organic compounds
R,3S,8R,11R)-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-en-11-ol
of (1aLaboratoire de Physico-Chimie Moléculaire et Synthése Organique, Département de Chimie, Faculté des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: itto35@hotmail.com_or_aititto@uca.ma
The 16H26O, was determined as (1R,3S,8R,11R) based mainly on the synthetic pathway but is also implied by the X-ray analysis. The molecule contains fused six- and seven-membered rings. Part of the seven-membered ring was refined as disordered over two sets of sites with the occupancy ratio fixed at 0.86:0.14. The disorder corresponds to a major chair conformation and a minor boat conforation. In the crysyal, O—H⋯O hydrogen bonds connect the molecules into chains parallel to the a axis.
of the title compound, CRelated literature
For related structures, see: Benharref et al. (2010); Gassman & Goman (1990); Lassaba et al. (1997). For puckering parameters, see: Cremer & Pople (1975); Boessenkool & Boyens (1980). For analysis, see: Hooft et al. (2008). For analysis of the see: Flack & Bernardinelli (2000). For chemical properties of related compounds, see: Paresh & Sujit (2012); Arfaoui et al. (2010). For their biological properties, see: Chung et al. (2007); Servi et al. (2000). For the synthesis, see: Auhmani et al. (2001).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813018497/lh5626sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813018497/lh5626Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813018497/lh5626Isup3.cml
To a cooled (273 K) solution of (I) (4.6 mmol) in 50 ml of a solvent mixture THF/H2O (4/1, v/v), NBS (9,16 mmol) was added in small portions, then mixture was kept under stirring at 273 K, for two hours. After completion of the reaction, a 15% sodium hydrogenocarbonate solution was added and the reaction mixture was taken up in ether, dried over anhydrous sodium sulfate, and concentrated. The crude product was purified by
on silica gel (230–400 mesh) with Hexane/ethyl acetate (96:4) as to give the title compound in 20% yield. X-ray quality crystals were obtained by slow evaporation from a petroleum ether solution of the title compound.All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 0.95 Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2) or Uiso(H) = 1.5Ueq(CH3). The hydrogen atom of the hydroxyl group was refined with a restraint of O—H = 0.88 (1)Å.
The C6 carbon atom is disordered over two positions inducing a disorder of the two methyl groups C14 and C15 attached to C7. This disorder was modelled using the tools available in SHELXL97 (Sheldrick, 2008). The two disordered fragment were included in two different parts, PART 1 and 2. The occupancy factor for the two sites was refined using the free variable restraining the sum of the occupancy factors to be equal to 1. The occupancies were ultimately fixed. To be able to calculate the disordered hydrogen atom positions, atom C5 was split in two identical positions which were restrained to have same coordinates and anisotropic thermal parameters by using the EXYZ and EADP instructions in SHELXL97 (Sheldrick, 2008).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C16H26O | F(000) = 520 |
Mr = 234.37 | Dx = 1.119 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4275 reflections |
a = 6.1457 (1) Å | θ = 4.8–70.8° |
b = 8.2466 (2) Å | µ = 0.51 mm−1 |
c = 27.4454 (7) Å | T = 173 K |
V = 1390.96 (5) Å3 | Flattened, colourless |
Z = 4 | 0.32 × 0.13 × 0.07 mm |
Agilent Xcalibur (Eos, Gemini ultra) diffractometer | 2653 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 2539 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 16.1978 pixels mm-1 | θmax = 70.9°, θmin = 5.6° |
ω scans | h = −4→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −10→10 |
Tmin = 0.863, Tmax = 1.000 | l = −33→33 |
8172 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0565P)2 + 0.1685P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2653 reflections | Δρmax = 0.17 e Å−3 |
190 parameters | Δρmin = −0.18 e Å−3 |
29 restraints | Absolute structure: Flack (1983) 1059 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.1 (3) |
C16H26O | V = 1390.96 (5) Å3 |
Mr = 234.37 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 6.1457 (1) Å | µ = 0.51 mm−1 |
b = 8.2466 (2) Å | T = 173 K |
c = 27.4454 (7) Å | 0.32 × 0.13 × 0.07 mm |
Agilent Xcalibur (Eos, Gemini ultra) diffractometer | 2653 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2539 reflections with I > 2σ(I) |
Tmin = 0.863, Tmax = 1.000 | Rint = 0.027 |
8172 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | Δρmax = 0.17 e Å−3 |
S = 1.04 | Δρmin = −0.18 e Å−3 |
2653 reflections | Absolute structure: Flack (1983) 1059 Friedel pairs |
190 parameters | Absolute structure parameter: −0.1 (3) |
29 restraints |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies,2012) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.1547 (2) | 0.65315 (18) | 0.60903 (5) | 0.0280 (3) | |
C2 | 0.2298 (3) | 0.82761 (18) | 0.60418 (6) | 0.0343 (3) | |
H2A | 0.3882 | 0.8490 | 0.6054 | 0.041* | |
H2B | 0.1469 | 0.8995 | 0.5821 | 0.041* | |
C3 | 0.1203 (3) | 0.7732 (2) | 0.65035 (6) | 0.0355 (4) | |
C4 | 0.2612 (3) | 0.7567 (2) | 0.69559 (6) | 0.0429 (4) | |
H4A | 0.2338 | 0.8509 | 0.7171 | 0.051* | |
H4B | 0.4159 | 0.7607 | 0.6856 | 0.051* | |
C5 | 0.2235 (4) | 0.6023 (3) | 0.72468 (6) | 0.0529 (5) | 0.86 |
H51 | 0.0668 | 0.5749 | 0.7238 | 0.064* | 0.86 |
H52 | 0.2641 | 0.6219 | 0.7591 | 0.064* | 0.86 |
C6 | 0.3564 (4) | 0.4560 (3) | 0.70501 (7) | 0.0466 (5) | 0.86 |
H61 | 0.5115 | 0.4883 | 0.7036 | 0.056* | 0.86 |
H62 | 0.3446 | 0.3664 | 0.7289 | 0.056* | 0.86 |
C7 | 0.2906 (3) | 0.3898 (2) | 0.65441 (6) | 0.0385 (4) | |
C14 | 0.0619 (4) | 0.3224 (3) | 0.65551 (8) | 0.0472 (5) | 0.86 |
H14A | 0.0520 | 0.2379 | 0.6805 | 0.071* | 0.86 |
H14B | 0.0264 | 0.2758 | 0.6236 | 0.071* | 0.86 |
H14C | −0.0409 | 0.4096 | 0.6631 | 0.071* | 0.86 |
C15 | 0.4476 (4) | 0.2429 (3) | 0.64537 (9) | 0.0511 (5) | 0.86 |
H15A | 0.4348 | 0.1657 | 0.6723 | 0.077* | 0.86 |
H15B | 0.5978 | 0.2822 | 0.6433 | 0.077* | 0.86 |
H15C | 0.4082 | 0.1892 | 0.6148 | 0.077* | 0.86 |
C5A | 0.2235 (4) | 0.6023 (3) | 0.72468 (6) | 0.0529 (5) | 0.14 |
H5A1 | 0.1299 | 0.6267 | 0.7531 | 0.064* | 0.14 |
H5A2 | 0.3646 | 0.5614 | 0.7370 | 0.064* | 0.14 |
C6A | 0.1122 (19) | 0.4674 (14) | 0.6926 (3) | 0.042 (3) | 0.14 |
H6A1 | −0.0105 | 0.5151 | 0.6741 | 0.050* | 0.14 |
H6A2 | 0.0537 | 0.3808 | 0.7138 | 0.050* | 0.14 |
C14A | 0.157 (2) | 0.2487 (14) | 0.6310 (4) | 0.044 (3) | 0.14 |
H14D | 0.2386 | 0.2024 | 0.6037 | 0.066* | 0.14 |
H14E | 0.0173 | 0.2908 | 0.6192 | 0.066* | 0.14 |
H14F | 0.1302 | 0.1645 | 0.6555 | 0.066* | 0.14 |
C15A | 0.481 (2) | 0.347 (2) | 0.6806 (6) | 0.057 (4) | 0.14 |
H15D | 0.4468 | 0.2601 | 0.7038 | 0.086* | 0.14 |
H15E | 0.5358 | 0.4415 | 0.6983 | 0.086* | 0.14 |
H15F | 0.5928 | 0.3086 | 0.6578 | 0.086* | 0.14 |
C8 | 0.3284 (2) | 0.52177 (18) | 0.61381 (5) | 0.0282 (3) | |
H8 | 0.4651 | 0.5796 | 0.6232 | 0.034* | |
C9 | 0.3722 (2) | 0.44966 (18) | 0.56417 (5) | 0.0308 (3) | |
H9 | 0.4993 | 0.3849 | 0.5610 | 0.037* | |
C10 | 0.2508 (2) | 0.46765 (18) | 0.52450 (5) | 0.0307 (3) | |
C11 | 0.0428 (3) | 0.56358 (18) | 0.52503 (5) | 0.0331 (3) | |
H11 | −0.0731 | 0.4988 | 0.5084 | 0.040* | |
C12 | −0.0336 (2) | 0.6044 (2) | 0.57649 (5) | 0.0314 (3) | |
H12A | −0.1401 | 0.6944 | 0.5750 | 0.038* | |
H12B | −0.1078 | 0.5089 | 0.5907 | 0.038* | |
C13 | −0.1071 (3) | 0.8335 (3) | 0.66163 (7) | 0.0502 (5) | |
H13A | −0.0981 | 0.9378 | 0.6786 | 0.075* | |
H13B | −0.1820 | 0.7545 | 0.6824 | 0.075* | |
H13C | −0.1883 | 0.8473 | 0.6312 | 0.075* | |
C16 | 0.3177 (3) | 0.3995 (2) | 0.47569 (6) | 0.0427 (4) | |
H16A | 0.4620 | 0.3497 | 0.4785 | 0.064* | |
H16B | 0.3227 | 0.4870 | 0.4516 | 0.064* | |
H16C | 0.2120 | 0.3175 | 0.4653 | 0.064* | |
O1 | 0.0853 (2) | 0.70648 (14) | 0.49657 (4) | 0.0435 (3) | |
H1 | −0.046 (2) | 0.748 (3) | 0.4920 (9) | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0236 (6) | 0.0359 (7) | 0.0246 (6) | −0.0037 (6) | 0.0019 (5) | −0.0029 (6) |
C2 | 0.0342 (7) | 0.0337 (7) | 0.0349 (7) | −0.0034 (6) | 0.0026 (6) | −0.0042 (6) |
C3 | 0.0302 (8) | 0.0441 (8) | 0.0322 (7) | −0.0030 (7) | 0.0042 (6) | −0.0092 (7) |
C4 | 0.0392 (9) | 0.0586 (10) | 0.0308 (8) | −0.0090 (8) | 0.0017 (7) | −0.0121 (7) |
C5 | 0.0572 (11) | 0.0760 (13) | 0.0256 (7) | −0.0117 (11) | 0.0014 (7) | −0.0029 (8) |
C6 | 0.0424 (10) | 0.0666 (13) | 0.0309 (9) | −0.0071 (11) | −0.0070 (8) | 0.0113 (9) |
C7 | 0.0376 (8) | 0.0450 (8) | 0.0330 (8) | −0.0065 (7) | −0.0021 (6) | 0.0080 (7) |
C14 | 0.0421 (10) | 0.0557 (12) | 0.0436 (11) | −0.0167 (10) | −0.0012 (9) | 0.0160 (10) |
C15 | 0.0506 (12) | 0.0486 (11) | 0.0541 (12) | 0.0052 (10) | −0.0055 (10) | 0.0171 (10) |
C5A | 0.0572 (11) | 0.0760 (13) | 0.0256 (7) | −0.0117 (11) | 0.0014 (7) | −0.0029 (8) |
C6A | 0.051 (7) | 0.052 (6) | 0.022 (4) | 0.000 (6) | 0.001 (5) | 0.005 (5) |
C14A | 0.058 (8) | 0.041 (6) | 0.033 (5) | −0.004 (6) | 0.007 (6) | −0.003 (5) |
C15A | 0.040 (7) | 0.065 (9) | 0.067 (9) | 0.012 (7) | −0.012 (6) | 0.010 (7) |
C8 | 0.0222 (6) | 0.0355 (7) | 0.0269 (7) | −0.0048 (6) | −0.0010 (5) | 0.0006 (6) |
C9 | 0.0274 (7) | 0.0309 (7) | 0.0340 (7) | −0.0005 (6) | 0.0040 (6) | −0.0008 (6) |
C10 | 0.0362 (7) | 0.0285 (7) | 0.0274 (7) | −0.0073 (6) | 0.0030 (6) | −0.0025 (6) |
C11 | 0.0335 (7) | 0.0388 (8) | 0.0269 (7) | −0.0068 (6) | −0.0057 (6) | −0.0010 (6) |
C12 | 0.0226 (6) | 0.0411 (8) | 0.0305 (7) | −0.0026 (6) | −0.0016 (6) | −0.0002 (6) |
C13 | 0.0388 (9) | 0.0636 (11) | 0.0481 (10) | 0.0056 (9) | 0.0103 (8) | −0.0153 (9) |
C16 | 0.0561 (10) | 0.0394 (8) | 0.0327 (8) | −0.0079 (8) | 0.0061 (7) | −0.0080 (7) |
O1 | 0.0504 (7) | 0.0459 (7) | 0.0343 (5) | 0.0059 (5) | −0.0022 (5) | 0.0083 (5) |
C1—C12 | 1.516 (2) | C15—H15B | 0.9800 |
C1—C2 | 1.517 (2) | C15—H15C | 0.9800 |
C1—C3 | 1.520 (2) | C6A—H6A1 | 0.9900 |
C1—C8 | 1.527 (2) | C6A—H6A2 | 0.9900 |
C2—C3 | 1.503 (2) | C14A—H14D | 0.9800 |
C2—H2A | 0.9900 | C14A—H14E | 0.9800 |
C2—H2B | 0.9900 | C14A—H14F | 0.9800 |
C3—C13 | 1.515 (2) | C15A—H15D | 0.9800 |
C3—C4 | 1.520 (2) | C15A—H15E | 0.9800 |
C4—C5 | 1.521 (3) | C15A—H15F | 0.9800 |
C4—H4A | 0.9900 | C8—C9 | 1.5106 (19) |
C4—H4B | 0.9900 | C8—H8 | 1.0000 |
C5—C6 | 1.553 (3) | C9—C10 | 1.328 (2) |
C5—H51 | 0.9900 | C9—H9 | 0.9500 |
C5—H52 | 0.9900 | C10—C11 | 1.503 (2) |
C6—C7 | 1.546 (2) | C10—C16 | 1.510 (2) |
C6—H61 | 0.9900 | C11—O1 | 1.4378 (19) |
C6—H62 | 0.9900 | C11—C12 | 1.526 (2) |
C7—C15A | 1.421 (11) | C11—H11 | 1.0000 |
C7—C14 | 1.512 (3) | C12—H12A | 0.9900 |
C7—C14A | 1.563 (11) | C12—H12B | 0.9900 |
C7—C15 | 1.568 (3) | C13—H13A | 0.9800 |
C7—C8 | 1.575 (2) | C13—H13B | 0.9800 |
C7—C6A | 1.646 (10) | C13—H13C | 0.9800 |
C14—H14A | 0.9800 | C16—H16A | 0.9800 |
C14—H14B | 0.9800 | C16—H16B | 0.9800 |
C14—H14C | 0.9800 | C16—H16C | 0.9800 |
C15—H15A | 0.9800 | O1—H1 | 0.887 (11) |
C12—C1—C2 | 115.60 (13) | C7—C14—H14B | 109.5 |
C12—C1—C3 | 120.38 (13) | C7—C14—H14C | 109.5 |
C2—C1—C3 | 59.34 (10) | C7—C15—H15A | 109.5 |
C12—C1—C8 | 113.34 (12) | C7—C15—H15B | 109.5 |
C2—C1—C8 | 117.89 (12) | C7—C15—H15C | 109.5 |
C3—C1—C8 | 119.71 (12) | C7—C6A—H6A1 | 109.7 |
C3—C2—C1 | 60.45 (10) | C7—C6A—H6A2 | 109.7 |
C3—C2—H2A | 117.7 | H6A1—C6A—H6A2 | 108.2 |
C1—C2—H2A | 117.7 | C7—C14A—H14D | 109.5 |
C3—C2—H2B | 117.7 | C7—C14A—H14E | 109.5 |
C1—C2—H2B | 117.7 | H14D—C14A—H14E | 109.5 |
H2A—C2—H2B | 114.8 | C7—C14A—H14F | 109.5 |
C2—C3—C13 | 119.16 (15) | H14D—C14A—H14F | 109.5 |
C2—C3—C4 | 117.39 (14) | H14E—C14A—H14F | 109.5 |
C13—C3—C4 | 112.84 (14) | C7—C15A—H15D | 109.5 |
C2—C3—C1 | 60.21 (9) | C7—C15A—H15E | 109.5 |
C13—C3—C1 | 119.64 (14) | H15D—C15A—H15E | 109.5 |
C4—C3—C1 | 118.13 (14) | C7—C15A—H15F | 109.5 |
C3—C4—C5 | 114.67 (15) | H15D—C15A—H15F | 109.5 |
C3—C4—H4A | 108.6 | H15E—C15A—H15F | 109.5 |
C5—C4—H4A | 108.6 | C9—C8—C1 | 109.06 (11) |
C3—C4—H4B | 108.6 | C9—C8—C7 | 113.10 (13) |
C5—C4—H4B | 108.6 | C1—C8—C7 | 116.61 (12) |
H4A—C4—H4B | 107.6 | C9—C8—H8 | 105.7 |
C4—C5—C6 | 112.81 (15) | C1—C8—H8 | 105.7 |
C4—C5—H51 | 109.0 | C7—C8—H8 | 105.7 |
C6—C5—H51 | 109.0 | C10—C9—C8 | 126.54 (14) |
C4—C5—H52 | 109.0 | C10—C9—H9 | 116.7 |
C6—C5—H52 | 109.0 | C8—C9—H9 | 116.7 |
H51—C5—H52 | 107.8 | C9—C10—C11 | 121.90 (13) |
C7—C6—C5 | 116.67 (17) | C9—C10—C16 | 122.19 (15) |
C7—C6—H61 | 108.1 | C11—C10—C16 | 115.87 (14) |
C5—C6—H61 | 108.1 | O1—C11—C10 | 105.75 (12) |
C7—C6—H62 | 108.1 | O1—C11—C12 | 112.20 (13) |
C5—C6—H62 | 108.1 | C10—C11—C12 | 112.76 (12) |
H61—C6—H62 | 107.3 | O1—C11—H11 | 108.7 |
C15A—C7—C14 | 131.7 (7) | C10—C11—H11 | 108.7 |
C15A—C7—C6 | 54.4 (7) | C12—C11—H11 | 108.7 |
C14—C7—C6 | 110.81 (16) | C1—C12—C11 | 111.64 (12) |
C15A—C7—C14A | 117.1 (9) | C1—C12—H12A | 109.3 |
C6—C7—C14A | 140.3 (5) | C11—C12—H12A | 109.3 |
C15A—C7—C15 | 51.6 (7) | C1—C12—H12B | 109.3 |
C14—C7—C15 | 106.92 (17) | C11—C12—H12B | 109.3 |
C6—C7—C15 | 104.71 (16) | H12A—C12—H12B | 108.0 |
C14A—C7—C15 | 71.6 (6) | C3—C13—H13A | 109.5 |
C15A—C7—C8 | 114.2 (7) | C3—C13—H13B | 109.5 |
C14—C7—C8 | 113.93 (14) | H13A—C13—H13B | 109.5 |
C6—C7—C8 | 110.66 (14) | C3—C13—H13C | 109.5 |
C14A—C7—C8 | 107.6 (5) | H13A—C13—H13C | 109.5 |
C15—C7—C8 | 109.33 (14) | H13B—C13—H13C | 109.5 |
C15A—C7—C6A | 108.9 (8) | C10—C16—H16A | 109.5 |
C14—C7—C6A | 60.7 (4) | C10—C16—H16B | 109.5 |
C6—C7—C6A | 57.7 (4) | H16A—C16—H16B | 109.5 |
C14A—C7—C6A | 101.5 (7) | C10—C16—H16C | 109.5 |
C15—C7—C6A | 144.2 (4) | H16A—C16—H16C | 109.5 |
C8—C7—C6A | 106.2 (4) | H16B—C16—H16C | 109.5 |
C7—C14—H14A | 109.5 | C11—O1—H1 | 103.2 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.89 (1) | 2.32 (1) | 3.1612 (6) | 159 (2) |
Symmetry code: (i) x−1/2, −y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H26O |
Mr | 234.37 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 173 |
a, b, c (Å) | 6.1457 (1), 8.2466 (2), 27.4454 (7) |
V (Å3) | 1390.96 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.51 |
Crystal size (mm) | 0.32 × 0.13 × 0.07 |
Data collection | |
Diffractometer | Agilent Xcalibur (Eos, Gemini ultra) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.863, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8172, 2653, 2539 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.613 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.098, 1.04 |
No. of reflections | 2653 |
No. of parameters | 190 |
No. of restraints | 29 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.18 |
Absolute structure | Flack (1983) 1059 Friedel pairs |
Absolute structure parameter | −0.1 (3) |
Computer programs: CrysAlis PRO (Agilent, 2012), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.887 (11) | 2.317 (13) | 3.1612 (6) | 159 (2) |
Symmetry code: (i) x−1/2, −y+3/2, −z+1. |
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Arfaoui, J., Boudali, L. K. & Ghorbel, A. (2010). Appl. Clay Sci. 48, 171–178. Web of Science CrossRef CAS Google Scholar
Auhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2001). Acta Cryst. E57, o102–o103. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Benharref, A., El Ammari, L., Berraho, M. & Lassaba, E. (2010). Acta Cryst. E66, o2463. Web of Science CSD CrossRef IUCr Journals Google Scholar
Boessenkool, I. K. & Boyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18. CrossRef CAS Web of Science Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Chung, I., Kwon, S. H., Shim, S.-T. & Kyung, K. H. (2007). J. Food Sci. 72, 437–440. Web of Science CrossRef Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gassman, P. G. & Goman, D. B. (1990). J. Am. Chem. Soc. 112, 8623. CSD CrossRef Web of Science Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lassaba, E., Benharref, A., Giorgi, M. & Pierrot, M. (1997). Acta Cryst. C53, 1943–1945. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Paresh, N. C. & Sujit, R. (2012). Tetrahedron, 68, 3776–3785. Google Scholar
Servi, S., Cansiz, A., Digrak, M. & Ahmedzade, M. (2000). Indian J. Chem. Sect. B, 39, 629–633. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Optically active allylic alcohols are highly interesting building blocks that have been widely used in organic transformations (Paresh & Sujit, 2012; Arfaoui et al., 2010). Allylic alcohol functionality is also found in several potent biologically active compounds (Chung et al., 2007; Servi et al., 2000). In the aim of preparing chiral allylic alcohols with sesquiterpenic squeleton, we report herein, the crystal structure of the title compound (1R,3S,8R,11R)-3,7,7,10-tetramethyltricyclo[6.4.0.01, 3]dodec-9-en-11-ol (II). The title compound prepared by treating (1S,3S,8R)-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec- 9-ene(I) (Auhmani et al., 2001), with N-bromosuccinimide (NBS).
The molecular structure of (II) is shown in Fig. 1. As observed in related compounds (Gassman & Goman, 1990; Lassaba et al., 1997; Benharref et al., 2010) the molecule contains a fused six-membered and seven-membered ring. The six-membered ring has approximate half-chair conformation with the puckering parameters: Q = 0.452 (2) Å, spherical polar angle θ= 128.8 (3)° and ϕ= 153.4 (4)° (Cremer & Pople, 1975), whereas the seven-membered ring displays either a chair conformation (86%) with a total puckering amplitude of 0.797 (3) Å (Boessenkool & Boyens, 1980) or a boat conformation (14%) with a total puckering amplitude of 1.230 (4) Å. The major chair confornation and minor boat conformation corresponds to the disorder in part of the seven-membered ring.
Although the standrad uncertainties on the Flack's parameter (Flack, 1983; Flack & Bernardinelli, 2000), -0.1 (3), and on the Hooft parameter (Hooft et al., 2008), 0.04 (15) are rather high and limit the reliability of the observed value, the absolute configuration (1R,3S,8R,11R) agrees with the one expected from the synthetic pathway. It addition, inverting the configuration leads to values close to 1 for both Flack and Hooft parameters.
In the crystal, the hydroxyl group is engaged in O—H···O hydrogen bonding with symmetry related molecules forming infinite chains parallel to the a axis (Fig. 2).