organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4,8,11-Tetra­azonia­cyclo­tetra­decane tetra­kis­(hydrogensulfate)

aLaboratoire Physico-chimie de l'État Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax, Tunisia, and bLaboratoire Sciences Chimiques de Rennes (CNRS, UMR 6226), Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes CEDEX, France
*Correspondence e-mail: houcine_naili@yahoo.com

(Received 18 May 2013; accepted 9 July 2013; online 20 July 2013)

In the title salt, C10H28N44+·4HSO4, the cation lies about an inversion center. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds connect the anions and cations, forming a three-dimensional network.

Related literature

For the chemistry and applications of macrocyclic polyamine ligands, see: Wainwright (2001[Wainwright, K. P. (2001). Adv. Inorg. Chem. 52, 293-334.]); Lukes et al. (2001[Lukes, I., Kotek, J., Vojtisek, P. & Hermann, P. (2001). Coord. Chem. Rev. 216-217, 287-312.]); Zhang et al. (2003[Zhang, S., Merritt, M., Woessner, D. E., Lenkinski, R. E. & Sherry, A. D. (2003). Acc. Chem. Res. 36, 783-790.]); Liu (2004[Liu, S. (2004). Chem. Soc. Rev. 33, 445-461.]). For related structures, see: Melson (1979[Melson, G. A. (1979). Coordination Chemistry of Macrocyclic Compounds. New York: Plenum.]); Subramanian & Zaworotko (1995[Subramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem. 73, 414-424.]); Ferchichi et al. (2010[Ferchichi, T., Trojett, B., Dhaouadi, H. & Marouani, H. (2010). Acta Cryst. E66, m869-m870.]); Pojarová et al. (2010[Pojarová, M., Fejfarová, K. & El Bali, B. (2010). Acta Cryst. E66, m1103.]).

[Scheme 1]

Experimental

Crystal data
  • C10H28N44+·4HSO4

  • Mr = 592.68

  • Monoclinic, P 21 /c

  • a = 7.8177 (2) Å

  • b = 16.6464 (3) Å

  • c = 8.7222 (2) Å

  • β = 97.165 (1)°

  • V = 1126.21 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.03 × 0.02 × 0.01 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (face-indexed; de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.988, Tmax = 0.995

  • 18757 measured reflections

  • 4952 independent reflections

  • 4074 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.123

  • S = 1.05

  • 4952 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.90 2.60 3.2773 (18) 133
N1—H1A⋯O1i 0.90 1.97 2.8445 (14) 165
N1—H1B⋯O4 0.90 1.91 2.8051 (16) 171
N2—H2A⋯O3ii 0.90 2.02 2.8675 (15) 156
N2—H2B⋯O3iii 0.90 2.09 2.9117 (14) 151
N2—H2A⋯O7iv 0.90 2.45 2.9232 (15) 113
O2—H1⋯O8i 0.73 1.89 2.6125 (18) 172
O6—H2⋯O1v 0.91 1.85 2.7544 (17) 172
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z; (iii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The chemistry of macrocyclic polyamine ligands with pendant arms has attracted much interest over the past two decades, because of their specific structures, chemical properties, their molecular recognition ability in the form of anions or cations, and their applications from radiopharmaceutical chemistry to waste-water treatment (Wainwright, 2001; Lukes et al., 2001; Zhang et al., 2003; Liu et al., 2004). Herein we report preparation and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The cation lies across a crystallographic inversion center and hence the asymmetric unit contains one half of the macrocyclic cation (cyclam) and two hydrogenosulfate anions. The tetra-protonated cyclam (C10H28N4)4+ cation exhibits C—C and C—N bond distances and angles in the range usually found for the cyclam molecule (Melson, 1979) and can be compared to related structures in the literature (Subramanian & Zaworotko, 1995; Ferchichi et al., 2010; Pojarová et al., 2010). In the crystal, O—H···O and N—H···O hydrogen bonds connect anions and cations to form a three-dimensional network (Fig. 2).

Related literature top

For the chemistry and applications of macrocyclic polyamine ligands, see: Wainwright (2001); Lukes et al. (2001); Zhang et al. (2003); Liu et al. (2004). For related structures, see: Melson (1979); Subramanian & Zaworotko (1995); Ferchichi et al. (2010); Pojarová et al. (2010).

Experimental top

The title compound was prepared by mixing zinc(II) sulfate heptahydrate (1 mmol; 0.287 g), 1,4,8,11-tetraazoniacyclotetradecane (2 mmol; 0.400 g) and 20 ml water. The resulting solution was acidified with 1 ml concentrated sulfuric acid (1 mmol) under continuous stirring. The title compound was obtained accidentally as we intended to make a zinc complex. In 3 days, white crystals were formed. The synthesis is reproducible and crystals obtained in this way are stable for a long time under normal conditions of temperature and humidity. Single crystals of the title compound were grown by slow evaporation from the aqueous solution at room temperature.

Refinement top

H atoms bonded to C and N atoms were positioned geometrically and allowed to ride on their parent atom, with C—H = 0.97 Å, N—H = 0.90 Å and Uiso = 1.2Ueq(C, N). H atoms bonded to O atoms were included in their 'as found' positions with refined isotropic displacement parameters.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the non-H atoms represented by 50% probability displacement ellipsoids; H atoms are shown as spheres of arbitrary radius [symmetry code: (i) -x, -y + 1, -z - 1].
[Figure 2] Fig. 2. Projection of part of the crystal structure of the title compound along the a axis, with hydrogen bonds indicated as dashed lines.
1,4,8,11-Tetraazoniacyclotetradecane tetrakis(hydrogensulfate) top
Crystal data top
C10H28N44+·4HSO4F(000) = 624.0
Mr = 592.68Dx = 1.748 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15635 reflections
a = 7.8177 (2) Åθ = 2.9–35.0°
b = 16.6464 (3) ŵ = 0.51 mm1
c = 8.7222 (2) ÅT = 293 K
β = 97.165 (1)°Prism, colourless
V = 1126.21 (4) Å30.03 × 0.02 × 0.01 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
4952 independent reflections
Radiation source: fine-focus sealed tube4074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
CCD rotation images, thick slices scansθmax = 35.0°, θmin = 3.4°
Absorption correction: analytical
(a face-indexed absorption correction was applied using the Tompa method; de Meulenaer & Tompa, 1965)
h = 1210
Tmin = 0.988, Tmax = 0.995k = 2626
18757 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.4049P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4952 reflectionsΔρmax = 0.65 e Å3
163 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (6)
Crystal data top
C10H28N44+·4HSO4V = 1126.21 (4) Å3
Mr = 592.68Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.8177 (2) ŵ = 0.51 mm1
b = 16.6464 (3) ÅT = 293 K
c = 8.7222 (2) Å0.03 × 0.02 × 0.01 mm
β = 97.165 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4952 independent reflections
Absorption correction: analytical
(a face-indexed absorption correction was applied using the Tompa method; de Meulenaer & Tompa, 1965)
4074 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.995Rint = 0.060
18757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.65 e Å3
4952 reflectionsΔρmin = 0.54 e Å3
163 parameters
Special details top

Experimental. Data were corrected for Lorentz-polarization effects and an analytical absorption correction (de Meulenaer & Tompa, 1965) was applied. The structure was solved in the P 1 21/c 1 space group by the direct methods (S and O) and subsequent difference Fourier syntheses (all other atoms), with an exception for H atoms bonded to C and N atoms which are positioned geometrically.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34278 (4)0.656923 (16)0.06576 (3)0.02143 (8)
S20.23332 (4)0.351066 (18)0.25289 (4)0.02525 (9)
O10.49495 (13)0.67391 (6)0.17729 (12)0.0309 (2)
O20.37660 (15)0.69761 (7)0.08875 (11)0.0345 (2)
O30.18911 (13)0.69666 (7)0.10348 (12)0.0326 (2)
O40.3244 (2)0.57165 (7)0.04142 (15)0.0463 (3)
O60.38228 (16)0.32441 (7)0.38175 (14)0.0396 (3)
O50.21214 (17)0.43447 (6)0.28810 (17)0.0425 (3)
O70.08566 (15)0.30213 (7)0.27346 (18)0.0456 (3)
O80.29980 (19)0.33486 (11)0.10785 (15)0.0550 (4)
N10.28066 (13)0.46125 (6)0.20331 (12)0.02426 (19)
H1A0.36150.42320.18010.029*
H1B0.28440.49400.12090.029*
C10.10770 (16)0.42072 (7)0.22403 (13)0.0239 (2)
H1C0.01700.46090.23480.029*
H1D0.09450.38820.13400.029*
N20.08305 (14)0.33181 (6)0.40184 (12)0.02342 (19)
H2A0.10980.30790.31540.028*
H2B0.07900.29320.47350.028*
C20.09283 (15)0.36783 (7)0.36757 (13)0.0224 (2)
H2C0.11750.39970.45530.027*
H2D0.17770.32520.35240.027*
C40.22592 (16)0.38901 (7)0.45835 (14)0.0239 (2)
H4A0.23250.43100.38210.029*
H4B0.33490.36040.47080.029*
C50.33057 (15)0.50958 (7)0.33674 (15)0.0253 (2)
H5A0.34330.47390.42260.030*
H5B0.44090.53530.30620.030*
C30.19624 (18)0.42678 (8)0.61163 (15)0.0283 (2)
H3A0.08250.45100.60140.034*
H3B0.20000.38520.68990.034*
H20.41330.27360.35700.103 (11)*
H10.46450.68900.10220.085 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02404 (14)0.02050 (13)0.01984 (13)0.00254 (8)0.00312 (9)0.00086 (8)
S20.02107 (15)0.02753 (15)0.02768 (15)0.00164 (9)0.00516 (10)0.00477 (10)
O10.0275 (5)0.0362 (5)0.0274 (4)0.0037 (4)0.0028 (3)0.0011 (4)
O20.0327 (5)0.0474 (6)0.0247 (4)0.0048 (4)0.0084 (4)0.0110 (4)
O30.0251 (4)0.0431 (5)0.0307 (5)0.0095 (4)0.0082 (3)0.0078 (4)
O40.0715 (9)0.0225 (4)0.0434 (6)0.0033 (5)0.0013 (6)0.0054 (4)
O60.0375 (6)0.0399 (6)0.0382 (6)0.0056 (4)0.0078 (4)0.0025 (5)
O50.0433 (6)0.0233 (4)0.0630 (8)0.0016 (4)0.0149 (5)0.0004 (5)
O70.0285 (5)0.0374 (6)0.0720 (9)0.0091 (4)0.0108 (5)0.0178 (6)
O80.0425 (7)0.0928 (11)0.0314 (6)0.0243 (7)0.0119 (5)0.0037 (6)
N10.0230 (4)0.0228 (4)0.0249 (4)0.0006 (3)0.0051 (3)0.0002 (3)
C10.0255 (5)0.0250 (5)0.0204 (4)0.0032 (4)0.0001 (4)0.0003 (4)
N20.0273 (5)0.0176 (4)0.0246 (4)0.0037 (3)0.0001 (3)0.0006 (3)
C20.0225 (5)0.0211 (4)0.0230 (5)0.0002 (3)0.0009 (4)0.0000 (4)
C40.0219 (5)0.0232 (5)0.0263 (5)0.0024 (4)0.0019 (4)0.0014 (4)
C50.0187 (5)0.0236 (5)0.0328 (6)0.0003 (3)0.0007 (4)0.0014 (4)
C30.0297 (6)0.0284 (5)0.0270 (5)0.0079 (4)0.0046 (4)0.0049 (4)
Geometric parameters (Å, º) top
S1—O41.4399 (11)C1—H1D0.9700
S1—O31.4449 (10)N2—C21.4957 (15)
S1—O11.4672 (10)N2—C41.5033 (16)
S1—O21.5601 (10)N2—H2A0.9000
S2—O51.4360 (11)N2—H2B0.9000
S2—O71.4423 (12)C2—H2C0.9700
S2—O81.4516 (13)C2—H2D0.9700
S2—O61.5779 (11)C4—C31.5211 (17)
O2—H10.7258C4—H4A0.9700
O6—H20.9134C4—H4B0.9700
N1—C11.5017 (16)C5—C3i1.5199 (17)
N1—C51.5058 (17)C5—H5A0.9700
N1—H1A0.9000C5—H5B0.9700
N1—H1B0.9000C3—C5i1.5199 (17)
C1—C21.5232 (16)C3—H3A0.9700
C1—H1C0.9700C3—H3B0.9700
O4—S1—O3114.47 (8)C4—N2—H2A108.3
O4—S1—O1110.22 (7)C2—N2—H2B108.3
O3—S1—O1112.91 (6)C4—N2—H2B108.3
O4—S1—O2108.98 (7)H2A—N2—H2B107.4
O3—S1—O2103.49 (6)N2—C2—C1111.72 (10)
O1—S1—O2106.16 (6)N2—C2—H2C109.3
O5—S2—O7113.84 (7)C1—C2—H2C109.3
O5—S2—O8115.43 (9)N2—C2—H2D109.3
O7—S2—O8112.49 (9)C1—C2—H2D109.3
O5—S2—O6102.36 (8)H2C—C2—H2D107.9
O7—S2—O6106.48 (8)N2—C4—C3111.19 (10)
O8—S2—O6104.82 (7)N2—C4—H4A109.4
S1—O2—H1108.7C3—C4—H4A109.4
S2—O6—H2106.6N2—C4—H4B109.4
C1—N1—C5117.60 (9)C3—C4—H4B109.4
C1—N1—H1A107.9H4A—C4—H4B108.0
C5—N1—H1A107.9N1—C5—C3i111.43 (10)
C1—N1—H1B107.9N1—C5—H5A109.3
C5—N1—H1B107.9C3i—C5—H5A109.3
H1A—N1—H1B107.2N1—C5—H5B109.3
N1—C1—C2109.50 (10)C3i—C5—H5B109.3
N1—C1—H1C109.8H5A—C5—H5B108.0
C2—C1—H1C109.8C5i—C3—C4111.90 (11)
N1—C1—H1D109.8C5i—C3—H3A109.2
C2—C1—H1D109.8C4—C3—H3A109.2
H1C—C1—H1D108.2C5i—C3—H3B109.2
C2—N2—C4116.01 (9)C4—C3—H3B109.2
C2—N2—H2A108.3H3A—C3—H3B107.9
Symmetry code: (i) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.902.603.2773 (18)133
N1—H1A···O1ii0.901.972.8445 (14)165
N1—H1B···O40.901.912.8051 (16)171
N2—H2A···O3iii0.902.022.8675 (15)156
N2—H2B···O3iv0.902.092.9117 (14)151
N2—H2A···O7v0.902.452.9232 (15)113
O2—H1···O8ii0.731.892.6125 (18)172
O6—H2···O1vi0.911.852.7544 (17)172
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x, y1/2, z1/2; (v) x, y+1/2, z1/2; (vi) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H28N44+·4HSO4
Mr592.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.8177 (2), 16.6464 (3), 8.7222 (2)
β (°) 97.165 (1)
V3)1126.21 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.03 × 0.02 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(a face-indexed absorption correction was applied using the Tompa method; de Meulenaer & Tompa, 1965)
Tmin, Tmax0.988, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
18757, 4952, 4074
Rint0.060
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.123, 1.05
No. of reflections4952
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.54

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.902.603.2773 (18)132.6
N1—H1A···O1i0.901.972.8445 (14)164.9
N1—H1B···O40.901.912.8051 (16)170.5
N2—H2A···O3ii0.902.022.8675 (15)155.8
N2—H2B···O3iii0.902.092.9117 (14)151.4
N2—H2A···O7iv0.902.452.9232 (15)113.2
O2—H1···O8i0.731.892.6125 (18)172.2
O6—H2···O1v0.911.852.7544 (17)172.1
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y1/2, z1/2; (iv) x, y+1/2, z1/2; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

Grateful thanks are expressed to Dr T. Roisnel (Centre de Diffractométrie X, Université de Rennes 1) for the X-ray data collection.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerchichi, T., Trojett, B., Dhaouadi, H. & Marouani, H. (2010). Acta Cryst. E66, m869–m870.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, S. (2004). Chem. Soc. Rev. 33, 445–461.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLukes, I., Kotek, J., Vojtisek, P. & Hermann, P. (2001). Coord. Chem. Rev. 216–217, 287–312.  Web of Science CrossRef CAS Google Scholar
First citationMelson, G. A. (1979). Coordination Chemistry of Macrocyclic Compounds. New York: Plenum.  Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationPojarová, M., Fejfarová, K. & El Bali, B. (2010). Acta Cryst. E66, m1103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem. 73, 414–424.  CrossRef CAS Web of Science Google Scholar
First citationWainwright, K. P. (2001). Adv. Inorg. Chem. 52, 293–334.  Web of Science CrossRef CAS Google Scholar
First citationZhang, S., Merritt, M., Woessner, D. E., Lenkinski, R. E. & Sherry, A. D. (2003). Acc. Chem. Res. 36, 783–790.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds