organic compounds
1,4,8,11-Tetraazoniacyclotetradecane tetrakis(hydrogensulfate)
aLaboratoire Physico-chimie de l'État Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax, Tunisia, and bLaboratoire Sciences Chimiques de Rennes (CNRS, UMR 6226), Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes CEDEX, France
*Correspondence e-mail: houcine_naili@yahoo.com
In the title salt, C10H28N44+·4HSO4−, the cation lies about an inversion center. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds connect the anions and cations, forming a three-dimensional network.
Related literature
For the chemistry and applications of macrocyclic polyamine ligands, see: Wainwright (2001); Lukes et al. (2001); Zhang et al. (2003); Liu (2004). For related structures, see: Melson (1979); Subramanian & Zaworotko (1995); Ferchichi et al. (2010); Pojarová et al. (2010).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813018953/lh5619sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813018953/lh5619Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813018953/lh5619Isup3.cml
The title compound was prepared by mixing zinc(II) sulfate heptahydrate (1 mmol; 0.287 g), 1,4,8,11-tetraazoniacyclotetradecane (2 mmol; 0.400 g) and 20 ml water. The resulting solution was acidified with 1 ml concentrated sulfuric acid (1 mmol) under continuous stirring. The title compound was obtained accidentally as we intended to make a zinc complex. In 3 days, white crystals were formed. The synthesis is reproducible and crystals obtained in this way are stable for a long time under normal conditions of temperature and humidity. Single crystals of the title compound were grown by slow evaporation from the aqueous solution at room temperature.
H atoms bonded to C and N atoms were positioned geometrically and allowed to ride on their parent atom, with C—H = 0.97 Å, N—H = 0.90 Å and Uiso = 1.2Ueq(C, N). H atoms bonded to O atoms were included in their 'as found' positions with refined isotropic displacement parameters.
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of the title compound, with the non-H atoms represented by 50% probability displacement ellipsoids; H atoms are shown as spheres of arbitrary radius [symmetry code: (i) -x, -y + 1, -z - 1]. | |
Fig. 2. Projection of part of the crystal structure of the title compound along the a axis, with hydrogen bonds indicated as dashed lines. |
C10H28N44+·4HSO4− | F(000) = 624.0 |
Mr = 592.68 | Dx = 1.748 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 15635 reflections |
a = 7.8177 (2) Å | θ = 2.9–35.0° |
b = 16.6464 (3) Å | µ = 0.51 mm−1 |
c = 8.7222 (2) Å | T = 293 K |
β = 97.165 (1)° | Prism, colourless |
V = 1126.21 (4) Å3 | 0.03 × 0.02 × 0.01 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 4952 independent reflections |
Radiation source: fine-focus sealed tube | 4074 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
CCD rotation images, thick slices scans | θmax = 35.0°, θmin = 3.4° |
Absorption correction: analytical (a face-indexed absorption correction was applied using the Tompa method; de Meulenaer & Tompa, 1965) | h = −12→10 |
Tmin = 0.988, Tmax = 0.995 | k = −26→26 |
18757 measured reflections | l = −13→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0623P)2 + 0.4049P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4952 reflections | Δρmax = 0.65 e Å−3 |
163 parameters | Δρmin = −0.54 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.019 (6) |
C10H28N44+·4HSO4− | V = 1126.21 (4) Å3 |
Mr = 592.68 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.8177 (2) Å | µ = 0.51 mm−1 |
b = 16.6464 (3) Å | T = 293 K |
c = 8.7222 (2) Å | 0.03 × 0.02 × 0.01 mm |
β = 97.165 (1)° |
Nonius KappaCCD diffractometer | 4952 independent reflections |
Absorption correction: analytical (a face-indexed absorption correction was applied using the Tompa method; de Meulenaer & Tompa, 1965) | 4074 reflections with I > 2σ(I) |
Tmin = 0.988, Tmax = 0.995 | Rint = 0.060 |
18757 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.65 e Å−3 |
4952 reflections | Δρmin = −0.54 e Å−3 |
163 parameters |
Experimental. Data were corrected for Lorentz-polarization effects and an analytical absorption correction (de Meulenaer & Tompa, 1965) was applied. The structure was solved in the P 1 21/c 1 space group by the direct methods (S and O) and subsequent difference Fourier syntheses (all other atoms), with an exception for H atoms bonded to C and N atoms which are positioned geometrically. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.34278 (4) | 0.656923 (16) | 0.06576 (3) | 0.02143 (8) | |
S2 | 0.23332 (4) | 0.351066 (18) | 0.25289 (4) | 0.02525 (9) | |
O1 | 0.49495 (13) | 0.67391 (6) | 0.17729 (12) | 0.0309 (2) | |
O2 | 0.37660 (15) | 0.69761 (7) | −0.08875 (11) | 0.0345 (2) | |
O3 | 0.18911 (13) | 0.69666 (7) | 0.10348 (12) | 0.0326 (2) | |
O4 | 0.3244 (2) | 0.57165 (7) | 0.04142 (15) | 0.0463 (3) | |
O6 | 0.38228 (16) | 0.32441 (7) | 0.38175 (14) | 0.0396 (3) | |
O5 | 0.21214 (17) | 0.43447 (6) | 0.28810 (17) | 0.0425 (3) | |
O7 | 0.08566 (15) | 0.30213 (7) | 0.27346 (18) | 0.0456 (3) | |
O8 | 0.29980 (19) | 0.33486 (11) | 0.10785 (15) | 0.0550 (4) | |
N1 | 0.28066 (13) | 0.46125 (6) | −0.20331 (12) | 0.02426 (19) | |
H1A | 0.3615 | 0.4232 | −0.1801 | 0.029* | |
H1B | 0.2844 | 0.4940 | −0.1209 | 0.029* | |
C1 | 0.10770 (16) | 0.42072 (7) | −0.22403 (13) | 0.0239 (2) | |
H1C | 0.0170 | 0.4609 | −0.2348 | 0.029* | |
H1D | 0.0945 | 0.3882 | −0.1340 | 0.029* | |
N2 | −0.08305 (14) | 0.33181 (6) | −0.40184 (12) | 0.02342 (19) | |
H2A | −0.1098 | 0.3079 | −0.3154 | 0.028* | |
H2B | −0.0790 | 0.2932 | −0.4735 | 0.028* | |
C2 | 0.09283 (15) | 0.36783 (7) | −0.36757 (13) | 0.0224 (2) | |
H2C | 0.1175 | 0.3997 | −0.4553 | 0.027* | |
H2D | 0.1777 | 0.3252 | −0.3524 | 0.027* | |
C4 | −0.22592 (16) | 0.38901 (7) | −0.45835 (14) | 0.0239 (2) | |
H4A | −0.2325 | 0.4310 | −0.3821 | 0.029* | |
H4B | −0.3349 | 0.3604 | −0.4708 | 0.029* | |
C5 | 0.33057 (15) | 0.50958 (7) | −0.33674 (15) | 0.0253 (2) | |
H5A | 0.3433 | 0.4739 | −0.4226 | 0.030* | |
H5B | 0.4409 | 0.5353 | −0.3062 | 0.030* | |
C3 | −0.19624 (18) | 0.42678 (8) | −0.61163 (15) | 0.0283 (2) | |
H3A | −0.0825 | 0.4510 | −0.6014 | 0.034* | |
H3B | −0.2000 | 0.3852 | −0.6899 | 0.034* | |
H2 | 0.4133 | 0.2736 | 0.3570 | 0.103 (11)* | |
H1 | 0.4645 | 0.6890 | −0.1022 | 0.085 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02404 (14) | 0.02050 (13) | 0.01984 (13) | 0.00254 (8) | 0.00312 (9) | 0.00086 (8) |
S2 | 0.02107 (15) | 0.02753 (15) | 0.02768 (15) | 0.00164 (9) | 0.00516 (10) | −0.00477 (10) |
O1 | 0.0275 (5) | 0.0362 (5) | 0.0274 (4) | 0.0037 (4) | −0.0028 (3) | −0.0011 (4) |
O2 | 0.0327 (5) | 0.0474 (6) | 0.0247 (4) | 0.0048 (4) | 0.0084 (4) | 0.0110 (4) |
O3 | 0.0251 (4) | 0.0431 (5) | 0.0307 (5) | 0.0095 (4) | 0.0082 (3) | 0.0078 (4) |
O4 | 0.0715 (9) | 0.0225 (4) | 0.0434 (6) | −0.0033 (5) | 0.0013 (6) | −0.0054 (4) |
O6 | 0.0375 (6) | 0.0399 (6) | 0.0382 (6) | 0.0056 (4) | −0.0078 (4) | −0.0025 (5) |
O5 | 0.0433 (6) | 0.0233 (4) | 0.0630 (8) | 0.0016 (4) | 0.0149 (5) | 0.0004 (5) |
O7 | 0.0285 (5) | 0.0374 (6) | 0.0720 (9) | −0.0091 (4) | 0.0108 (5) | −0.0178 (6) |
O8 | 0.0425 (7) | 0.0928 (11) | 0.0314 (6) | 0.0243 (7) | 0.0119 (5) | −0.0037 (6) |
N1 | 0.0230 (4) | 0.0228 (4) | 0.0249 (4) | 0.0006 (3) | −0.0051 (3) | −0.0002 (3) |
C1 | 0.0255 (5) | 0.0250 (5) | 0.0204 (4) | −0.0032 (4) | 0.0001 (4) | −0.0003 (4) |
N2 | 0.0273 (5) | 0.0176 (4) | 0.0246 (4) | −0.0037 (3) | 0.0001 (3) | 0.0006 (3) |
C2 | 0.0225 (5) | 0.0211 (4) | 0.0230 (5) | 0.0002 (3) | 0.0009 (4) | 0.0000 (4) |
C4 | 0.0219 (5) | 0.0232 (5) | 0.0263 (5) | −0.0024 (4) | 0.0019 (4) | 0.0014 (4) |
C5 | 0.0187 (5) | 0.0236 (5) | 0.0328 (6) | −0.0003 (3) | 0.0007 (4) | 0.0014 (4) |
C3 | 0.0297 (6) | 0.0284 (5) | 0.0270 (5) | 0.0079 (4) | 0.0046 (4) | 0.0049 (4) |
S1—O4 | 1.4399 (11) | C1—H1D | 0.9700 |
S1—O3 | 1.4449 (10) | N2—C2 | 1.4957 (15) |
S1—O1 | 1.4672 (10) | N2—C4 | 1.5033 (16) |
S1—O2 | 1.5601 (10) | N2—H2A | 0.9000 |
S2—O5 | 1.4360 (11) | N2—H2B | 0.9000 |
S2—O7 | 1.4423 (12) | C2—H2C | 0.9700 |
S2—O8 | 1.4516 (13) | C2—H2D | 0.9700 |
S2—O6 | 1.5779 (11) | C4—C3 | 1.5211 (17) |
O2—H1 | 0.7258 | C4—H4A | 0.9700 |
O6—H2 | 0.9134 | C4—H4B | 0.9700 |
N1—C1 | 1.5017 (16) | C5—C3i | 1.5199 (17) |
N1—C5 | 1.5058 (17) | C5—H5A | 0.9700 |
N1—H1A | 0.9000 | C5—H5B | 0.9700 |
N1—H1B | 0.9000 | C3—C5i | 1.5199 (17) |
C1—C2 | 1.5232 (16) | C3—H3A | 0.9700 |
C1—H1C | 0.9700 | C3—H3B | 0.9700 |
O4—S1—O3 | 114.47 (8) | C4—N2—H2A | 108.3 |
O4—S1—O1 | 110.22 (7) | C2—N2—H2B | 108.3 |
O3—S1—O1 | 112.91 (6) | C4—N2—H2B | 108.3 |
O4—S1—O2 | 108.98 (7) | H2A—N2—H2B | 107.4 |
O3—S1—O2 | 103.49 (6) | N2—C2—C1 | 111.72 (10) |
O1—S1—O2 | 106.16 (6) | N2—C2—H2C | 109.3 |
O5—S2—O7 | 113.84 (7) | C1—C2—H2C | 109.3 |
O5—S2—O8 | 115.43 (9) | N2—C2—H2D | 109.3 |
O7—S2—O8 | 112.49 (9) | C1—C2—H2D | 109.3 |
O5—S2—O6 | 102.36 (8) | H2C—C2—H2D | 107.9 |
O7—S2—O6 | 106.48 (8) | N2—C4—C3 | 111.19 (10) |
O8—S2—O6 | 104.82 (7) | N2—C4—H4A | 109.4 |
S1—O2—H1 | 108.7 | C3—C4—H4A | 109.4 |
S2—O6—H2 | 106.6 | N2—C4—H4B | 109.4 |
C1—N1—C5 | 117.60 (9) | C3—C4—H4B | 109.4 |
C1—N1—H1A | 107.9 | H4A—C4—H4B | 108.0 |
C5—N1—H1A | 107.9 | N1—C5—C3i | 111.43 (10) |
C1—N1—H1B | 107.9 | N1—C5—H5A | 109.3 |
C5—N1—H1B | 107.9 | C3i—C5—H5A | 109.3 |
H1A—N1—H1B | 107.2 | N1—C5—H5B | 109.3 |
N1—C1—C2 | 109.50 (10) | C3i—C5—H5B | 109.3 |
N1—C1—H1C | 109.8 | H5A—C5—H5B | 108.0 |
C2—C1—H1C | 109.8 | C5i—C3—C4 | 111.90 (11) |
N1—C1—H1D | 109.8 | C5i—C3—H3A | 109.2 |
C2—C1—H1D | 109.8 | C4—C3—H3A | 109.2 |
H1C—C1—H1D | 108.2 | C5i—C3—H3B | 109.2 |
C2—N2—C4 | 116.01 (9) | C4—C3—H3B | 109.2 |
C2—N2—H2A | 108.3 | H3A—C3—H3B | 107.9 |
Symmetry code: (i) −x, −y+1, −z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4ii | 0.90 | 2.60 | 3.2773 (18) | 133 |
N1—H1A···O1ii | 0.90 | 1.97 | 2.8445 (14) | 165 |
N1—H1B···O4 | 0.90 | 1.91 | 2.8051 (16) | 171 |
N2—H2A···O3iii | 0.90 | 2.02 | 2.8675 (15) | 156 |
N2—H2B···O3iv | 0.90 | 2.09 | 2.9117 (14) | 151 |
N2—H2A···O7v | 0.90 | 2.45 | 2.9232 (15) | 113 |
O2—H1···O8ii | 0.73 | 1.89 | 2.6125 (18) | 172 |
O6—H2···O1vi | 0.91 | 1.85 | 2.7544 (17) | 172 |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z; (iv) −x, y−1/2, −z−1/2; (v) x, −y+1/2, z−1/2; (vi) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H28N44+·4HSO4− |
Mr | 592.68 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.8177 (2), 16.6464 (3), 8.7222 (2) |
β (°) | 97.165 (1) |
V (Å3) | 1126.21 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.51 |
Crystal size (mm) | 0.03 × 0.02 × 0.01 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Analytical (a face-indexed absorption correction was applied using the Tompa method; de Meulenaer & Tompa, 1965) |
Tmin, Tmax | 0.988, 0.995 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18757, 4952, 4074 |
Rint | 0.060 |
(sin θ/λ)max (Å−1) | 0.806 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.123, 1.05 |
No. of reflections | 4952 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.54 |
Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4i | 0.90 | 2.60 | 3.2773 (18) | 132.6 |
N1—H1A···O1i | 0.90 | 1.97 | 2.8445 (14) | 164.9 |
N1—H1B···O4 | 0.90 | 1.91 | 2.8051 (16) | 170.5 |
N2—H2A···O3ii | 0.90 | 2.02 | 2.8675 (15) | 155.8 |
N2—H2B···O3iii | 0.90 | 2.09 | 2.9117 (14) | 151.4 |
N2—H2A···O7iv | 0.90 | 2.45 | 2.9232 (15) | 113.2 |
O2—H1···O8i | 0.73 | 1.89 | 2.6125 (18) | 172.2 |
O6—H2···O1v | 0.91 | 1.85 | 2.7544 (17) | 172.1 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) −x, y−1/2, −z−1/2; (iv) x, −y+1/2, z−1/2; (v) −x+1, y−1/2, −z+1/2. |
Acknowledgements
Grateful thanks are expressed to Dr T. Roisnel (Centre de Diffractométrie X, Université de Rennes 1) for the X-ray data collection.
References
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferchichi, T., Trojett, B., Dhaouadi, H. & Marouani, H. (2010). Acta Cryst. E66, m869–m870. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Liu, S. (2004). Chem. Soc. Rev. 33, 445–461. Web of Science CrossRef PubMed CAS Google Scholar
Lukes, I., Kotek, J., Vojtisek, P. & Hermann, P. (2001). Coord. Chem. Rev. 216–217, 287–312. Web of Science CrossRef CAS Google Scholar
Melson, G. A. (1979). Coordination Chemistry of Macrocyclic Compounds. New York: Plenum. Google Scholar
Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018. CrossRef IUCr Journals Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press. Google Scholar
Pojarová, M., Fejfarová, K. & El Bali, B. (2010). Acta Cryst. E66, m1103. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem. 73, 414–424. CrossRef CAS Web of Science Google Scholar
Wainwright, K. P. (2001). Adv. Inorg. Chem. 52, 293–334. Web of Science CrossRef CAS Google Scholar
Zhang, S., Merritt, M., Woessner, D. E., Lenkinski, R. E. & Sherry, A. D. (2003). Acc. Chem. Res. 36, 783–790. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of macrocyclic polyamine ligands with pendant arms has attracted much interest over the past two decades, because of their specific structures, chemical properties, their molecular recognition ability in the form of anions or cations, and their applications from radiopharmaceutical chemistry to waste-water treatment (Wainwright, 2001; Lukes et al., 2001; Zhang et al., 2003; Liu et al., 2004). Herein we report preparation and crystal structure of the title compound.
The molecular structure of the title compound is shown in Fig. 1. The cation lies across a crystallographic inversion center and hence the asymmetric unit contains one half of the macrocyclic cation (cyclam) and two hydrogenosulfate anions. The tetra-protonated cyclam (C10H28N4)4+ cation exhibits C—C and C—N bond distances and angles in the range usually found for the cyclam molecule (Melson, 1979) and can be compared to related structures in the literature (Subramanian & Zaworotko, 1995; Ferchichi et al., 2010; Pojarová et al., 2010). In the crystal, O—H···O and N—H···O hydrogen bonds connect anions and cations to form a three-dimensional network (Fig. 2).