inorganic compounds
Tetraammine(carbonato-κ2O,O′)cobalt(III) perchlorate
aDepartment of Chemistry, Anna University – BIT Campus, Tiruchirappalli 620 024, Tamil Nadu, India, and bSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: jothivenkat@yahoo.com,tommtrichy@yahoo.co.in
In the title complex, [Co(CO3)(NH3)4]ClO4, both the cation and anion lie on a mirror plane. The CoIII ion is coordinated by two NH3 ligands and a chelating carbonato ligand in the equatorial sites and by two NH3 groups in the axial sites, forming a distorted octahedral geometry. In the crystal, N—H⋯O hydrogen bonds connect the anions and cations, forming a three-dimensional network.
Related literature
For background to cobalt(III)–ammine complexes, see: Werner (1908) and to cobalt–carbonato complexes, see: McClintock et al. (2008); Cavigliasso et al. (2008). For their biological applications, see: Kumar & Thota (2005); Xu et al. (2009). For the chemistry of carbonatopentaamminecobalt(III) and carboxylatopentamminecobalt(III) complexes, see: Busset et al. (2007); Palaniappan et al. (2001); Jothivenkatachalam et al. (2013). For related CoIII complexes, see: Kim et al. (1998); Massoud et al. (2000); Sharma et al. (2004a,b, 2005a,b).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: POV-RAY (Persistence of Vision Team, 2004) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813018187/lh5627sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813018187/lh5627Isup2.hkl
Carbonatotetramminecobalt(III) perchlorate was synthesized by the treatment of sodium bicarbonate with aquapentaamminecobalt(III) perchlorate dissolved in small amount of hot water. The pH of the reaction mixture is adjusted to pH 8 by varying sodium bicarbonate and refluxed at 333K for 4 h and kept in cool place. The purple colored carbonatotetramminecobalt(III) perchlorate precipitate then settled. The resulting solution was filtered and was dissolved in minimum amount of hot water, and then allowed to crystallize by slow evaporation at ambient temperature. Fine purple crystals of X-ray quality separated out after one week. These were filtered, washed with ethanol, acetone and air-dried.
The H atoms attached to N3 and N4 were located from a difference Fourier map and were refined freely. The H atoms attached to N1 were placed in geometrically idealized positions and constrained to ride on their parent atom, with N—H distance of 0.89 Å, and with Uiso(H) set at 1.5Ueq(N).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: POV-RAY (Persistence of Vision Team, 2004) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with anisotropic displacement ellipsoids drawn at 50% probability level [Symmetry code: (i) x, -y+1/2, z]. | |
Fig. 2. The packing of the complex viewed along the c axis, showing N—H···O hydrogen bonds as dashed lines. |
[Co(CO3)(NH3)4]ClO4 | F(000) = 584 |
Mr = 286.53 | Dx = 1.912 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 1947 reflections |
a = 17.8961 (5) Å | θ = 2.3–33.0° |
b = 8.0768 (2) Å | µ = 2.01 mm−1 |
c = 6.8871 (2) Å | T = 296 K |
V = 995.48 (5) Å3 | Plate, purple |
Z = 4 | 0.09 × 0.08 × 0.07 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 1947 independent reflections |
Radiation source: fine-focus sealed tube | 1565 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ϕ and ω scans | θmax = 33.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −27→27 |
Tmin = 0.951, Tmax = 0.962 | k = −11→12 |
12900 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.15 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
1947 reflections | (Δ/σ)max < 0.001 |
91 parameters | Δρmax = 1.06 e Å−3 |
0 restraints | Δρmin = −0.75 e Å−3 |
[Co(CO3)(NH3)4]ClO4 | V = 995.48 (5) Å3 |
Mr = 286.53 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 17.8961 (5) Å | µ = 2.01 mm−1 |
b = 8.0768 (2) Å | T = 296 K |
c = 6.8871 (2) Å | 0.09 × 0.08 × 0.07 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 1947 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1565 reflections with I > 2σ(I) |
Tmin = 0.951, Tmax = 0.962 | Rint = 0.032 |
12900 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.153 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.15 | Δρmax = 1.06 e Å−3 |
1947 reflections | Δρmin = −0.75 e Å−3 |
91 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.07671 (2) | 0.25000 | 0.88852 (5) | 0.0258 (1) | |
O1 | 0.05126 (10) | 0.1164 (2) | 1.10933 (19) | 0.0324 (5) | |
O2 | 0.01415 (17) | 0.25000 | 1.3801 (3) | 0.0486 (9) | |
N1 | 0.09597 (12) | 0.0723 (2) | 0.7015 (3) | 0.0362 (5) | |
N3 | −0.02722 (17) | 0.25000 | 0.8052 (4) | 0.0328 (8) | |
N4 | 0.18057 (18) | 0.25000 | 0.9753 (5) | 0.0380 (9) | |
C1 | 0.03851 (18) | 0.25000 | 1.2100 (4) | 0.0319 (8) | |
Cl2 | 0.27539 (5) | 0.25000 | 0.48795 (14) | 0.0426 (3) | |
O3 | 0.3348 (3) | 0.25000 | 0.3518 (8) | 0.0950 (17) | |
O4 | 0.2027 (3) | 0.25000 | 0.4051 (6) | 0.149 (4) | |
O5 | 0.2799 (3) | 0.1123 (4) | 0.6072 (7) | 0.131 (2) | |
H1A | 0.14500 | 0.05620 | 0.69100 | 0.0540* | |
H1B | 0.07740 | 0.10050 | 0.58620 | 0.0540* | |
H1C | 0.07430 | −0.02060 | 0.74220 | 0.0540* | |
H2 | 0.1869 (18) | 0.174 (4) | 1.035 (5) | 0.052 (10)* | |
H3 | 0.209 (3) | 0.25000 | 0.904 (8) | 0.062 (19)* | |
H4 | −0.0472 (17) | 0.171 (3) | 0.843 (4) | 0.032 (7)* | |
H5 | −0.029 (2) | 0.25000 | 0.686 (6) | 0.023 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0320 (3) | 0.0241 (2) | 0.0213 (2) | 0.0000 | −0.0021 (1) | 0.0000 |
O1 | 0.0417 (9) | 0.0285 (8) | 0.0269 (7) | −0.0032 (7) | −0.0017 (5) | 0.0027 (5) |
O2 | 0.0462 (14) | 0.077 (2) | 0.0227 (10) | 0.0000 | 0.0028 (8) | 0.0000 |
N1 | 0.0450 (10) | 0.0319 (9) | 0.0318 (8) | 0.0014 (8) | 0.0007 (8) | −0.0035 (7) |
N3 | 0.0368 (13) | 0.0343 (14) | 0.0272 (12) | 0.0000 | −0.0029 (10) | 0.0000 |
N4 | 0.0369 (14) | 0.0407 (18) | 0.0364 (14) | 0.0000 | −0.0037 (12) | 0.0000 |
C1 | 0.0336 (13) | 0.0392 (16) | 0.0230 (11) | 0.0000 | −0.0044 (10) | 0.0000 |
Cl2 | 0.0418 (4) | 0.0377 (5) | 0.0482 (5) | 0.0000 | 0.0064 (3) | 0.0000 |
O3 | 0.102 (3) | 0.068 (3) | 0.115 (3) | 0.0000 | 0.076 (3) | 0.0000 |
O4 | 0.066 (3) | 0.324 (11) | 0.056 (3) | 0.0000 | −0.0011 (19) | 0.0000 |
O5 | 0.162 (4) | 0.0684 (19) | 0.161 (4) | 0.041 (2) | 0.070 (3) | 0.054 (2) |
Co1—O1 | 1.9195 (15) | O2—C1 | 1.250 (4) |
Co1—N1 | 1.9590 (19) | N1—H1A | 0.8900 |
Co1—N3 | 1.947 (3) | N1—H1B | 0.8900 |
Co1—N4 | 1.952 (3) | N1—H1C | 0.8900 |
Co1—O1i | 1.9195 (15) | N3—H4 | 0.78 (3) |
Co1—N1i | 1.9590 (19) | N3—H5 | 0.82 (4) |
Cl2—O5i | 1.385 (4) | N3—H4i | 0.78 (3) |
Cl2—O3 | 1.418 (6) | N4—H3 | 0.71 (5) |
Cl2—O4 | 1.421 (5) | N4—H2i | 0.75 (3) |
Cl2—O5 | 1.385 (4) | N4—H2 | 0.75 (3) |
O1—C1 | 1.303 (2) | ||
Co1···O2ii | 3.676 (2) | N3···O1 | 2.743 (3) |
Co1···O1iii | 3.7420 (17) | N3···N1i | 2.726 (3) |
Co1···O1iv | 3.7420 (17) | N3···O2ii | 3.020 (4) |
Co1···O2v | 3.676 (2) | N3···N1 | 2.726 (3) |
Cl2···H1Ai | 3.1400 | N3···C1 | 3.026 (4) |
Cl2···H1A | 3.1400 | N4···N1i | 2.812 (4) |
Cl2···H3 | 3.10 (5) | N4···O1 | 2.715 (3) |
Cl2···H3 | 3.10 (5) | N4···O4vii | 2.987 (5) |
O1···O2 | 2.255 (2) | N4···O1i | 2.715 (3) |
O1···N3iv | 3.0478 (18) | N4···O5xiv | 3.145 (4) |
O1···N3 | 2.743 (3) | N4···N1 | 2.812 (4) |
O1···Co1vi | 3.7420 (17) | N4···C1 | 3.013 (5) |
O1···N1 | 2.942 (2) | N4···O4viii | 2.987 (5) |
O1···N4 | 2.715 (3) | N4···O5xii | 3.145 (4) |
O1···O1iv | 3.028 (2) | N1···H5 | 2.66 (3) |
O1···N3vi | 3.0478 (18) | N1···H3 | 2.85 (5) |
O1···O1i | 2.158 (2) | N1···H4 | 2.86 (3) |
O1···Co1iv | 3.7420 (17) | N1···H1Bi | 2.7800 |
O2···N1vii | 3.017 (3) | N1···H2 | 2.93 (3) |
O2···N3vii | 3.020 (4) | N3···H1Ci | 2.8800 |
O2···Co1viii | 3.676 (2) | N3···H1B | 2.6900 |
O2···O1i | 2.255 (2) | N3···H1C | 2.8800 |
O2···N3viii | 3.020 (4) | N3···H1Bi | 2.6900 |
O2···Co1vii | 3.676 (2) | N4···H1Ai | 2.5900 |
O2···O1 | 2.255 (2) | N4···H1A | 2.5900 |
O2···N1viii | 3.017 (3) | C1···O4viii | 3.231 (6) |
O3···N1ix | 3.063 (3) | C1···N3 | 3.026 (4) |
O3···N1x | 3.063 (3) | C1···N4 | 3.013 (5) |
O4···N1i | 3.143 (5) | C1···O4vii | 3.231 (6) |
O4···N4ii | 2.987 (5) | C1···H2 | 2.98 (3) |
O4···C1v | 3.231 (6) | C1···H1Civ | 2.7600 |
O4···C1ii | 3.231 (6) | C1···H4 | 3.03 (3) |
O4···N4v | 2.987 (5) | C1···H1Bviii | 2.9400 |
O4···N1 | 3.143 (5) | C1···H4i | 3.03 (3) |
O5···N4xi | 3.145 (4) | C1···H1Ciii | 2.7600 |
O5···N4ix | 3.145 (4) | C1···H1Bvii | 2.9400 |
O1···H1Civ | 2.5900 | C1···H2i | 2.98 (3) |
O1···H2 | 2.52 (3) | H1A···H3 | 2.4300 |
O1···H4iv | 2.35 (2) | H1A···O3xii | 2.7300 |
O1···H4 | 2.58 (3) | H1A···O3xiii | 2.7300 |
O1···H1C | 2.7900 | H1A···O5 | 2.5200 |
O2···H1Civ | 2.5800 | H1A···Cl2 | 3.1400 |
O2···H5viii | 2.24 (4) | H1A···O4 | 2.7200 |
O2···H1Bvii | 2.1800 | H1A···Cl2 | 3.1400 |
O2···H1Ciii | 2.5800 | H1A···O4 | 2.7200 |
O2···H5vii | 2.24 (4) | H1B···O2v | 2.1800 |
O2···H1Bviii | 2.1800 | H1B···C1ii | 2.9400 |
O3···H1Ax | 2.7300 | H1B···H5 | 2.3600 |
O3···H1Aix | 2.7300 | H1B···O2ii | 2.1800 |
O3···H1Cix | 2.5800 | H1B···O4 | 2.8400 |
O3···H1Cx | 2.5800 | H1B···O4 | 2.8400 |
O4···H1A | 2.7200 | H1B···C1v | 2.9400 |
O4···H2ii | 2.64 (3) | H1B···H1Bi | 2.4100 |
O4···H1B | 2.8400 | H1C···C1vi | 2.7600 |
O4···H2v | 2.64 (3) | H1C···O1iv | 2.5900 |
O4···H1Ai | 2.7200 | H1C···O2iv | 2.5800 |
O4···H1Bi | 2.8400 | H1C···O3xii | 2.5800 |
O5···H3 | 2.65 (5) | H1C···O2vi | 2.5800 |
O5···H1A | 2.5200 | H1C···C1iv | 2.7600 |
O5···H2ix | 2.44 (3) | H1C···O3xiii | 2.5800 |
O5···H3 | 2.65 (5) | H2···O4viii | 2.64 (3) |
N1···O1 | 2.942 (2) | H2···O4vii | 2.64 (3) |
N1···O4 | 3.143 (5) | H2···O5xii | 2.44 (3) |
N1···N1i | 2.871 (2) | H3···Cl2 | 3.10 (5) |
N1···N3 | 2.726 (3) | H3···O5 | 2.65 (5) |
N1···O2ii | 3.017 (3) | H3···H1A | 2.4300 |
N1···O4 | 3.143 (5) | H3···Cl2 | 3.10 (5) |
N1···O3xii | 3.063 (3) | H3···O5i | 2.65 (5) |
N1···N4 | 2.812 (4) | H3···H1Ai | 2.4300 |
N1···O2v | 3.017 (3) | H4···O1iv | 2.35 (2) |
N1···O3xiii | 3.063 (3) | H5···O2v | 2.24 (4) |
N3···O2v | 3.020 (4) | H5···H1Bi | 2.3600 |
N3···O1iv | 3.0478 (18) | H5···H1B | 2.3600 |
N3···O1i | 2.743 (3) | H5···O2ii | 2.24 (4) |
N3···O1iii | 3.0478 (18) | ||
O1—Co1—N1 | 98.67 (7) | Co1—O1—C1 | 89.86 (13) |
O1—Co1—N3 | 90.39 (9) | Co1—N1—H1C | 110.00 |
O1—Co1—N4 | 89.05 (10) | Co1—N1—H1B | 109.00 |
O1—Co1—C1 | 34.21 (5) | H1A—N1—H1C | 109.00 |
O1—Co1—O1i | 68.41 (7) | H1B—N1—H1C | 110.00 |
O1—Co1—N1i | 167.04 (7) | H1A—N1—H1B | 109.00 |
N1—Co1—N3 | 88.53 (8) | Co1—N1—H1A | 110.00 |
N1—Co1—N4 | 91.94 (9) | H4—N3—H4i | 111 (3) |
N1—Co1—C1 | 132.85 (6) | H4i—N3—H5 | 109 (2) |
O1i—Co1—N1 | 167.04 (7) | H4—N3—H5 | 109 (2) |
N1—Co1—N1i | 94.22 (8) | Co1—N3—H4i | 110 (2) |
N3—Co1—N4 | 179.32 (13) | Co1—N3—H4 | 110 (2) |
N3—Co1—C1 | 89.99 (11) | Co1—N3—H5 | 109 (3) |
O1i—Co1—N3 | 90.39 (9) | H2i—N4—H3 | 106 (3) |
N1i—Co1—N3 | 88.53 (8) | Co1—N4—H2i | 108 (2) |
N4—Co1—C1 | 89.33 (13) | Co1—N4—H2 | 108 (2) |
O1i—Co1—N4 | 89.05 (10) | Co1—N4—H3 | 118 (4) |
N1i—Co1—N4 | 91.94 (9) | H2—N4—H2i | 110 (4) |
O1i—Co1—C1 | 34.21 (5) | H2—N4—H3 | 106 (3) |
N1i—Co1—C1 | 132.85 (6) | Co1—C1—O2 | 176.8 (3) |
O1i—Co1—N1i | 98.67 (7) | Co1—C1—O1i | 55.93 (12) |
O5—Cl2—O5i | 106.9 (3) | O1—C1—O1i | 111.9 (2) |
O3—Cl2—O5 | 110.4 (2) | O1i—C1—O2 | 124.05 (12) |
O3—Cl2—O5i | 110.4 (2) | O1—C1—O2 | 124.05 (12) |
O3—Cl2—O4 | 114.9 (3) | Co1—C1—O1 | 55.93 (12) |
O4—Cl2—O5 | 107.0 (2) | ||
N1—Co1—O1—C1 | −177.97 (17) | N3—Co1—C1—O1 | 90.72 (15) |
N3—Co1—O1—C1 | −89.40 (17) | N4—Co1—C1—O1 | −89.29 (15) |
N4—Co1—O1—C1 | 90.22 (17) | O1i—Co1—C1—O1 | −178.6 (3) |
O1i—Co1—O1—C1 | 0.87 (16) | N1i—Co1—C1—O1 | 178.69 (14) |
O1—Co1—C1—O1i | 178.6 (3) | O1—Co1—O1i—C1 | −0.87 (16) |
N1—Co1—C1—O1 | 2.7 (2) | Co1—O1—C1—O2 | 176.1 (3) |
N1—Co1—C1—O1i | −178.69 (14) | Co1—O1—C1—O1i | −1.3 (2) |
Symmetry codes: (i) x, −y+1/2, z; (ii) x, y, z−1; (iii) −x, y+1/2, −z+2; (iv) −x, −y, −z+2; (v) x, −y+1/2, z−1; (vi) −x, y−1/2, −z+2; (vii) x, −y+1/2, z+1; (viii) x, y, z+1; (ix) −x+1/2, −y, z−1/2; (x) −x+1/2, y+1/2, z−1/2; (xi) −x+1/2, y−1/2, z−1/2; (xii) −x+1/2, −y, z+1/2; (xiii) −x+1/2, y−1/2, z+1/2; (xiv) −x+1/2, y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O5 | 0.89 | 2.52 | 3.371 (6) | 159 |
N1—H1B···O2ii | 0.89 | 2.18 | 3.017 (3) | 156 |
N1—H1C···O3xii | 0.89 | 2.58 | 3.063 (3) | 115 |
N1—H1C···O2vi | 0.89 | 2.58 | 3.313 (3) | 140 |
N1—H1C···O1iv | 0.89 | 2.59 | 3.311 (3) | 139 |
N4—H2···O5xii | 0.75 (3) | 2.44 (3) | 3.145 (4) | 158 (3) |
N3—H4···O1iv | 0.78 (3) | 2.35 (2) | 3.0478 (18) | 151 (3) |
N3—H5···O2ii | 0.82 (4) | 2.24 (4) | 3.020 (4) | 158 (3) |
Symmetry codes: (ii) x, y, z−1; (iv) −x, −y, −z+2; (vi) −x, y−1/2, −z+2; (xii) −x+1/2, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Co(CO3)(NH3)4]ClO4 |
Mr | 286.53 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 296 |
a, b, c (Å) | 17.8961 (5), 8.0768 (2), 6.8871 (2) |
V (Å3) | 995.48 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.01 |
Crystal size (mm) | 0.09 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.951, 0.962 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12900, 1947, 1565 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.766 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.153, 1.15 |
No. of reflections | 1947 |
No. of parameters | 91 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.06, −0.75 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), POV-RAY (Persistence of Vision Team, 2004) and PLATON (Spek, 2009), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O5 | 0.89 | 2.52 | 3.371 (6) | 159 |
N1—H1B···O2i | 0.89 | 2.18 | 3.017 (3) | 156 |
N1—H1C···O3ii | 0.89 | 2.58 | 3.063 (3) | 115 |
N1—H1C···O2iii | 0.89 | 2.58 | 3.313 (3) | 140 |
N1—H1C···O1iv | 0.89 | 2.59 | 3.311 (3) | 139 |
N4—H2···O5ii | 0.75 (3) | 2.44 (3) | 3.145 (4) | 158 (3) |
N3—H4···O1iv | 0.78 (3) | 2.35 (2) | 3.0478 (18) | 151 (3) |
N3—H5···O2i | 0.82 (4) | 2.24 (4) | 3.020 (4) | 158 (3) |
Symmetry codes: (i) x, y, z−1; (ii) −x+1/2, −y, z+1/2; (iii) −x, y−1/2, −z+2; (iv) −x, −y, −z+2. |
Acknowledgements
KJV thanks the Department of Science and Technology (DST), Government of India, New Delhi, for financial support (sanction No. SR/FT/CS-042/2008). The authors thank the DST India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India.
References
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Busset, C., Mazellier, P., Sarakha, M. & Laat, J. D. (2007). J. Photochem. Photobiol. A, 185, 127–132. Web of Science CrossRef CAS Google Scholar
Cavigliasso, G., Stranger, R., McClintock, L. F., Cheyne, S. E., Jaffray, P. M., Baxter, K. E. & Blackman, A. G. (2008). Dalton Trans. 18, 2433–2441. Web of Science CrossRef PubMed Google Scholar
Jothivenkatachalam, K., Chandra Mohan, S. & Natarajan, P. (2013). Res. Chem. Intermed. DOI: 10.1007/s11164-012-0850-0. Google Scholar
Kim, B.-G., Min, K.-S., Lee, B.-W. & Dohi, M.-K. (1998). Bull. Korean Chem. Soc. 19, 482–483. CAS Google Scholar
Kumar, C. V. & Thota, J. (2005). Inorg. Chem. 44, 825–827. Web of Science CrossRef PubMed CAS Google Scholar
Massoud, S. S., Mautner, F. A. & Abu-Youssef, M. A. M. (2000). Cryst. Res. Technol. 35, 1229–1236. Web of Science CSD CrossRef CAS Google Scholar
McClintock, L. F., Cavigliasso, G., Stranger, R. & Blackman, A. G. (2008). Dalton Trans. 37, 4984–4992. Web of Science CSD CrossRef PubMed Google Scholar
Palaniappan, S., Jothivenkatachalam, K. & Natarajan, M. P. (2001). Inorg. Chem. Commun. 4, 738–740. Web of Science CrossRef CAS Google Scholar
Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ . Google Scholar
Sharma, R. P., Bala, R., Sharma, R., Bhasin, K. K. & Chadha, R. K. (2004b). J. Coord. Chem. 57, 313–319. Web of Science CrossRef CAS Google Scholar
Sharma, R. P., Bala, R., Sharma, R., Salas, J. M. & Quiros, M. (2005b). J. Coord. Chem. 58, 217–223. Web of Science CrossRef CAS Google Scholar
Sharma, R. P., Bala, R., Sharma, R. & Venugopalan, P. (2004a). J. Coord. Chem. 57, 1563–1569. Web of Science CrossRef CAS Google Scholar
Sharma, R. P., Bala, R., Sharma, R., Vermani, B. K., Gill, D. S. & Venugopalan, P. (2005a). J. Coord. Chem. 58, 309–316. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Werner, A. (1908). Ber. 41, 3007–3015. CrossRef CAS Google Scholar
Xu, W., Louka, F. R., Doulain, P. E., Landry, C. A., Mautner, F. A. & Massoud, S. S. (2009). Polyhedron, 28, 1221–1228. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cobalt(III) ammine complexes are well known and were widely studied by Werner (1908). In aqueous medium, the chelated ring of a bicarbonate complex is opened and protonation occurs due to hydrolysis which leads to instability. The less stability of a carbonato complex in acidic aqueous medium not only leads to protonation but also makes a site for metallation (McClintock et al., 2008; Cavigliasso et al., 2008). The carbanato complex also plays a vital role in photocleavage of proteins with high preference and it assists the new models of transition metal complexes for the photocleavage (Kumar & Thota, 2005). The P—O bonds present in the phosphodiester of DNA have been cleaved hydrolytically by the imitative of chelated carbonato complexes (Xu et al., 2009). Recently the carbonate radical generation by photochemical reaction of carbonatopentaamminecobalt(III) complex was also reported (Busset et al., 2007). The photochemical reactions of carboxylatopentamminecobalt(III) complexes lead to the reduction of metal centre and the formation of oxidized ligands, which may lead to the synthesis of value added products (Palaniappan et al., 2001; Jothivenkatachalam et al., 2013).
The crystal structure of the title complex is composed of one [CoCO3(NH3)4]+ cation and a ClO4- anion in a 1:1 molar ratio. A mirror plane bisects the cation as well as the perchlorate anion, hence half a cation and an anion form the asymmetric unit. The molecular structure of the title complex is shown in Fig. 1. The CoIII ion is coordinated by two NH3 ligands and a chelating carbanato ligand equatorially, by two NH3 groups axially. Unlike other d6 octahedral Co(II) complexes the title complex shows a distortion from ideal octahedral geometry. This can be noted by the deviation of O1—Co—O1i bond angle of 68.41 (7)° from the ideal octahedral bond angle of 90°. This is due to the steric restriction of the carbanato ligand in the formation of four membered chelate ring. The observed O—Co—O bond angle is similar to those observed in related [Co(CO3)(N)4]+ species (Kim et al., 1998; Massoud et al., 2000). The chelating CO32- has a slight influence on the N1—Co—N1i bond angle trans to the O1—Co—O1i angle. The N1—Co—N1i bond angle is 94.22 (8)°. The Co—N bond distances observed for the complex under investigation is similar to those reported earlier [CoCO3(L2)]ClO4, [Co(NH3)2(NO2)4]-, [Co(NH3)6]3+, (Massoud et al., 2000; Sharma et al., 2004a,b; Sharma et al., 2005a,b). In the crystal, N—H···O hydrogen bonds connect anions and cations to form a three-dimensional network (Fig. 2).