organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Benz­yl(1-phenyl­ethyl­­idene)amine

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

(Received 8 July 2013; accepted 16 July 2013; online 20 July 2013)

The title compound, C15H15N, represents an E isomer. The mol­ecule exhibits a minor [9.1 (2)%] disorder with methyl­benzyl­idene and benzyl groups inter­changing their positions. The C=N bond length is 1.292 (2) Å. The mol­ecular geometry is essentially planar, with the maximal twist of 8.5 (3)° for the benzyl group. The herringbone packing arrangement does not exhibit any π-stacking inter­actions.

Related literature

For information on the synthesis of (E)-benz­yl(1-phenyl­ethyl­idene)amine, see: Guthrie et al. (1973[Guthrie, R. D., Burdon, L. G. & Lovell, F. L. Jr (1973). J. Org. Chem. 38, 3114-3119.]); Willoughby & Buchwald (1994[Willoughby, C. A. & Buchwald, S. L. (1994). J. Am. Chem. Soc. 116, 8952-8965.]). For the crystal structures of similar imines, see: Bruno et al. (2012[Bruno, S. M., Fernandes, J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2012). Acta Cryst. E68, o3143.]); Filarowski et al. (1999[Filarowski, A., Glowiaka, T. & Koll, A. (1999). J. Mol. Struct. 484, 75-89.]); Liu et al. (1997[Liu, Q., Ding, M., Lin, Y. & Xing, Y. (1997). J. Organomet. Chem. 548, 139-142.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N

  • Mr = 209.28

  • Monoclinic, P 21 /n

  • a = 5.4633 (4) Å

  • b = 10.4173 (8) Å

  • c = 20.2426 (15) Å

  • β = 97.308 (1)°

  • V = 1142.71 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 125 K

  • 0.32 × 0.21 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.998

  • 18404 measured reflections

  • 3496 independent reflections

  • 2509 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.127

  • S = 1.03

  • 3496 reflections

  • 160 parameters

  • 105 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, OLEX2 (Dolomanov, et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

Schiff base imines may be prepared by condensation of aldehydes and ketones with amines. The synthesis of the title compound, also known as (E)-N-(α-methylbenzylidene)benzylamine, may be accomplished by refluxing acetophenone and benzylamine in toluene using a Dean-Stark apparatus to separate the byproduct water. Recrystallizaiton by slow evaporation of a hexanes solution yields crystals of the E-isomer of the imine (Fig 1), with imine C=N bond length in the major component of the disorder of 1.292 (2) Å. The molecule has a mostly planar geometry with the benzyl group twisting slightly out of the plane, as indicated by the torsional angle N1—C9—C10—C11 of 8.5 (3)°. The herringbone molecular packing does not exhibit any significant face-to-face or edge-to-face π-stacking interactions.

The imine C=N bond in the title compound, 1.292 (2) Å, is comparable to that found in similar imines: [(E)-1-(Naphthalen-2-yl)ethylidene](naphthalen-1-ylmethyl)amine, 1.2650 (19) Å (Bruno et al., 2012), 2-(N-benzyl-α-iminoethyl)phenol, 1.286 (2) Å (Filarowski et al. 1999), and (S)-(+)-N-(1-phenylethyl) salicylideneamine, 1.264 (4) Å (Liu et al., 1997).

Related literature top

For information on the synthesis of N-(α-methylbenzylidene)benzylamine, see: Guthrie et al. (1973); Willoughby & Buchwald (1994). For the crystal structures of similar imines, see: Bruno et al. (2012); Filarowski et al. (1999); Liu et al. (1997).

Experimental top

The title compound was obtained using a hybrid procedure of that reported in the literature (Guthrie et al., 1973; Willoughby & Buchwald, 1994). A zinc catalyst was first prepared by adding 0.500 ml benzylamine to a mixture of 4 g of saturated ZnCl2 solution and 2 ml of ethanol. The solid catalyst was filtered out with a fritted funnel.

The catalyst was added to a mixture of 23.5 ml (0.200 mol) acetophenone and 21.8 ml (0.200 mol) of benzylamine in 100 ml of toluene. A reflux was conducted in a mineral oil bath, under argon with a Dean-Stark apparatus for 22 hrs at 120°C. After cooling, the solution was filtered through Celite and the toluene pumped off using a vacuum line.

The reflux product was then purified by distillation under vacuum (65 mTorr). Distillate collected at a distillation flask temperature of 109°C and vapor temperature of 45°C contained no imine product and was discarded. Distillate collected at a distillation flask temperature of ~190°C and vapor temperature of 80°C contained imine product.

To crystallize the final product, 50 ml of pentane was added to the second distillate and pumped off under vacuum line. This process was repeated 3 times. Melting point 42–43.5°C (Lit. 44–46 (Guthrie et al., 1973)).

Recrystallization by slow evaporation of a hexane solution produced X-ray quality crystals.

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95, 0.98 and 0.99 Å and Uiso(H) = 1.2, 1.5 and 1.2 × Ueq(C) of the aryl, methyl and methylene C-atoms, respectively. The positions of the methyl H atoms were rotationally optimized. The disorder was modeled and refined with the help of similarity restraints on displacement parameters (SIMU), rigid bond restraints on 1–2 and 1–3 distances and anisotropic displacement parameters (DELU), and constraints on anisotropic displacement paramenters of the minor component (EADP). The extinction parameter (EXTI) refined to zero and was removed from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov, et al., 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. Primed atoms represent the disordered fraction of the CH2N=C(CH3) benzylidene portion of the molecule.
(E)-Benzyl(1-phenylethylidene)amine top
Crystal data top
C15H15NF(000) = 448
Mr = 209.28Dx = 1.216 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5923 reflections
a = 5.4633 (4) Åθ = 2.2–30.5°
b = 10.4173 (8) ŵ = 0.07 mm1
c = 20.2426 (15) ÅT = 125 K
β = 97.308 (1)°Plate, colourless
V = 1142.71 (15) Å30.32 × 0.21 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3496 independent reflections
Radiation source: fine-focus sealed tube2509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 30.5°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker 2007)
h = 77
Tmin = 0.978, Tmax = 0.998k = 1414
18404 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.3065P]
where P = (Fo2 + 2Fc2)/3
3496 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.34 e Å3
105 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H15NV = 1142.71 (15) Å3
Mr = 209.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.4633 (4) ŵ = 0.07 mm1
b = 10.4173 (8) ÅT = 125 K
c = 20.2426 (15) Å0.32 × 0.21 × 0.03 mm
β = 97.308 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3496 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker 2007)
2509 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.998Rint = 0.042
18404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047105 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
3496 reflectionsΔρmin = 0.20 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.6967 (5)0.9477 (3)0.15570 (10)0.0197 (4)0.909 (2)
C10.5051 (3)0.95089 (15)0.11114 (9)0.0153 (3)0.909 (2)
C20.2936 (2)1.04626 (13)0.11017 (6)0.0223 (3)0.909 (2)
H2A0.32781.10580.14770.033*0.909 (2)
H2B0.13990.99980.11390.033*0.909 (2)
H2C0.27691.09460.06830.033*0.909 (2)
C90.7279 (4)1.04393 (17)0.20835 (9)0.0211 (3)0.909 (2)
H9A0.58031.04440.23210.025*0.909 (2)
H9B0.74301.12990.18840.025*0.909 (2)
N1'0.704 (6)0.952 (4)0.1458 (14)0.0197 (4)0.091 (2)
C1'0.724 (4)1.0191 (18)0.1996 (11)0.0153 (3)0.091 (2)
C2'0.582 (2)1.1406 (12)0.2104 (6)0.0223 (3)0.091 (2)
H2'A0.47681.16320.16910.033*0.091 (2)
H2'B0.69751.21070.22320.033*0.091 (2)
H2'C0.47821.12630.24590.033*0.091 (2)
C9'0.458 (4)0.972 (2)0.1105 (11)0.0211 (3)0.091 (2)
H9'A0.43711.05700.08890.025*0.091 (2)
H9'B0.32500.95630.13860.025*0.091 (2)
C30.48698 (19)0.85340 (10)0.05684 (5)0.0171 (2)
C40.2827 (2)0.84705 (11)0.00784 (6)0.0206 (2)
H4A0.15210.90710.00840.025*
C50.2681 (2)0.75399 (12)0.04178 (6)0.0236 (3)
H5A0.12770.75080.07460.028*
C60.4574 (2)0.66577 (12)0.04357 (6)0.0242 (3)
H6A0.44730.60220.07750.029*
C70.6625 (2)0.67147 (12)0.00486 (6)0.0232 (2)
H7A0.79310.61150.00390.028*
C80.6775 (2)0.76402 (11)0.05436 (6)0.0205 (2)
H8A0.81850.76700.08700.025*
C100.9543 (2)1.01713 (11)0.25738 (5)0.0200 (2)
C111.0927 (2)0.90513 (12)0.25703 (6)0.0255 (3)
H11A1.04480.84040.22490.031*
C121.3012 (2)0.88711 (13)0.30342 (6)0.0273 (3)
H12A1.39490.81040.30260.033*
C131.3727 (2)0.98068 (13)0.35076 (6)0.0250 (3)
H13A1.51620.96880.38190.030*
C141.2336 (2)1.09130 (12)0.35225 (6)0.0247 (3)
H14A1.28021.15500.38500.030*
C151.0257 (2)1.10962 (12)0.30587 (6)0.0226 (2)
H15A0.93131.18590.30720.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0192 (5)0.0230 (6)0.0165 (10)0.0001 (4)0.0008 (6)0.0021 (8)
C10.0131 (7)0.0150 (7)0.0179 (5)0.0033 (5)0.0026 (5)0.0024 (5)
C20.0197 (6)0.0241 (6)0.0223 (6)0.0041 (5)0.0006 (5)0.0018 (5)
C90.0225 (6)0.0220 (9)0.0177 (8)0.0008 (7)0.0018 (5)0.0052 (5)
N1'0.0192 (5)0.0230 (6)0.0165 (10)0.0001 (4)0.0008 (6)0.0021 (8)
C1'0.0131 (7)0.0150 (7)0.0179 (5)0.0033 (5)0.0026 (5)0.0024 (5)
C2'0.0197 (6)0.0241 (6)0.0223 (6)0.0041 (5)0.0006 (5)0.0018 (5)
C9'0.0225 (6)0.0220 (9)0.0177 (8)0.0008 (7)0.0018 (5)0.0052 (5)
C30.0162 (5)0.0182 (5)0.0170 (5)0.0013 (4)0.0023 (4)0.0022 (4)
C40.0167 (5)0.0208 (5)0.0234 (6)0.0011 (4)0.0004 (4)0.0002 (4)
C50.0199 (5)0.0256 (6)0.0240 (6)0.0025 (5)0.0026 (4)0.0025 (5)
C60.0247 (6)0.0224 (6)0.0255 (6)0.0028 (5)0.0029 (5)0.0042 (5)
C70.0207 (5)0.0221 (6)0.0269 (6)0.0027 (4)0.0039 (4)0.0006 (5)
C80.0164 (5)0.0236 (6)0.0212 (5)0.0013 (4)0.0014 (4)0.0015 (4)
C100.0199 (5)0.0231 (6)0.0166 (5)0.0012 (4)0.0008 (4)0.0010 (4)
C110.0308 (6)0.0240 (6)0.0201 (6)0.0020 (5)0.0021 (5)0.0035 (5)
C120.0309 (6)0.0263 (6)0.0235 (6)0.0079 (5)0.0014 (5)0.0007 (5)
C130.0231 (6)0.0305 (6)0.0201 (6)0.0010 (5)0.0016 (4)0.0029 (5)
C140.0248 (6)0.0261 (6)0.0222 (6)0.0039 (5)0.0008 (5)0.0044 (5)
C150.0223 (6)0.0221 (6)0.0227 (6)0.0006 (4)0.0008 (4)0.0016 (4)
Geometric parameters (Å, º) top
N1—C11.292 (2)C3—C81.4020 (15)
N1—C91.457 (3)C4—C51.3908 (16)
C1—C31.490 (2)C4—H4A0.9500
C1—C21.5224 (17)C5—C61.3876 (17)
C2—H2A0.9800C5—H5A0.9500
C2—H2B0.9800C6—C71.3932 (16)
C2—H2C0.9800C6—H6A0.9500
C9—C101.510 (2)C7—C81.3855 (16)
C9—H9A0.9900C7—H7A0.9500
C9—H9B0.9900C8—H8A0.9500
N1'—C1'1.289 (18)C10—C111.3911 (17)
N1'—C9'1.457 (19)C10—C151.3952 (16)
C1'—C2'1.516 (16)C11—C121.3938 (17)
C1'—C101.60 (2)C11—H11A0.9500
C2'—H2'A0.9800C12—C131.3877 (17)
C2'—H2'B0.9800C12—H12A0.9500
C2'—H2'C0.9800C13—C141.3828 (18)
C9'—C31.66 (2)C13—H13A0.9500
C9'—H9'A0.9900C14—C151.3920 (16)
C9'—H9'B0.9900C14—H14A0.9500
C3—C41.3971 (15)C15—H15A0.9500
C1—N1—C9120.1 (2)C3—C4—H4A119.6
N1—C1—C3118.00 (15)C6—C5—C4120.40 (11)
N1—C1—C2124.87 (17)C6—C5—H5A119.8
C3—C1—C2117.12 (12)C4—C5—H5A119.8
N1—C9—C10111.31 (15)C5—C6—C7119.27 (11)
N1—C9—H9A109.4C5—C6—H6A120.4
C10—C9—H9A109.4C7—C6—H6A120.4
N1—C9—H9B109.4C8—C7—C6120.44 (11)
C10—C9—H9B109.4C8—C7—H7A119.8
H9A—C9—H9B108.0C6—C7—H7A119.8
C1'—N1'—C9'108.1 (19)C7—C8—C3120.83 (10)
N1'—C1'—C2'126 (2)C7—C8—H8A119.6
N1'—C1'—C10125.7 (16)C3—C8—H8A119.6
C2'—C1'—C10106.0 (11)C11—C10—C15118.64 (10)
C1'—C2'—H2'A109.5C11—C10—C9123.52 (11)
C1'—C2'—H2'B109.5C15—C10—C9117.84 (11)
H2'A—C2'—H2'B109.5C11—C10—C1'112.5 (6)
C1'—C2'—H2'C109.5C15—C10—C1'128.8 (6)
H2'A—C2'—H2'C109.5C10—C11—C12120.53 (11)
H2'B—C2'—H2'C109.5C10—C11—H11A119.7
N1'—C9'—C393.1 (14)C12—C11—H11A119.7
N1'—C9'—H9'A113.1C13—C12—C11120.32 (12)
C3—C9'—H9'A113.1C13—C12—H12A119.8
N1'—C9'—H9'B113.1C11—C12—H12A119.8
C3—C9'—H9'B113.1C14—C13—C12119.56 (11)
H9'A—C9'—H9'B110.5C14—C13—H13A120.2
C4—C3—C8118.20 (10)C12—C13—H13A120.2
C4—C3—C1121.88 (10)C13—C14—C15120.21 (11)
C8—C3—C1119.92 (10)C13—C14—H14A119.9
C4—C3—C9'111.3 (6)C15—C14—H14A119.9
C8—C3—C9'130.5 (6)C14—C15—C10120.74 (11)
C5—C4—C3120.87 (11)C14—C15—H15A119.6
C5—C4—H4A119.6C10—C15—H15A119.6
C9—N1—C1—C3177.6 (2)C4—C3—C8—C70.39 (16)
C9—N1—C1—C23.0 (4)C1—C3—C8—C7179.07 (12)
C1—N1—C9—C10176.2 (3)C9'—C3—C8—C7179.4 (12)
C9'—N1'—C1'—C2'26 (5)N1—C9—C10—C118.5 (3)
C9'—N1'—C1'—C10174 (2)N1—C9—C10—C15172.2 (2)
C1'—N1'—C9'—C3170 (3)N1—C9—C10—C1'9 (5)
N1—C1—C3—C4177.9 (2)N1'—C1'—C10—C1122 (4)
C2—C1—C3—C41.5 (2)C2'—C1'—C10—C11175.3 (10)
N1—C1—C3—C81.6 (3)N1'—C1'—C10—C15159 (3)
C2—C1—C3—C8179.08 (12)C2'—C1'—C10—C154 (2)
N1—C1—C3—C9'180 (6)N1'—C1'—C10—C9158 (8)
C2—C1—C3—C9'0 (5)C2'—C1'—C10—C95 (4)
N1'—C9'—C3—C4175 (2)C15—C10—C11—C121.24 (19)
N1'—C9'—C3—C85 (3)C9—C10—C11—C12179.41 (15)
N1'—C9'—C3—C17 (5)C1'—C10—C11—C12179.5 (10)
C8—C3—C4—C50.44 (17)C10—C11—C12—C130.2 (2)
C1—C3—C4—C5179.01 (13)C11—C12—C13—C140.92 (19)
C9'—C3—C4—C5179.4 (10)C12—C13—C14—C151.07 (19)
C3—C4—C5—C60.23 (18)C13—C14—C15—C100.05 (19)
C4—C5—C6—C70.05 (18)C11—C10—C15—C141.10 (18)
C5—C6—C7—C80.10 (18)C9—C10—C15—C14179.51 (14)
C6—C7—C8—C30.12 (18)C1'—C10—C15—C14179.8 (12)

Experimental details

Crystal data
Chemical formulaC15H15N
Mr209.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)125
a, b, c (Å)5.4633 (4), 10.4173 (8), 20.2426 (15)
β (°) 97.308 (1)
V3)1142.71 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.21 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker 2007)
Tmin, Tmax0.978, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
18404, 3496, 2509
Rint0.042
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.03
No. of reflections3496
No. of parameters160
No. of restraints105
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov, et al., 2009) and Mercury (Macrae et al., 2006).

 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationBruker (2007). SAINT, SADABS and APEX2. Bruxer AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, S. M., Fernandes, J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2012). Acta Cryst. E68, o3143.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilarowski, A., Glowiaka, T. & Koll, A. (1999). J. Mol. Struct. 484, 75–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuthrie, R. D., Burdon, L. G. & Lovell, F. L. Jr (1973). J. Org. Chem. 38, 3114–3119.  CrossRef CAS Web of Science Google Scholar
First citationLiu, Q., Ding, M., Lin, Y. & Xing, Y. (1997). J. Organomet. Chem. 548, 139–142.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilloughby, C. A. & Buchwald, S. L. (1994). J. Am. Chem. Soc. 116, 8952–8965.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds