organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1194-o1195

1′-(1,3-Di­phenyl-1H-pyrazol-4-yl)-1′′-(prop-2-en-1-yl)-2′,3′,5′,6′,7′,7a'-hexa­hydro-1′H-di­spiro­[1-benzo­pyran-3,2′-pyrrolizine-3′,3′′-indoline]-2′′,4-dione 0.75-hydrate

aDepartment of Physics, Meenakshi College of Engineering, West K.K. Nagar, Chennai 600 078, India, bIndustrial Chemistry Lab, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 17 May 2013; accepted 27 June 2013; online 3 July 2013)

In the central aza-bi­cyclo­octane unit of the title compound, C40H34N4O3·0.75H2O, the peripheral pyrrolidine ring adopts an envelope conformation with the N atom deviating by 0.209 (2) Å, whereas the other pyrrolidine ring adopts a twisted conformation with the bridging N and C atoms deviating by −0.218 (2) and 0.236 (3) Å, respectively, from the rest of the ring. The pyrazole ring forms dihedral angles of 42.36 (7) and 24.07 (8)° with its C- and N-attached phenyl groups, respectively. The solvent water mol­ecule has a partial occupancy of 0.75. In the crystal, the water mol­ecules link the fused-ring mol­ecules into chains along the b axis via O—H⋯N and O—H⋯O hydrogen bonds. The crystal packing is further stabilized by C—H⋯π inter­actions involving a methyl­ene group of the pyran ring and the C-attached benzene ring on the pyrazole ring.

Related literature

For the biological activity of pyrazole derivatives, see: Mahajan et al. (1991[Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-249.]); Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Katayama & Oshiyama (1997[Katayama, H. & Oshiyama, T. (1997). Can. J. Chem. 75, 913-919.]); Chen & Li (1998[Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.]). For a related structure, see: Jagadeesan et al. (2013[Jagadeesan, G., Sethusankar, K., Kathirvelan, D., Haribabu, J. & Reddy, B. S. R. (2013). Acta Cryst. E69, o317.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C40H34N4O3·0.75H2O

  • Mr = 632.22

  • Monoclinic, P 21 /n

  • a = 11.451 (2) Å

  • b = 13.496 (2) Å

  • c = 20.815 (3) Å

  • β = 96.206 (9)°

  • V = 3198.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.983

  • 32619 measured reflections

  • 6870 independent reflections

  • 4468 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.153

  • S = 1.02

  • 6870 reflections

  • 439 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4W—H1W⋯N3i 0.91 (2) 2.02 (3) 2.892 (4) 161 (4)
O4W—H2W⋯O2ii 0.90 (1) 1.96 (1) 2.841 (3) 165 (3)
C40—H40ACg1iii 0.97 2.78 3.540 (3) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole derivatives in general are well known nitrogen containing heterocyclic compounds and have been the subject of enormous research due to their importance in various applications and their widespread potential biological and pharmacological activities such as antimicrobial (Mahajan et al., 1991), antiviral (Baraldi et al., 1998), antitumor (Katayama & Oshiyama, 1997) and antifungal activities (Chen & Li, 1998).

The molecular structure of the title compound C40H34N4O3.0.75H2O, is shown in Fig. 1. The mean planes of the phenyl rings (C1–C6) and (C7–C12) form a dihedral angle of 62.08 (7)° between them. The mean plane of the pyrazole ring (C13/C14/C15/N1/N2) forms dihedral angles of 42.36 (7)° and 24.07 (8)° with the mean planes of the two phenyl rings (C1–C6) and (C7–C12), respectively. The mean plane of the pyrrolizine ring (C16–C21/C32/N3) forms dihedral angles of 78.04 (7)° and 74.97 (6)° with the mean planes of the chromene ring (C32–C40/O1) and the indole ring (C21–C28/N4), respectively. The solvent water molecule is partially occupied, with a refined occupancy of 0.75.

The sum of angles around the N2 atom (356 °) indicates sp2 hybridization, whereas that around N3 atom (336.7 °) indicates sp3 hybridization. The pyrrolidine ring (C16/C17/C21/C32/N3) adopts an envelope conformation on N3, with puckering parameters (Cremer & Pople, 1975) of q2 = 0.332 (2) Å and ϕ2= 187.4 (4)°. Also, the atom N3 deviates from the mean planes of the remaining ring atoms by -0.208 (19) Å. The other pyrrolidine ring (C17–C20/N3) adopts a twisted conformation on N3 and C20, with puckering parameters of q2 = 0.380 (2) Å and ϕ2= 155.3 (4)°. Also, the atoms N3 and C20 deviate from the mean planes of the remaining ring atoms by -0.218 (2) Å and 0.236 (3) Å, respectively. The title compound exhibits structural similarities with an already reported related structure (Jagadeesan et al., 2013).

In the crystal packing, the molecules are linked to the water molecules via intermolecular O4W–H1W···N3i and O4W–H2W···O2ii interactions is view down the a axis. The crystal packing is further stabilized by C40–H40A···Cg1iii hydrogen bond interaction, where Cg1 is the center of gravity of (C1–C6) ring (Table 1). The symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2, (ii) x, y + 1, z, (iii) -x + 1, -y, -z. The packing view of the title compound is shown in Fig. 2 and Fig. 3.

Related literature top

For the biological activity of pyrazole derivatives, see: Mahajan et al. (1991); Baraldi et al. (1998); Katayama & Oshiyama (1997); Chen & Li (1998). For a related structure, see: Jagadeesan et al. (2013). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of allyl isatin (1.05 mmol), sarcosine (1.1 mmol) and dipolarophile (1.0 mmol) in ethanol was refluxed for 85 minute and cooled to room temperature. Then the mixture was poured into a beaker containing crushed ice and the solid formed in the mixture was filtered, dried and recrystallized from ethanol to obtain the pure product in good yield 89%.

Refinement top

Hydrogen atoms were placed in calculated positions with C–H = 0.93 to 0.98 Å refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2 Ueq(C). The water H atoms were located in a difference map and refined with distance restraints of O–H = 0.90 (1) Å. The solvent water molecule is partially occupied, with an occupancy factor of 0.75.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis showing intermolecular O—H···N and O—H···O hydrogen bonds (dashed lines). The H–atoms not involved in hydrogen bonds have been excluded for clarity.
[Figure 3] Fig. 3. The crystal packing arrangement of the title compound viewed down the a axis showing intermolecular C—H···π hydrogen bonds (dashed lines). The isolated water molecule and H–atoms not involved in hydrogen bonds have been excluded for clarity.
1'-(1,3-Diphenyl-1H-pyrazol-4-yl)-1''-(prop-2-en-1-yl)-2',3',5',6',7',7a'-hexahydro-1'H-dispiro[1-benzopyran-3,2'-pyrrolizine-3',3''-indoline]-2'',4-dione 0.75-hydrate top
Crystal data top
C40H34N4O3·0.75H2OF(000) = 1334
Mr = 632.22Dx = 1.313 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6870 reflections
a = 11.451 (2) Åθ = 2.0–26.9°
b = 13.496 (2) ŵ = 0.09 mm1
c = 20.815 (3) ÅT = 296 K
β = 96.206 (9)°Block, colourless
V = 3198.0 (9) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6870 independent reflections
Radiation source: fine-focus sealed tube4468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 26.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.975, Tmax = 0.983k = 1716
32619 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0677P)2 + 1.1541P]
where P = (Fo2 + 2Fc2)/3
6870 reflections(Δ/σ)max < 0.001
439 parametersΔρmax = 0.53 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
C40H34N4O3·0.75H2OV = 3198.0 (9) Å3
Mr = 632.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.451 (2) ŵ = 0.09 mm1
b = 13.496 (2) ÅT = 296 K
c = 20.815 (3) Å0.30 × 0.25 × 0.20 mm
β = 96.206 (9)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6870 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4468 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.041
32619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.53 e Å3
6870 reflectionsΔρmin = 0.25 e Å3
439 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3646 (2)0.09434 (16)0.00940 (10)0.0520 (5)
H10.41690.08730.04650.062*
C20.3490 (2)0.18622 (17)0.01924 (12)0.0618 (6)
H20.38950.24090.00100.074*
C30.2736 (2)0.19691 (18)0.07481 (12)0.0590 (6)
H30.26200.25900.09380.071*
C40.21576 (19)0.11638 (18)0.10203 (11)0.0551 (6)
H40.16640.12340.14030.066*
C50.23008 (18)0.02496 (16)0.07328 (10)0.0476 (5)
H50.19000.02940.09220.057*
C60.30383 (17)0.01291 (14)0.01625 (9)0.0407 (5)
C70.3903 (2)0.35239 (18)0.06490 (11)0.0619 (6)
H70.41250.29780.08800.074*
C80.4026 (3)0.4471 (2)0.08857 (13)0.0741 (8)
H80.43350.45620.12770.089*
C90.3697 (3)0.52715 (19)0.05491 (14)0.0726 (8)
H90.37750.59060.07130.087*
C100.3252 (2)0.51435 (18)0.00313 (14)0.0676 (7)
H100.30400.56930.02620.081*
C110.3118 (2)0.42039 (16)0.02735 (12)0.0565 (6)
H110.28070.41170.06640.068*
C120.34474 (19)0.33968 (15)0.00683 (10)0.0462 (5)
N20.33424 (15)0.24231 (12)0.01741 (8)0.0442 (4)
C140.33160 (18)0.21340 (15)0.07935 (9)0.0432 (5)
H140.33620.25480.11530.052*
C150.32098 (17)0.11219 (14)0.07987 (9)0.0390 (4)
C160.30271 (16)0.04839 (14)0.13713 (9)0.0378 (4)
H160.26820.01420.12050.045*
C170.21513 (18)0.09593 (17)0.17936 (10)0.0475 (5)
H170.22330.16820.17890.057*
C180.0875 (2)0.0674 (2)0.16208 (14)0.0777 (8)
H18A0.03790.12590.15880.093*
H18B0.07740.03230.12120.093*
C190.0572 (2)0.0020 (2)0.21576 (17)0.0856 (9)
H19A0.01210.05480.19880.103*
H19B0.01160.03810.24470.103*
C200.1725 (2)0.03022 (19)0.25043 (13)0.0641 (7)
H20A0.16510.04650.29520.077*
H20B0.20410.08690.22950.077*
C210.37282 (17)0.05038 (14)0.25424 (9)0.0373 (4)
C220.41957 (17)0.01102 (15)0.31226 (9)0.0401 (4)
C230.4085 (2)0.10970 (16)0.32683 (10)0.0485 (5)
H230.36440.15180.29830.058*
C240.4642 (2)0.14571 (18)0.38482 (11)0.0604 (6)
H240.45700.21220.39530.072*
C250.5296 (2)0.0836 (2)0.42650 (11)0.0663 (7)
H250.56750.10920.46470.080*
C260.5407 (2)0.0153 (2)0.41352 (11)0.0609 (6)
H260.58430.05720.44240.073*
C270.48488 (18)0.05012 (16)0.35618 (9)0.0441 (5)
C280.42046 (18)0.15474 (15)0.27428 (10)0.0432 (5)
C290.5406 (2)0.23204 (18)0.36684 (12)0.0657 (7)
H29A0.55660.28250.33580.079*
H29B0.61490.21120.38960.079*
C300.4627 (4)0.2760 (2)0.41537 (14)0.0914 (10)
H300.38210.27480.40340.110*
C310.4951 (4)0.3122 (3)0.46756 (18)0.1216 (14)
H31A0.57480.31530.48190.146*
H31B0.44020.33690.49330.146*
C320.41258 (16)0.02229 (13)0.18492 (8)0.0332 (4)
C330.44132 (18)0.08767 (14)0.18398 (9)0.0384 (4)
C340.56279 (18)0.11499 (15)0.20664 (9)0.0422 (5)
C350.5953 (2)0.21383 (18)0.21540 (10)0.0574 (6)
H350.54160.26370.20270.069*
C360.7059 (3)0.2382 (2)0.24262 (12)0.0723 (8)
H360.72780.30430.24780.087*
C370.7845 (3)0.1643 (3)0.26227 (13)0.0760 (8)
H370.85900.18110.28130.091*
C380.7549 (2)0.0671 (2)0.25432 (12)0.0619 (6)
H380.80880.01790.26810.074*
C390.64463 (18)0.04197 (16)0.22576 (9)0.0445 (5)
C400.52334 (16)0.07518 (15)0.16948 (9)0.0394 (4)
H40A0.54350.05330.12770.047*
H40B0.50880.14600.16700.047*
O4W0.3354 (3)0.6451 (2)0.14051 (16)0.1037 (10)0.75
N10.32593 (16)0.16460 (12)0.02365 (8)0.0460 (4)
C130.31812 (17)0.08557 (14)0.01392 (9)0.0398 (4)
N30.24531 (15)0.05827 (13)0.24518 (8)0.0457 (4)
N40.48377 (16)0.14756 (13)0.33290 (8)0.0478 (4)
O10.61974 (11)0.05582 (11)0.21763 (7)0.0460 (4)
O20.36699 (14)0.14969 (10)0.16740 (7)0.0555 (4)
O30.40355 (15)0.23089 (10)0.24343 (7)0.0570 (4)
H2W0.337 (3)0.7119 (8)0.1421 (15)0.086*0.75
H1W0.328 (4)0.618 (2)0.1800 (9)0.086*0.75
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0632 (14)0.0459 (13)0.0450 (11)0.0053 (11)0.0024 (10)0.0013 (10)
C20.0813 (18)0.0418 (13)0.0620 (14)0.0087 (12)0.0054 (13)0.0002 (11)
C30.0612 (15)0.0484 (14)0.0686 (15)0.0075 (12)0.0120 (12)0.0180 (12)
C40.0430 (13)0.0641 (15)0.0570 (13)0.0029 (11)0.0001 (10)0.0183 (12)
C50.0421 (12)0.0519 (13)0.0478 (11)0.0041 (10)0.0008 (9)0.0050 (10)
C60.0422 (11)0.0390 (11)0.0410 (10)0.0008 (9)0.0052 (8)0.0009 (8)
C70.0895 (19)0.0483 (14)0.0472 (12)0.0022 (13)0.0042 (12)0.0065 (10)
C80.104 (2)0.0608 (17)0.0568 (14)0.0025 (15)0.0055 (14)0.0200 (13)
C90.087 (2)0.0464 (15)0.0810 (19)0.0020 (13)0.0072 (15)0.0213 (14)
C100.0740 (18)0.0412 (13)0.0847 (19)0.0039 (12)0.0038 (14)0.0015 (13)
C110.0641 (15)0.0432 (13)0.0609 (14)0.0014 (11)0.0015 (11)0.0020 (11)
C120.0523 (13)0.0381 (11)0.0453 (11)0.0017 (9)0.0074 (9)0.0067 (9)
N20.0552 (11)0.0351 (9)0.0409 (9)0.0004 (8)0.0020 (8)0.0023 (7)
C140.0498 (12)0.0396 (11)0.0384 (10)0.0017 (9)0.0031 (9)0.0009 (9)
C150.0370 (11)0.0371 (11)0.0413 (10)0.0017 (8)0.0031 (8)0.0019 (8)
C160.0361 (10)0.0343 (10)0.0417 (10)0.0035 (8)0.0025 (8)0.0014 (8)
C170.0373 (11)0.0508 (13)0.0547 (12)0.0059 (9)0.0069 (9)0.0107 (10)
C180.0375 (13)0.109 (2)0.0862 (19)0.0051 (14)0.0043 (13)0.0211 (17)
C190.0485 (16)0.091 (2)0.116 (2)0.0173 (15)0.0034 (15)0.0197 (18)
C200.0529 (15)0.0649 (16)0.0758 (16)0.0104 (12)0.0124 (12)0.0119 (13)
C210.0393 (11)0.0324 (10)0.0406 (10)0.0005 (8)0.0062 (8)0.0013 (8)
C220.0434 (11)0.0420 (11)0.0358 (9)0.0031 (9)0.0088 (8)0.0012 (8)
C230.0607 (14)0.0423 (12)0.0436 (11)0.0033 (10)0.0109 (10)0.0054 (9)
C240.0782 (17)0.0538 (14)0.0506 (13)0.0118 (12)0.0142 (12)0.0142 (11)
C250.0786 (18)0.0758 (18)0.0431 (12)0.0169 (14)0.0001 (12)0.0134 (12)
C260.0662 (16)0.0733 (17)0.0416 (12)0.0021 (13)0.0016 (11)0.0032 (11)
C270.0473 (12)0.0467 (12)0.0392 (10)0.0014 (9)0.0082 (9)0.0041 (9)
C280.0486 (12)0.0375 (11)0.0446 (11)0.0000 (9)0.0098 (9)0.0037 (9)
C290.0843 (19)0.0569 (15)0.0557 (14)0.0255 (13)0.0060 (13)0.0129 (12)
C300.150 (3)0.0558 (17)0.0662 (17)0.0111 (18)0.0020 (19)0.0303 (14)
C310.150 (4)0.121 (3)0.101 (3)0.014 (3)0.042 (3)0.026 (2)
C320.0335 (10)0.0302 (9)0.0354 (9)0.0008 (7)0.0021 (7)0.0011 (7)
C330.0477 (12)0.0341 (10)0.0335 (9)0.0002 (9)0.0051 (8)0.0001 (8)
C340.0488 (12)0.0438 (11)0.0347 (9)0.0123 (9)0.0079 (8)0.0032 (8)
C350.0748 (16)0.0505 (13)0.0478 (12)0.0216 (12)0.0103 (11)0.0027 (10)
C360.085 (2)0.0721 (18)0.0613 (15)0.0433 (16)0.0147 (14)0.0145 (13)
C370.0571 (16)0.106 (2)0.0645 (16)0.0366 (17)0.0062 (13)0.0196 (16)
C380.0425 (13)0.0850 (19)0.0575 (13)0.0096 (12)0.0022 (10)0.0089 (13)
C390.0391 (11)0.0561 (13)0.0389 (10)0.0074 (10)0.0075 (8)0.0036 (9)
C400.0358 (10)0.0412 (11)0.0407 (10)0.0019 (8)0.0022 (8)0.0032 (8)
O4W0.156 (3)0.0594 (16)0.107 (2)0.0196 (18)0.066 (2)0.0095 (15)
N10.0571 (11)0.0391 (10)0.0407 (9)0.0014 (8)0.0007 (8)0.0003 (8)
C130.0395 (11)0.0384 (11)0.0401 (10)0.0033 (8)0.0015 (8)0.0011 (8)
N30.0400 (9)0.0472 (10)0.0509 (10)0.0007 (8)0.0100 (7)0.0076 (8)
N40.0564 (11)0.0432 (10)0.0441 (9)0.0071 (8)0.0068 (8)0.0091 (8)
O10.0355 (7)0.0502 (9)0.0510 (8)0.0042 (6)0.0018 (6)0.0035 (7)
O20.0629 (10)0.0363 (8)0.0647 (10)0.0066 (7)0.0055 (8)0.0004 (7)
O30.0769 (11)0.0326 (8)0.0617 (9)0.0020 (7)0.0081 (8)0.0016 (7)
Geometric parameters (Å, º) top
C1—C61.377 (3)C21—C221.514 (3)
C1—C21.379 (3)C21—C281.551 (3)
C1—H10.9300C21—C321.605 (3)
C2—C31.374 (3)C22—C231.375 (3)
C2—H20.9300C22—C271.388 (3)
C3—C41.364 (3)C23—C241.390 (3)
C3—H30.9300C23—H230.9300
C4—C51.373 (3)C24—C251.370 (4)
C4—H40.9300C24—H240.9300
C5—C61.390 (3)C25—C261.370 (4)
C5—H50.9300C25—H250.9300
C6—C131.472 (3)C26—C271.374 (3)
C7—C121.378 (3)C26—H260.9300
C7—C81.382 (3)C27—N41.401 (3)
C7—H70.9300C28—O31.216 (2)
C8—C91.363 (4)C28—N41.354 (3)
C8—H80.9300C29—N41.457 (3)
C9—C101.372 (4)C29—C301.537 (4)
C9—H90.9300C29—H29A0.9700
C10—C111.379 (3)C29—H29B0.9700
C10—H100.9300C30—C311.212 (4)
C11—C121.376 (3)C30—H300.9300
C11—H110.9300C31—H31A0.9300
C12—N21.417 (3)C31—H31B0.9300
N2—N11.350 (2)C32—C401.520 (3)
N2—C141.351 (2)C32—C331.521 (3)
C14—C151.371 (3)C33—O21.217 (2)
C14—H140.9300C33—C341.467 (3)
C15—C131.416 (3)C34—C391.388 (3)
C15—C161.503 (3)C34—C351.392 (3)
C16—C171.543 (3)C35—C361.371 (4)
C16—C321.558 (3)C35—H350.9300
C16—H160.9800C36—C371.374 (4)
C17—N31.467 (3)C36—H360.9300
C17—C181.517 (3)C37—C381.361 (4)
C17—H170.9800C37—H370.9300
C18—C191.493 (4)C38—C391.379 (3)
C18—H18A0.9700C38—H380.9300
C18—H18B0.9700C39—O11.357 (3)
C19—C201.499 (4)C40—O11.433 (2)
C19—H19A0.9700C40—H40A0.9700
C19—H19B0.9700C40—H40B0.9700
C20—N31.468 (3)O4W—H2W0.902 (10)
C20—H20A0.9700O4W—H1W0.912 (10)
C20—H20B0.9700N1—C131.331 (2)
C21—N31.456 (3)
C6—C1—C2120.9 (2)C28—C21—C32109.30 (14)
C6—C1—H1119.6C23—C22—C27119.11 (19)
C2—C1—H1119.6C23—C22—C21132.30 (19)
C3—C2—C1119.9 (2)C27—C22—C21108.60 (17)
C3—C2—H2120.0C22—C23—C24119.0 (2)
C1—C2—H2120.0C22—C23—H23120.5
C4—C3—C2119.9 (2)C24—C23—H23120.5
C4—C3—H3120.0C25—C24—C23120.3 (2)
C2—C3—H3120.0C25—C24—H24119.9
C3—C4—C5120.3 (2)C23—C24—H24119.9
C3—C4—H4119.8C24—C25—C26121.8 (2)
C5—C4—H4119.8C24—C25—H25119.1
C4—C5—C6120.7 (2)C26—C25—H25119.1
C4—C5—H5119.7C25—C26—C27117.4 (2)
C6—C5—H5119.7C25—C26—H26121.3
C1—C6—C5118.22 (19)C27—C26—H26121.3
C1—C6—C13121.79 (18)C26—C27—C22122.4 (2)
C5—C6—C13119.96 (18)C26—C27—N4127.4 (2)
C12—C7—C8119.4 (2)C22—C27—N4110.24 (17)
C12—C7—H7120.3O3—C28—N4125.15 (19)
C8—C7—H7120.3O3—C28—C21126.43 (18)
C9—C8—C7120.3 (3)N4—C28—C21108.42 (17)
C9—C8—H8119.8N4—C29—C30111.1 (2)
C7—C8—H8119.8N4—C29—H29A109.4
C8—C9—C10120.2 (2)C30—C29—H29A109.4
C8—C9—H9119.9N4—C29—H29B109.4
C10—C9—H9119.9C30—C29—H29B109.4
C9—C10—C11120.3 (3)H29A—C29—H29B108.0
C9—C10—H10119.9C31—C30—C29127.0 (4)
C11—C10—H10119.9C31—C30—H30116.5
C12—C11—C10119.4 (2)C29—C30—H30116.5
C12—C11—H11120.3C30—C31—H31A120.0
C10—C11—H11120.3C30—C31—H31B120.0
C11—C12—C7120.4 (2)H31A—C31—H31B120.0
C11—C12—N2120.8 (2)C40—C32—C33105.60 (15)
C7—C12—N2118.8 (2)C40—C32—C16113.19 (15)
N1—N2—C14111.88 (16)C33—C32—C16111.93 (15)
N1—N2—C12119.87 (16)C40—C32—C21113.81 (15)
C14—N2—C12128.25 (17)C33—C32—C21108.96 (14)
N2—C14—C15107.84 (17)C16—C32—C21103.45 (14)
N2—C14—H14126.1O2—C33—C34121.89 (18)
C15—C14—H14126.1O2—C33—C32121.95 (18)
C14—C15—C13103.76 (17)C34—C33—C32116.12 (17)
C14—C15—C16126.64 (18)C39—C34—C35118.7 (2)
C13—C15—C16129.25 (17)C39—C34—C33120.07 (18)
C15—C16—C17111.61 (16)C35—C34—C33120.9 (2)
C15—C16—C32117.64 (15)C36—C35—C34120.4 (3)
C17—C16—C32105.08 (15)C36—C35—H35119.8
C15—C16—H16107.3C34—C35—H35119.8
C17—C16—H16107.3C35—C36—C37119.7 (2)
C32—C16—H16107.3C35—C36—H36120.2
N3—C17—C18104.90 (18)C37—C36—H36120.2
N3—C17—C16106.62 (16)C38—C37—C36121.1 (2)
C18—C17—C16115.4 (2)C38—C37—H37119.4
N3—C17—H17109.9C36—C37—H37119.4
C18—C17—H17109.9C37—C38—C39119.6 (3)
C16—C17—H17109.9C37—C38—H38120.2
C19—C18—C17105.5 (2)C39—C38—H38120.2
C19—C18—H18A110.6O1—C39—C38117.6 (2)
C17—C18—H18A110.6O1—C39—C34121.90 (18)
C19—C18—H18B110.6C38—C39—C34120.5 (2)
C17—C18—H18B110.6O1—C40—C32111.35 (15)
H18A—C18—H18B108.8O1—C40—H40A109.4
C18—C19—C20105.6 (2)C32—C40—H40A109.4
C18—C19—H19A110.6O1—C40—H40B109.4
C20—C19—H19A110.6C32—C40—H40B109.4
C18—C19—H19B110.6H40A—C40—H40B108.0
C20—C19—H19B110.6H2W—O4W—H1W111.8 (16)
H19A—C19—H19B108.8C13—N1—N2104.78 (16)
N3—C20—C19101.9 (2)N1—C13—C15111.74 (17)
N3—C20—H20A111.4N1—C13—C6118.97 (17)
C19—C20—H20A111.4C15—C13—C6129.25 (17)
N3—C20—H20B111.4C21—N3—C17106.14 (15)
C19—C20—H20B111.4C21—N3—C20120.07 (17)
H20A—C20—H20B109.3C17—N3—C20105.84 (18)
N3—C21—C22113.99 (15)C28—N4—C27111.27 (16)
N3—C21—C28106.68 (15)C28—N4—C29123.27 (19)
C22—C21—C28101.45 (15)C27—N4—C29125.44 (18)
N3—C21—C32106.20 (15)C39—O1—C40113.59 (15)
C22—C21—C32118.54 (15)
C6—C1—C2—C31.2 (4)C28—C21—C32—C4025.4 (2)
C1—C2—C3—C41.0 (4)N3—C21—C32—C33102.37 (17)
C2—C3—C4—C51.7 (4)C22—C21—C32—C3327.4 (2)
C3—C4—C5—C60.2 (3)C28—C21—C32—C33142.89 (16)
C2—C1—C6—C52.7 (3)N3—C21—C32—C1616.86 (18)
C2—C1—C6—C13179.3 (2)C22—C21—C32—C16146.65 (16)
C4—C5—C6—C12.0 (3)C28—C21—C32—C1697.88 (17)
C4—C5—C6—C13179.98 (19)C40—C32—C33—O2148.26 (18)
C12—C7—C8—C90.2 (4)C16—C32—C33—O224.7 (3)
C7—C8—C9—C100.7 (4)C21—C32—C33—O289.1 (2)
C8—C9—C10—C111.0 (4)C40—C32—C33—C3434.1 (2)
C9—C10—C11—C120.8 (4)C16—C32—C33—C34157.65 (15)
C10—C11—C12—C70.3 (4)C21—C32—C33—C3488.56 (19)
C10—C11—C12—N2178.7 (2)O2—C33—C34—C39179.32 (19)
C8—C7—C12—C110.0 (4)C32—C33—C34—C391.6 (3)
C8—C7—C12—N2179.0 (2)O2—C33—C34—C355.7 (3)
C11—C12—N2—N1156.5 (2)C32—C33—C34—C35172.01 (18)
C7—C12—N2—N124.5 (3)C39—C34—C35—C360.2 (3)
C11—C12—N2—C1423.8 (3)C33—C34—C35—C36173.5 (2)
C7—C12—N2—C14155.2 (2)C34—C35—C36—C371.0 (4)
N1—N2—C14—C150.1 (2)C35—C36—C37—C381.0 (4)
C12—N2—C14—C15179.7 (2)C36—C37—C38—C390.4 (4)
N2—C14—C15—C130.2 (2)C37—C38—C39—O1178.7 (2)
N2—C14—C15—C16173.55 (18)C37—C38—C39—C341.7 (3)
C14—C15—C16—C1740.7 (3)C35—C34—C39—O1178.81 (18)
C13—C15—C16—C17131.4 (2)C33—C34—C39—O17.4 (3)
C14—C15—C16—C3280.9 (3)C35—C34—C39—C381.6 (3)
C13—C15—C16—C32107.0 (2)C33—C34—C39—C38172.20 (19)
C15—C16—C17—N3153.12 (16)C33—C32—C40—O162.21 (19)
C32—C16—C17—N324.6 (2)C16—C32—C40—O1175.01 (15)
C15—C16—C17—C1890.9 (2)C21—C32—C40—O157.3 (2)
C32—C16—C17—C18140.57 (19)C14—N2—N1—C130.1 (2)
N3—C17—C18—C198.0 (3)C12—N2—N1—C13179.63 (18)
C16—C17—C18—C19109.0 (3)N2—N1—C13—C150.2 (2)
C17—C18—C19—C2016.8 (3)N2—N1—C13—C6178.01 (17)
C18—C19—C20—N335.1 (3)C14—C15—C13—N10.2 (2)
N3—C21—C22—C2364.7 (3)C16—C15—C13—N1173.26 (19)
C28—C21—C22—C23178.9 (2)C14—C15—C13—C6177.8 (2)
C32—C21—C22—C2361.5 (3)C16—C15—C13—C64.3 (3)
N3—C21—C22—C27115.54 (19)C1—C6—C13—N1137.5 (2)
C28—C21—C22—C271.3 (2)C5—C6—C13—N140.5 (3)
C32—C21—C22—C27118.32 (18)C1—C6—C13—C1545.1 (3)
C27—C22—C23—C240.7 (3)C5—C6—C13—C15136.9 (2)
C21—C22—C23—C24179.1 (2)C22—C21—N3—C17165.29 (17)
C22—C23—C24—C250.4 (3)C28—C21—N3—C1783.59 (18)
C23—C24—C25—C261.3 (4)C32—C21—N3—C1732.92 (19)
C24—C25—C26—C271.0 (4)C22—C21—N3—C2045.6 (3)
C25—C26—C27—C220.2 (3)C28—C21—N3—C20156.67 (19)
C25—C26—C27—N4179.9 (2)C32—C21—N3—C2086.8 (2)
C23—C22—C27—C261.0 (3)C18—C17—N3—C21159.25 (19)
C21—C22—C27—C26178.8 (2)C16—C17—N3—C2136.4 (2)
C23—C22—C27—N4179.04 (18)C18—C17—N3—C2030.6 (2)
C21—C22—C27—N41.1 (2)C16—C17—N3—C2092.22 (19)
N3—C21—C28—O358.7 (3)C19—C20—N3—C21160.7 (2)
C22—C21—C28—O3178.3 (2)C19—C20—N3—C1740.8 (2)
C32—C21—C28—O355.8 (3)O3—C28—N4—C27178.9 (2)
N3—C21—C28—N4120.64 (17)C21—C28—N4—C270.4 (2)
C22—C21—C28—N41.0 (2)O3—C28—N4—C290.0 (3)
C32—C21—C28—N4124.93 (17)C21—C28—N4—C29179.33 (19)
N4—C29—C30—C31145.0 (4)C26—C27—N4—C28179.5 (2)
C15—C16—C32—C405.8 (2)C22—C27—N4—C280.4 (2)
C17—C16—C32—C40119.09 (17)C26—C27—N4—C291.7 (4)
C15—C16—C32—C33113.42 (18)C22—C27—N4—C29178.4 (2)
C17—C16—C32—C33121.71 (17)C30—C29—N4—C2895.5 (3)
C15—C16—C32—C21129.42 (17)C30—C29—N4—C2783.2 (3)
C17—C16—C32—C214.56 (18)C38—C39—O1—C40159.71 (18)
N3—C21—C32—C40140.09 (16)C34—C39—O1—C4020.7 (3)
C22—C21—C32—C4090.1 (2)C32—C40—O1—C3957.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O4W—H1W···N3i0.91 (2)2.02 (3)2.892 (4)161 (4)
O4W—H2W···O2ii0.90 (1)1.96 (1)2.841 (3)165 (3)
C40—H40A···Cg1iii0.972.783.540 (3)136
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC40H34N4O3·0.75H2O
Mr632.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.451 (2), 13.496 (2), 20.815 (3)
β (°) 96.206 (9)
V3)3198.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
32619, 6870, 4468
Rint0.041
(sin θ/λ)max1)0.636
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.153, 1.02
No. of reflections6870
No. of parameters439
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O4W—H1W···N3i0.91 (2)2.02 (3)2.892 (4)161 (4)
O4W—H2W···O2ii0.902 (11)1.961 (14)2.841 (3)165 (3)
C40—H40A···Cg1iii0.972.783.540 (3)136
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection. KS thanks the University Grant Commission (UGC), India, for a Minor Research Project.

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJagadeesan, G., Sethusankar, K., Kathirvelan, D., Haribabu, J. & Reddy, B. S. R. (2013). Acta Cryst. E69, o317.  CSD CrossRef IUCr Journals Google Scholar
First citationKatayama, H. & Oshiyama, T. (1997). Can. J. Chem. 75, 913–919.  CrossRef CAS Web of Science Google Scholar
First citationMahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245–249.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1194-o1195
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds