organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Methyl-4-[1-(4-methyl­anilino)propyl­­idene]-1-phenyl-1H-pyrazol-5(4H)-one

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

(Received 25 June 2013; accepted 10 July 2013; online 17 July 2013)

In the title mol­ecule, C20H21N3O, the central pyrazole ring forms dihedral angles of 4.75 (9) and 49.11 (9)°, respectively, with the phenyl and methyl-substituted benzene rings. The dihedral angle between the phenyl and benzene rings is 51.76 (8)°. The amino group and carbonyl O atom are involved in an intra­molecular N—H⋯O hydrogen bond. In the crystal, ππ inter­actions are observed between benzene rings [centroid–centroid seperation = 3.892 (2) Å] and pyrazole rings [centroid–centroid seperation = 3.626 (2) Å], forming chains along [111]. The H atoms of the methyl group on the p-tolyl substituent were refined as disordered over two sets of sites in a 0.60 (4):0.40 (4) ratio.

Related literature

For applications of pyrazole derivatives, see: Wang et al. (2005[Wang, Y., Yang, Z.-Y. & Wang, B.-D. (2005). Transition Met. Chem. 7, 879-883.]); Vyas et al. (2011[Vyas, K. M., Jadeja, R. N., Gupta, V. K. & Surati, K. R. (2011). J. Mol. Struct. 990, 110-120.]). For general background to Schiff-based pyrazole derivatives, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]). For related structures, see: Sharma et al. (2012[Sharma, N., Vyas, K. M., Jadeja, R. N., Kant, R. & Gupta, V. K. (2012). Acta Cryst. E68, o3036.]); Abdel-Aziz et al. (2012[Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095-o1096.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3O

  • Mr = 319.40

  • Triclinic, [P \overline 1]

  • a = 8.8092 (3) Å

  • b = 9.8629 (4) Å

  • c = 10.9278 (4) Å

  • α = 105.633 (4)°

  • β = 99.971 (3)°

  • γ = 104.961 (3)°

  • V = 852.75 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.792, Tmax = 1.000

  • 23723 measured reflections

  • 3341 independent reflections

  • 2067 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.130

  • S = 1.01

  • 3341 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N19—H19⋯O5 0.92 (3) 1.82 (2) 2.656 (2) 151 (2)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Over the past thirty years, extensive chemistry has surrounded the use of Schiff base ligands in inorganic chemistry. Schiff bases of pyrazolone have been playing an important part in the development of coordination chemistry (Kahwa et al., 1986). Consequently, a large number of these species have been reported to be superior reagents in biological, pharmacological, clinical and analytical applications (Wang et al., 2005). As part of an investigation of their crystal structures, which will provide useful information for the coordination properties of Schiff bases functioning as ligands, we report here the synthesis and molecular structure of the title compound. It was prepared as part of our on-going studies of azo dyes with possible medical applications (Vyas et al., 2011). The bond distances in the title compound are comparable to the closely related structures (Abdel-Aziz et al., 2012; Sharma et al., 2012). The central pyrazole (N1/N2/C3/C4/C5) ring makes dihedral angles of 4.75 (9)° and 49.11 (9)°, respectively, with the phenyl (C6-C11) and methyl-substituted benzene (C12-C17) rings. The dihedral angle between the phenyl and benzene rings is 51.76 (8)°. The amino group and the carbonyl oxygen atom are involved in an intramolecular N—H···O hydrogen bond. In the crystal, π···π interactions are observed between the benzene rings [centroid–centroid seperation = 3.892 (2) Å, interplanar spacing = 3.474 Å, centriod shift = 1.75 Å, symmetry code: -x,-y,-z] and pyrazole rings [centroid–centroid seperation = 3.626 (2) Å, interplanar spacing = 3.490 Å, centriod shift = 0.98 Å, symmetry code: 1 - x,1 - y,1 - z] (see Fig. 2).

Related literature top

For applications of pyrazole derivatives, see: Wang et al. (2005); Vyas et al. (2011). For general background to Schiff-based pyrazole derivatives, see: Kahwa et al. (1986). For related structures, see: Sharma et al. (2012); Abdel-Aziz et al. (2012).

Experimental top

An equimolar (10 mmol) ethanolic solution (50 ml) of 3-methyl-1-phenyl-4-propionyl-1H-pyrazol-5(4H)-one and p-toluidine was refluxed for 6 h in round bottom flask, whereupon a microcrystalline yellow precipitate appeared. The product was then isolated and recrystallized from ethanol, and then dried in vacuum to give the title compound in 80% yield. Light Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution of the title compound.

Refinement top

Atom H19 attached to N19 was located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and were refined as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C), except for the methyl groups where Uiso(H) = 1.5Ueq(C). The H atoms of the methyl group (C18) on the p-tolyl substituent were refined as disordered over two sets of sites in a ratio of 0.60 (4):0.40 (4).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. The probabilty ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the a axis.
(Z)-3-methyl-4-[1-(4-methylanilino)propylidene]-1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C20H21N3OZ = 2
Mr = 319.40F(000) = 340
Triclinic, P1Dx = 1.244 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8092 (3) ÅCell parameters from 10378 reflections
b = 9.8629 (4) Åθ = 3.5–29.1°
c = 10.9278 (4) ŵ = 0.08 mm1
α = 105.633 (4)°T = 293 K
β = 99.971 (3)°Block, yellow
γ = 104.961 (3)°0.30 × 0.20 × 0.20 mm
V = 852.75 (5) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3341 independent reflections
Radiation source: fine-focus sealed tube2067 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.792, Tmax = 1.000l = 1313
23723 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.3811P]
where P = (Fo2 + 2Fc2)/3
3341 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C20H21N3Oγ = 104.961 (3)°
Mr = 319.40V = 852.75 (5) Å3
Triclinic, P1Z = 2
a = 8.8092 (3) ÅMo Kα radiation
b = 9.8629 (4) ŵ = 0.08 mm1
c = 10.9278 (4) ÅT = 293 K
α = 105.633 (4)°0.30 × 0.20 × 0.20 mm
β = 99.971 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3341 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2067 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 1.000Rint = 0.066
23723 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
3341 reflectionsΔρmin = 0.17 e Å3
225 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.6306 (2)0.5996 (2)0.37478 (17)0.0405 (4)
N20.4810 (2)0.6219 (2)0.33572 (19)0.0461 (5)
C30.4497 (3)0.6918 (2)0.4430 (2)0.0432 (5)
C40.5759 (3)0.7196 (2)0.5581 (2)0.0419 (5)
C50.6914 (2)0.6541 (2)0.5090 (2)0.0396 (5)
O50.82042 (18)0.64696 (18)0.57192 (14)0.0524 (4)
C60.6921 (2)0.5216 (2)0.2780 (2)0.0382 (5)
C70.6007 (3)0.4624 (2)0.1476 (2)0.0458 (6)
H70.49890.47330.12500.055*
C80.6609 (3)0.3874 (3)0.0520 (2)0.0542 (7)
H80.59890.34790.03510.065*
C90.8116 (3)0.3703 (3)0.0832 (2)0.0537 (6)
H90.85240.32100.01800.064*
C100.9002 (3)0.4274 (3)0.2122 (2)0.0540 (6)
H101.00130.41490.23430.065*
C110.8431 (3)0.5029 (2)0.3102 (2)0.0460 (6)
H110.90530.54100.39710.055*
C120.7747 (3)0.8304 (2)0.9149 (2)0.0423 (5)
C130.8209 (3)0.7326 (3)0.9708 (2)0.0456 (6)
H130.81390.63880.91760.055*
C140.8777 (3)0.7740 (3)1.1057 (2)0.0510 (6)
H140.90850.70721.14240.061*
C150.8898 (3)0.9121 (3)1.1875 (2)0.0517 (6)
C160.8441 (3)1.0085 (3)1.1292 (2)0.0558 (7)
H160.85161.10251.18230.067*
C170.7877 (3)0.9697 (3)0.9947 (2)0.0517 (6)
H170.75851.03700.95800.062*
C180.9500 (4)0.9557 (3)1.3343 (3)0.0825 (9)
H18A0.96621.05951.37390.124*0.60 (4)
H18B1.05130.93681.35580.124*0.60 (4)
H18C0.87120.89851.36710.124*0.60 (4)
H18D0.95960.87031.35730.124*0.40 (4)
H18E0.87450.99311.37540.124*0.40 (4)
H18F1.05461.03141.36410.124*0.40 (4)
N190.7247 (2)0.7827 (2)0.77489 (19)0.0468 (5)
C200.5957 (3)0.7862 (2)0.6926 (2)0.0419 (5)
C210.4839 (3)0.8636 (3)0.7452 (2)0.0489 (6)
H21A0.49430.87020.83660.059*
H21B0.37240.80560.69630.059*
C220.5207 (3)1.0205 (3)0.7353 (3)0.0670 (8)
H22A0.45151.06880.77550.101*
H22B0.50101.01390.64440.101*
H22C0.63251.07680.77980.101*
C230.2922 (3)0.7244 (3)0.4309 (3)0.0591 (7)
H23A0.23740.69640.33960.089*
H23B0.31320.82880.47280.089*
H23C0.22480.66900.47280.089*
H190.778 (3)0.728 (3)0.727 (2)0.063 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0335 (10)0.0496 (11)0.0386 (11)0.0157 (8)0.0051 (8)0.0155 (9)
N20.0348 (10)0.0554 (12)0.0490 (12)0.0162 (9)0.0063 (9)0.0198 (10)
C30.0379 (12)0.0441 (13)0.0485 (14)0.0111 (10)0.0103 (11)0.0193 (11)
C40.0404 (12)0.0436 (13)0.0448 (14)0.0127 (10)0.0131 (10)0.0190 (10)
C50.0363 (12)0.0430 (13)0.0412 (13)0.0120 (10)0.0091 (10)0.0180 (10)
O50.0453 (10)0.0708 (11)0.0432 (9)0.0296 (8)0.0055 (7)0.0156 (8)
C60.0367 (11)0.0329 (11)0.0433 (13)0.0085 (9)0.0075 (10)0.0142 (10)
C70.0403 (13)0.0467 (13)0.0463 (14)0.0138 (10)0.0027 (11)0.0146 (11)
C80.0627 (16)0.0476 (14)0.0434 (14)0.0187 (12)0.0019 (12)0.0076 (11)
C90.0622 (16)0.0475 (14)0.0500 (16)0.0258 (12)0.0136 (13)0.0070 (12)
C100.0505 (14)0.0585 (15)0.0548 (16)0.0282 (12)0.0103 (12)0.0134 (12)
C110.0427 (13)0.0518 (14)0.0425 (14)0.0176 (11)0.0064 (11)0.0149 (11)
C120.0387 (12)0.0490 (14)0.0401 (13)0.0144 (10)0.0150 (10)0.0130 (11)
C130.0434 (13)0.0465 (13)0.0471 (14)0.0162 (11)0.0142 (11)0.0123 (11)
C140.0532 (15)0.0548 (15)0.0489 (15)0.0166 (12)0.0130 (12)0.0241 (12)
C150.0512 (14)0.0589 (16)0.0414 (14)0.0097 (12)0.0159 (11)0.0163 (12)
C160.0648 (16)0.0505 (15)0.0477 (15)0.0176 (13)0.0186 (13)0.0075 (12)
C170.0596 (15)0.0498 (14)0.0535 (16)0.0228 (12)0.0185 (12)0.0218 (12)
C180.104 (3)0.086 (2)0.0468 (17)0.0230 (19)0.0128 (16)0.0160 (15)
N190.0469 (12)0.0575 (13)0.0388 (12)0.0236 (10)0.0124 (9)0.0130 (9)
C200.0371 (12)0.0396 (12)0.0506 (14)0.0083 (10)0.0123 (10)0.0209 (11)
C210.0458 (14)0.0519 (14)0.0556 (15)0.0194 (11)0.0208 (11)0.0201 (12)
C220.0748 (19)0.0550 (16)0.081 (2)0.0296 (14)0.0248 (16)0.0261 (14)
C230.0425 (14)0.0720 (17)0.0658 (17)0.0246 (13)0.0106 (12)0.0236 (14)
Geometric parameters (Å, º) top
N1—C51.372 (3)C14—C151.379 (3)
N1—N21.404 (2)C14—H140.9300
N1—C61.407 (3)C15—C161.381 (3)
N2—C31.304 (3)C15—C181.502 (3)
C3—C41.437 (3)C16—C171.379 (3)
C3—C231.496 (3)C16—H160.9300
C4—C201.398 (3)C17—H170.9300
C4—C51.442 (3)C18—H18A0.9600
C5—O51.252 (2)C18—H18B0.9600
C6—C111.388 (3)C18—H18C0.9600
C6—C71.389 (3)C18—H18D0.9600
C7—C81.378 (3)C18—H18E0.9600
C7—H70.9300C18—H18F0.9600
C8—C91.377 (3)N19—C201.335 (3)
C8—H80.9300N19—H190.92 (3)
C9—C101.371 (3)C20—C211.494 (3)
C9—H90.9300C21—C221.534 (3)
C10—C111.380 (3)C21—H21A0.9700
C10—H100.9300C21—H21B0.9700
C11—H110.9300C22—H22A0.9600
C12—C171.377 (3)C22—H22B0.9600
C12—C131.380 (3)C22—H22C0.9600
C12—N191.425 (3)C23—H23A0.9600
C13—C141.380 (3)C23—H23B0.9600
C13—H130.9300C23—H23C0.9600
C5—N1—N2111.70 (17)C12—C17—H17120.2
C5—N1—C6129.42 (17)C16—C17—H17120.2
N2—N1—C6118.78 (17)C15—C18—H18A109.5
C3—N2—N1106.56 (17)C15—C18—H18B109.5
N2—C3—C4111.68 (19)H18A—C18—H18B109.5
N2—C3—C23118.1 (2)C15—C18—H18C109.5
C4—C3—C23130.2 (2)H18A—C18—H18C109.5
C20—C4—C3133.0 (2)H18B—C18—H18C109.5
C20—C4—C5122.02 (19)C15—C18—H18D109.5
C3—C4—C5104.92 (19)H18A—C18—H18D141.1
O5—C5—N1125.9 (2)H18B—C18—H18D56.3
O5—C5—C4129.0 (2)H18C—C18—H18D56.3
N1—C5—C4105.10 (17)C15—C18—H18E109.5
C11—C6—C7119.2 (2)H18A—C18—H18E56.3
C11—C6—N1121.19 (19)H18B—C18—H18E141.1
C7—C6—N1119.60 (19)H18C—C18—H18E56.3
C8—C7—C6120.0 (2)H18D—C18—H18E109.5
C8—C7—H7120.0C15—C18—H18F109.5
C6—C7—H7120.0H18A—C18—H18F56.3
C9—C8—C7121.0 (2)H18B—C18—H18F56.3
C9—C8—H8119.5H18C—C18—H18F141.1
C7—C8—H8119.5H18D—C18—H18F109.5
C10—C9—C8118.7 (2)H18E—C18—H18F109.5
C10—C9—H9120.7C20—N19—C12131.3 (2)
C8—C9—H9120.7C20—N19—H19108.9 (15)
C9—C10—C11121.6 (2)C12—N19—H19119.2 (15)
C9—C10—H10119.2N19—C20—C4116.9 (2)
C11—C10—H10119.2N19—C20—C21120.1 (2)
C10—C11—C6119.5 (2)C4—C20—C21122.9 (2)
C10—C11—H11120.3C20—C21—C22112.1 (2)
C6—C11—H11120.3C20—C21—H21A109.2
C17—C12—C13119.5 (2)C22—C21—H21A109.2
C17—C12—N19123.6 (2)C20—C21—H21B109.2
C13—C12—N19116.8 (2)C22—C21—H21B109.2
C14—C13—C12119.9 (2)H21A—C21—H21B107.9
C14—C13—H13120.0C21—C22—H22A109.5
C12—C13—H13120.0C21—C22—H22B109.5
C15—C14—C13121.6 (2)H22A—C22—H22B109.5
C15—C14—H14119.2C21—C22—H22C109.5
C13—C14—H14119.2H22A—C22—H22C109.5
C14—C15—C16117.5 (2)H22B—C22—H22C109.5
C14—C15—C18121.2 (2)C3—C23—H23A109.5
C16—C15—C18121.4 (2)C3—C23—H23B109.5
C17—C16—C15122.0 (2)H23A—C23—H23B109.5
C17—C16—H16119.0C3—C23—H23C109.5
C15—C16—H16119.0H23A—C23—H23C109.5
C12—C17—C16119.6 (2)H23B—C23—H23C109.5
C5—N1—N2—C31.3 (2)C8—C9—C10—C111.0 (4)
C6—N1—N2—C3178.00 (18)C9—C10—C11—C60.2 (4)
N1—N2—C3—C40.1 (2)C7—C6—C11—C100.6 (3)
N1—N2—C3—C23177.35 (19)N1—C6—C11—C10179.1 (2)
N2—C3—C4—C20178.3 (2)C17—C12—C13—C140.8 (3)
C23—C3—C4—C201.3 (4)N19—C12—C13—C14177.1 (2)
N2—C3—C4—C51.3 (2)C12—C13—C14—C150.0 (4)
C23—C3—C4—C5175.7 (2)C13—C14—C15—C160.5 (4)
N2—N1—C5—O5178.3 (2)C13—C14—C15—C18179.4 (2)
C6—N1—C5—O52.0 (4)C14—C15—C16—C170.3 (4)
N2—N1—C5—C42.0 (2)C18—C15—C16—C17179.6 (2)
C6—N1—C5—C4178.31 (19)C13—C12—C17—C161.1 (3)
C20—C4—C5—O51.0 (3)N19—C12—C17—C16177.1 (2)
C3—C4—C5—O5178.4 (2)C15—C16—C17—C120.5 (4)
C20—C4—C5—N1179.35 (19)C17—C12—N19—C2051.1 (4)
C3—C4—C5—N11.9 (2)C13—C12—N19—C20132.8 (3)
C5—N1—C6—C117.2 (3)C12—N19—C20—C4175.5 (2)
N2—N1—C6—C11176.70 (19)C12—N19—C20—C216.7 (4)
C5—N1—C6—C7173.0 (2)C3—C4—C20—N19174.6 (2)
N2—N1—C6—C73.1 (3)C5—C4—C20—N192.0 (3)
C11—C6—C7—C80.6 (3)C3—C4—C20—C217.6 (4)
N1—C6—C7—C8179.2 (2)C5—C4—C20—C21175.8 (2)
C6—C7—C8—C90.2 (4)N19—C20—C21—C2298.8 (3)
C7—C8—C9—C101.0 (4)C4—C20—C21—C2278.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19···O50.92 (3)1.82 (2)2.656 (2)151 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19···O50.92 (3)1.82 (2)2.656 (2)151 (2)
 

Footnotes

Presently posted: Govt. Degree College, Kathua, J & K, India.

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003. VKG is thankful to the University of Jammu, Jammu, India, for financial support.

References

First citationAbdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095–o1096.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSharma, N., Vyas, K. M., Jadeja, R. N., Kant, R. & Gupta, V. K. (2012). Acta Cryst. E68, o3036.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVyas, K. M., Jadeja, R. N., Gupta, V. K. & Surati, K. R. (2011). J. Mol. Struct. 990, 110–120.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y., Yang, Z.-Y. & Wang, B.-D. (2005). Transition Met. Chem. 7, 879–883.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds