4 (4)S2—C30—N4—C26179.8 (4)
C20—C25—C26—C2742.8 (6)N3—C30—N4—C32172.8 (4)
C24—C25—C26—N447.3 (6)S2—C30—N4—C324.6 (7)
C20—C25—C26—N4138.6 (4)C27—C26—N4—C301.6 (4)
N4—C26—C27—N30.1 (4)C25—C26—N4—C30177.2 (4)
C25—C26—C27—N3179.0 (4)C27—C26—N4—C32173.7 (4)
N3—C28—C29—S22.9 (4)C25—C26—N4—C327.4 (7)
C31—C28—C29—S2179.1 (4)C33—C32—N4—C3051.6 (7)
N4—C32—C33—C3440.2 (7)C33—C32—N4—C26123.1 (5)
N4—C32—C33—C38138.5 (5)N2—C11—S1—C10178.3 (6)
C38—C33—C34—C350.2 (7)N1—C11—S1—C100.6 (4)
C32—C33—C34—C35178.6 (5)C9—C10—S1—C111.0 (4)
C33—C34—C35—C362.5 (7)N3—C30—S2—C291.8 (3)
C34—C35—C36—C374.2 (7)N4—C30—S2—C29179.1 (5)
C35—C36—C37—C383.7 (7)C28—C29—S2—C302.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl1i0.942.753.208 (6)111
O1W—H1WA···S2ii0.942.883.819 (6)174
O1W—H1WB···Cl20.862.613.240 (7)132
O3W—H3WA···Cl2iii0.852.683.275 (10)129
O3W—H3WB···Cl1i0.852.603.301 (10)141
C8—H8···Cl10.932.783.664 (5)159
C10—H10···Cl1iv0.932.723.390 (5)130
C18—H18···O3Wv0.932.523.320 (9)144
C27—H27···Cl10.932.723.642 (5)175
Symmetry codes: (i) x, y+1, z; (ii) x+y, x+1, z+1/3; (iii) y+1, xy+1, z1/3; (iv) x+y+1, x+1, z+1/3; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H17N2S+·Cl·0.75H2O
Mr354.37
Crystal system, space groupTrigonal, P32
Temperature (K)291
a, c (Å)13.211 (1), 19.555 (3)
V3)2955.7 (6)
Z6
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.919, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
16250, 6594, 4827
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.123, 1.00
No. of reflections6594
No. of parameters476
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.28
Absolute structureFlack (1983)
Absolute structure parameter0.04 (7)

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl1i0.942.753.208 (6)110.8
O1W—H1WA···S2ii0.942.883.819 (6)173.7
O1W—H1WB···Cl20.862.613.240 (7)132.0
O3W—H3WA···Cl2iii0.852.683.275 (10)128.7
O3W—H3WB···Cl1i0.852.603.301 (10)140.9
C8—H8···Cl10.932.783.664 (5)158.9
C10—H10···Cl1iv0.932.723.390 (5)129.5
C18—H18···O3Wv0.932.523.320 (9)144.4
C27—H27···Cl10.932.723.642 (5)175.1
Symmetry codes: (i) x, y+1, z; (ii) x+y, x+1, z+1/3; (iii) y+1, xy+1, z1/3; (iv) x+y+1, x+1, z+1/3; (v) x+1, y, z.
 

Acknowledgements

The authors thank the Scientific Researching Fund Projects of Yunnan Educational Department (grant No. 22012Z017) and the Youth Scientific Fund Projects of Yunnan Normal University for financial support.

References

First citationAkkurt, M., Güzeldemirci, N. U., Karaman, B. & Büyükgüngör, O. (2011). Acta Cryst. E67, o184–o185.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Gürsoy, E., Güzeldemirci, N. U. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, G. L., Sun, H. S., Qiu, X. J., Jin, C., Lin, C., Shen, Y. Z., Jiang, J. L. & Wang, L. Y. (2011). Org. Lett. 13, 5224–5227.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, Q., Perreault, S. & Rovis, R. (2008). J. Am. Chem. Soc. 130, 14066–14067.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMattson, A. E., Zuhl, A. M., Reynolds, T. E. & Scheidt, K. A. (2006). J. Am. Chem. Soc. 128, 4932–4933.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPadmanaban, M., Biju, A. T. & Glorius, F. (2011). Org. Lett. 13, 98–101.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, G. Y., Zhang, Y. & Li, X. W. (2008). Organometallics, 13, 1936-1943.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1247-o1248
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds