metal-organic compounds
Diaquabis(pyridine-2-carboxylato-κ2N,O)zinc dimethylformamide hemisolvate
aInstitute of Applied Physics, Academy of Sciences of R. Moldova, Academy str. 5, MD2028 Chisinau, Republic of Moldova, and bInstitute of Chemistry, Academy of Sciences of R. Moldova, Academy str. 3, MD2028 Chisinau, Republic of Moldova
*Correspondence e-mail: croitor.lilia@gmail.com
In the title compound, [Zn(C6H4NO2)2(H2O)2]·0.5C3H7NO, the ZnII ion is coordinated in a distorted octahedral N2O4 environment by two N,O-chelating pyridine-2-carboxylate ligands and two cis water molecules. The chelating pyridine-2-carboxylate ligands create two five-membered Zn/N/C/C/O rings, which form a dihedral angle of 86.4 (2)°. In the crystal, O—H⋯O hydrogen bonds link the complex molecules into a two-dimensional network parallel to (100). The dimethylformamide solvent molecule is disordered about a twofold rotation axis.
Related literature
For background to polydentate ligands, see: Udvardy et al. (2013); Groni et al. (2008); Golenya et al. (2011); Ma et al. (2009). For related structures, see: Chen & Hu (2011); Li et al. (2008); Lumme et al. (1969); Takenaka et al. (1970); Uggla et al. (1969). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813018941/lh5630sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813018941/lh5630Isup2.hkl
To Zn(BF4)2(240 mg, 1 mmol) dissolved in 15 ml of water was added Hpic(246 mg, 2 mmol) dissolved in 15 ml of mixture methanol/dimethylformamide 1:1 (v/v). The reaction mixture was refluxed for ~ 15 min, and upon cooling to room temperature prism-shape colorless crystals precipitated (yield: 52%).
The C-bound hydrogen atoms were placed in calculated positions with C—H = 0.93Å and were treated using a riding-model approximation with Uiso(H)=1.2Ueq(C) or C—H = 0.96Å and Uiso(H)=1.5Ueq(C) for methyl H atoms. Water O—H hydrogen atoms were located from a difference Fourier map at intermediate stage of the
and the O—H and H···H distances were restrained to be 0.86 (1) and 1.46 (1) Å. These hydrogen atoms were refined with isotropic displacement parameter Uiso(H)=1.5Ueq(O). The dimethylformamide molecule is disordered about crystallographic twofold rotation axis.Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of [Zn(C6H4NO2)2(H2O)2]. Displacement ellipsoids are shown at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. | |
Fig. 2. View along the crystallographic c axis. Solvent molecules are not shown. Hydrogen bonds are shown as dashed lines. | |
Fig. 3. Part of the crystal structure showing incorporation of DMF molecules in the crystal. The view is along the crystallographic b axis. Hydrogen bonds are shown as dashed lines. |
[Zn(C6H4NO2)2(H2O)2]·0.5C3H7NO | F(000) = 1568 |
Mr = 382.16 | Dx = 1.655 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 957 reflections |
a = 25.777 (3) Å | θ = 3.0–28.9° |
b = 8.6754 (4) Å | µ = 1.64 mm−1 |
c = 16.7916 (17) Å | T = 293 K |
β = 125.228 (15)° | Prism, colourless |
V = 3067.4 (5) Å3 | 0.18 × 0.12 × 0.02 mm |
Z = 8 |
Agilent Xcalibur Eos diffractometer | 2844 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1772 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.055 |
Detector resolution: 15.9914 pixels mm-1 | θmax = 25.5°, θmin = 3.0° |
ω scans | h = −31→25 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −10→5 |
Tmin = 0.906, Tmax = 1.000 | l = −9→20 |
4865 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.025P)2] where P = (Fo2 + 2Fc2)/3 |
2844 reflections | (Δ/σ)max = 0.001 |
244 parameters | Δρmax = 0.47 e Å−3 |
162 restraints | Δρmin = −0.44 e Å−3 |
[Zn(C6H4NO2)2(H2O)2]·0.5C3H7NO | V = 3067.4 (5) Å3 |
Mr = 382.16 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 25.777 (3) Å | µ = 1.64 mm−1 |
b = 8.6754 (4) Å | T = 293 K |
c = 16.7916 (17) Å | 0.18 × 0.12 × 0.02 mm |
β = 125.228 (15)° |
Agilent Xcalibur Eos diffractometer | 2844 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1772 reflections with I > 2σ(I) |
Tmin = 0.906, Tmax = 1.000 | Rint = 0.055 |
4865 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 162 restraints |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.47 e Å−3 |
2844 reflections | Δρmin = −0.44 e Å−3 |
244 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.18837 (3) | 0.40000 (7) | 0.78138 (4) | 0.0278 (2) | |
N1 | 0.18028 (19) | 0.6106 (5) | 0.8391 (3) | 0.0273 (11) | |
N2 | 0.08845 (19) | 0.3806 (5) | 0.6684 (3) | 0.0253 (10) | |
O1 | 0.17673 (17) | 0.3193 (4) | 0.8877 (2) | 0.0338 (10) | |
O2 | 0.17327 (17) | 0.3959 (4) | 1.0115 (2) | 0.0367 (10) | |
O3 | 0.18125 (17) | 0.1902 (4) | 0.7129 (3) | 0.0335 (10) | |
O4 | 0.11570 (19) | 0.0343 (5) | 0.5895 (3) | 0.0555 (13) | |
C1 | 0.1798 (3) | 0.7558 (6) | 0.8114 (4) | 0.0396 (16) | |
H1 | 0.1837 | 0.7722 | 0.7603 | 0.048* | |
C2 | 0.1738 (3) | 0.8813 (6) | 0.8553 (4) | 0.0433 (16) | |
H2 | 0.1739 | 0.9808 | 0.8347 | 0.052* | |
C3 | 0.1677 (3) | 0.8573 (7) | 0.9300 (4) | 0.0441 (17) | |
H3 | 0.1633 | 0.9405 | 0.9606 | 0.053* | |
C4 | 0.1681 (2) | 0.7106 (6) | 0.9593 (4) | 0.0336 (14) | |
H4 | 0.1646 | 0.6931 | 1.0107 | 0.040* | |
C5 | 0.1738 (2) | 0.5873 (6) | 0.9120 (3) | 0.0256 (13) | |
C6 | 0.1751 (2) | 0.4195 (6) | 0.9396 (4) | 0.0279 (13) | |
C7 | 0.0422 (3) | 0.4729 (6) | 0.6531 (4) | 0.0364 (15) | |
H7 | 0.0529 | 0.5598 | 0.6921 | 0.044* | |
C8 | −0.0215 (3) | 0.4441 (7) | 0.5811 (4) | 0.0461 (17) | |
H8 | −0.0529 | 0.5086 | 0.5735 | 0.055* | |
C9 | −0.0372 (3) | 0.3196 (7) | 0.5217 (4) | 0.0428 (16) | |
H9 | −0.0794 | 0.2990 | 0.4717 | 0.051* | |
C10 | 0.0109 (3) | 0.2248 (7) | 0.5376 (4) | 0.0376 (15) | |
H10 | 0.0014 | 0.1393 | 0.4980 | 0.045* | |
C11 | 0.0729 (3) | 0.2570 (6) | 0.6122 (4) | 0.0268 (13) | |
C12 | 0.1270 (3) | 0.1516 (6) | 0.6384 (4) | 0.0326 (14) | |
O1W | 0.28549 (18) | 0.3692 (5) | 0.8823 (3) | 0.0389 (10) | |
H1W1 | 0.3148 (18) | 0.425 (5) | 0.888 (4) | 0.05 (2)* | |
H2W1 | 0.298 (2) | 0.296 (4) | 0.924 (3) | 0.042 (19)* | |
O2W | 0.2112 (2) | 0.5202 (5) | 0.6968 (3) | 0.0413 (11) | |
H1W2 | 0.199 (2) | 0.512 (5) | 0.6369 (16) | 0.031 (16)* | |
H2W2 | 0.2454 (17) | 0.575 (6) | 0.732 (3) | 0.05 (2)* | |
O1X | 0.9935 (9) | 0.7274 (12) | 0.7077 (8) | 0.142 (8) | 0.50 |
N1X | 0.9961 (14) | 0.9688 (8) | 0.7567 (15) | 0.065 (4) | 0.50 |
C1X | 0.9916 (9) | 0.8645 (13) | 0.6968 (9) | 0.093 (8) | 0.50 |
H1X | 0.9865 | 0.8999 | 0.6404 | 0.112* | 0.50 |
C2X | 1.0023 (11) | 0.9255 (17) | 0.8428 (12) | 0.090 (7) | 0.50 |
H2XA | 0.9611 | 0.9229 | 0.8307 | 0.135* | 0.50 |
H2XB | 1.0286 | 0.9990 | 0.8933 | 0.135* | 0.50 |
H2XC | 1.0214 | 0.8252 | 0.8629 | 0.135* | 0.50 |
C3X | 0.996 (3) | 1.1310 (9) | 0.739 (3) | 0.194 (10) | 0.50 |
H3XA | 1.0385 | 1.1673 | 0.7715 | 0.292* | 0.50 |
H3XB | 0.9750 | 1.1854 | 0.7631 | 0.292* | 0.50 |
H3XC | 0.9731 | 1.1486 | 0.6700 | 0.292* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0328 (4) | 0.0260 (4) | 0.0265 (4) | −0.0006 (3) | 0.0182 (3) | −0.0013 (3) |
N1 | 0.034 (3) | 0.026 (2) | 0.026 (2) | 0.001 (2) | 0.020 (2) | 0.002 (2) |
N2 | 0.024 (3) | 0.024 (3) | 0.028 (3) | 0.001 (2) | 0.015 (2) | 0.000 (2) |
O1 | 0.045 (3) | 0.027 (2) | 0.032 (2) | −0.002 (2) | 0.024 (2) | −0.0019 (18) |
O2 | 0.046 (3) | 0.041 (2) | 0.032 (2) | 0.005 (2) | 0.027 (2) | 0.0093 (19) |
O3 | 0.024 (2) | 0.033 (2) | 0.034 (2) | 0.0005 (19) | 0.011 (2) | −0.0076 (19) |
O4 | 0.039 (3) | 0.047 (3) | 0.065 (3) | 0.000 (2) | 0.022 (3) | −0.030 (2) |
C1 | 0.057 (5) | 0.029 (3) | 0.038 (4) | −0.006 (3) | 0.030 (4) | 0.004 (3) |
C2 | 0.053 (4) | 0.022 (3) | 0.053 (4) | −0.008 (3) | 0.030 (4) | −0.006 (3) |
C3 | 0.053 (5) | 0.032 (4) | 0.049 (4) | 0.003 (3) | 0.030 (4) | −0.011 (3) |
C4 | 0.039 (4) | 0.037 (4) | 0.031 (3) | −0.002 (3) | 0.024 (3) | −0.003 (3) |
C5 | 0.019 (3) | 0.029 (3) | 0.020 (3) | −0.001 (3) | 0.006 (3) | −0.006 (3) |
C6 | 0.021 (3) | 0.030 (3) | 0.027 (3) | 0.000 (3) | 0.010 (3) | 0.005 (3) |
C7 | 0.039 (4) | 0.028 (3) | 0.041 (4) | 0.008 (3) | 0.023 (3) | −0.001 (3) |
C8 | 0.036 (4) | 0.045 (4) | 0.062 (5) | 0.019 (3) | 0.031 (4) | 0.013 (3) |
C9 | 0.026 (4) | 0.050 (4) | 0.046 (4) | 0.001 (3) | 0.017 (3) | 0.001 (4) |
C10 | 0.029 (4) | 0.036 (4) | 0.038 (4) | −0.005 (3) | 0.013 (3) | −0.010 (3) |
C11 | 0.032 (3) | 0.024 (3) | 0.031 (3) | −0.002 (3) | 0.021 (3) | 0.001 (3) |
C12 | 0.037 (4) | 0.025 (3) | 0.040 (4) | 0.005 (3) | 0.025 (3) | 0.003 (3) |
O1W | 0.030 (3) | 0.032 (3) | 0.041 (3) | −0.005 (2) | 0.013 (2) | 0.012 (2) |
O2W | 0.049 (3) | 0.049 (3) | 0.026 (2) | −0.020 (2) | 0.022 (2) | −0.005 (2) |
O1X | 0.117 (11) | 0.095 (9) | 0.19 (2) | 0.029 (11) | 0.074 (17) | −0.078 (9) |
N1X | 0.123 (11) | 0.043 (6) | 0.074 (8) | 0.023 (15) | 0.082 (8) | 0.005 (13) |
C1X | 0.072 (14) | 0.13 (2) | 0.071 (16) | 0.034 (17) | 0.040 (14) | −0.035 (15) |
C2X | 0.132 (18) | 0.084 (15) | 0.072 (14) | 0.015 (12) | 0.069 (14) | 0.015 (10) |
C3X | 0.45 (3) | 0.055 (9) | 0.26 (2) | 0.02 (5) | 0.31 (3) | 0.03 (3) |
Zn1—O1W | 2.078 (4) | C7—H7 | 0.9300 |
Zn1—O1 | 2.094 (3) | C8—C9 | 1.363 (7) |
Zn1—O2W | 2.101 (4) | C8—H8 | 0.9300 |
Zn1—O3 | 2.104 (3) | C9—C10 | 1.379 (7) |
Zn1—N1 | 2.134 (4) | C9—H9 | 0.9300 |
Zn1—N2 | 2.150 (4) | C10—C11 | 1.375 (7) |
N1—C1 | 1.341 (6) | C10—H10 | 0.9300 |
N1—C5 | 1.343 (6) | C11—C12 | 1.506 (7) |
N2—C11 | 1.329 (6) | O1W—H1W1 | 0.857 (18) |
N2—C7 | 1.333 (6) | O1W—H2W1 | 0.857 (18) |
O1—C6 | 1.249 (6) | O2W—H1W2 | 0.863 (18) |
O2—C6 | 1.251 (6) | O2W—H2W2 | 0.866 (19) |
O3—C12 | 1.271 (6) | O1X—C1X | 1.1999 |
O4—C12 | 1.233 (6) | N1X—C1X | 1.3069 |
C1—C2 | 1.373 (7) | N1X—C2X | 1.4118 |
C1—H1 | 0.9300 | N1X—C3X | 1.4373 |
C2—C3 | 1.368 (7) | C1X—H1X | 0.9300 |
C2—H2 | 0.9300 | C2X—H2XA | 0.9600 |
C3—C4 | 1.362 (7) | C2X—H2XB | 0.9600 |
C3—H3 | 0.9300 | C2X—H2XC | 0.9600 |
C4—C5 | 1.390 (7) | C3X—H3XA | 0.9600 |
C4—H4 | 0.9300 | C3X—H3XB | 0.9600 |
C5—C6 | 1.523 (7) | C3X—H3XC | 0.9600 |
C7—C8 | 1.389 (7) | ||
O1W—Zn1—O1 | 87.68 (16) | N1—C5—C6 | 115.4 (4) |
O1W—Zn1—O2W | 86.53 (18) | C4—C5—C6 | 123.6 (5) |
O1—Zn1—O2W | 167.39 (15) | O1—C6—O2 | 126.5 (5) |
O1W—Zn1—O3 | 91.07 (15) | O1—C6—C5 | 117.2 (5) |
O1—Zn1—O3 | 99.57 (14) | O2—C6—C5 | 116.3 (5) |
O2W—Zn1—O3 | 91.74 (16) | N2—C7—C8 | 122.5 (5) |
O1W—Zn1—N1 | 97.31 (16) | N2—C7—H7 | 118.8 |
O1—Zn1—N1 | 78.44 (15) | C8—C7—H7 | 118.8 |
O2W—Zn1—N1 | 91.19 (17) | C9—C8—C7 | 118.9 (5) |
O3—Zn1—N1 | 171.28 (15) | C9—C8—H8 | 120.6 |
O1W—Zn1—N2 | 167.46 (16) | C7—C8—H8 | 120.6 |
O1—Zn1—N2 | 92.17 (15) | C8—C9—C10 | 118.4 (6) |
O2W—Zn1—N2 | 95.90 (16) | C8—C9—H9 | 120.8 |
O3—Zn1—N2 | 76.58 (15) | C10—C9—H9 | 120.8 |
N1—Zn1—N2 | 94.94 (16) | C11—C10—C9 | 119.9 (5) |
C1—N1—C5 | 118.5 (5) | C11—C10—H10 | 120.1 |
C1—N1—Zn1 | 129.1 (4) | C9—C10—H10 | 120.1 |
C5—N1—Zn1 | 112.4 (3) | N2—C11—C10 | 121.8 (5) |
C11—N2—C7 | 118.5 (5) | N2—C11—C12 | 115.7 (5) |
C11—N2—Zn1 | 114.0 (4) | C10—C11—C12 | 122.5 (5) |
C7—N2—Zn1 | 127.4 (4) | O4—C12—O3 | 125.2 (5) |
C6—O1—Zn1 | 116.2 (3) | O4—C12—C11 | 118.9 (5) |
C12—O3—Zn1 | 117.7 (3) | O3—C12—C11 | 115.9 (5) |
N1—C1—C2 | 122.7 (5) | Zn1—O1W—H1W1 | 126 (3) |
N1—C1—H1 | 118.7 | Zn1—O1W—H2W1 | 118 (3) |
C2—C1—H1 | 118.7 | H1W1—O1W—H2W1 | 116 (3) |
C3—C2—C1 | 118.7 (5) | Zn1—O2W—H1W2 | 133 (3) |
C3—C2—H2 | 120.6 | Zn1—O2W—H2W2 | 113 (3) |
C1—C2—H2 | 120.6 | H1W2—O2W—H2W2 | 113 (3) |
C4—C3—C2 | 119.5 (5) | C1X—N1X—C2X | 120.7 |
C4—C3—H3 | 120.3 | C1X—N1X—C3X | 122.1 |
C2—C3—H3 | 120.3 | C2X—N1X—C3X | 117.2 |
C3—C4—C5 | 119.7 (5) | O1X—C1X—N1X | 126.3 |
C3—C4—H4 | 120.2 | O1X—C1X—H1X | 116.9 |
C5—C4—H4 | 120.2 | N1X—C1X—H1X | 116.9 |
N1—C5—C4 | 121.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O4i | 0.86 (2) | 1.86 (2) | 2.715 (6) | 174 (5) |
O1W—H2W1···O2ii | 0.86 (2) | 1.89 (2) | 2.723 (5) | 163 (5) |
O2W—H1W2···O2iii | 0.86 (2) | 1.98 (3) | 2.768 (5) | 152 (4) |
O2W—H2W2···O3i | 0.87 (2) | 1.85 (2) | 2.704 (5) | 170 (4) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+1/2, −y+1/2, −z+2; (iii) x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C6H4NO2)2(H2O)2]·0.5C3H7NO |
Mr | 382.16 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 25.777 (3), 8.6754 (4), 16.7916 (17) |
β (°) | 125.228 (15) |
V (Å3) | 3067.4 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.64 |
Crystal size (mm) | 0.18 × 0.12 × 0.02 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.906, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4865, 2844, 1772 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.114, 1.00 |
No. of reflections | 2844 |
No. of parameters | 244 |
No. of restraints | 162 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.47, −0.44 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O4i | 0.857 (18) | 1.86 (2) | 2.715 (6) | 174 (5) |
O1W—H2W1···O2ii | 0.857 (18) | 1.89 (2) | 2.723 (5) | 163 (5) |
O2W—H1W2···O2iii | 0.863 (18) | 1.98 (3) | 2.768 (5) | 152 (4) |
O2W—H2W2···O3i | 0.866 (19) | 1.85 (2) | 2.704 (5) | 170 (4) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+1/2, −y+1/2, −z+2; (iii) x, −y+1, z−1/2. |
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Chen, W.-T. & Hu, L. (2011). Acta Chim. Slov. 58, 167–170. CAS PubMed Google Scholar
Golenya, I. A., Boyko, A. N., Kalibabchuk, V. A., Haukka, M. & Tomyn, S. V. (2011). Acta Cryst. E67, m1558–m1559. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groni, S., Dorlet, P., Blain, G., Bourcier, S., Guillot, R. & Anxolabehere-Mallart, E. (2008). Inorg. Chem. 47, 3166–3172. Web of Science CSD CrossRef PubMed CAS Google Scholar
Li, X.-B., Shang, R.-L. & Sun, B.-W. (2008). Acta Cryst. E64, m131. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lumme, P., Lundgren, G. & Mark, W. (1969). Acta Chem. Scand. 23, 3011–3022. CrossRef CAS Web of Science Google Scholar
Ma, K., Shi, Q., Hu, M., Cai, X. & Huang, S. (2009). Inorg. Chim. Acta, 362, 4926–4930. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takenaka, A., Utsumi, H., Ishihara, N., Furusaki, A. & Nitta, I. (1970). J. Chem. Soc. Jpn Pure Chem. 91, 921–928. CAS Google Scholar
Udvardy, A., Bényei, A. C., Juhász, P., Joó, F. & Kathó, Á. (2013). Polyhedron, 60, 1–9. Web of Science CSD CrossRef CAS Google Scholar
Uggla, R., Lundell, S. & Patrikka, J. (1969). Suom. Kemistil. B, 42, 270. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polydentate ligands such as pyridine-2-carboxylic acid (Hpic=picolinic acid) play important role in coordination chemistry and homogeneous catalysis. The combination of pyridyl and carboxyl groups in a single bridge-type ligand results in highly interconnected networks and gives limitless possibilities for increased network stability (Udvardy et al., 2013; Groni et al., 2008; Golenya et al. 2011). The COO- group and the nitrogen atom in Hpic have strong coordination abilities and multiple coordination modes (Ma et al., 2009). Herein, we report the crystal structure of the title compound.
The molecular structure of the title complex is shown in Fig. 1. The ZnII ion is coordinated in a distorted octahedral N2O4 environment by two pyridine N-atoms, two carboxylate O atoms and two O atoms of two cis-coordinated water molecules. Each of two coordinated pic residues results in the formation of a five-membered chelate ring. The dihedral angle between two chelate rings is 86.4 (2)°. In some similar pyridine-2-carboxylato Zn(II) complexes (Chen & Hu, 2011; Li et al., 2008; Lumme et al., 1969; Takenaka et al., 1970; Uggla et al., 1969) the two pic ligands lie in the equatorial plane, and the water molecules are in a trans-arrangement.
The crystal packing is directed by hydrogen bond interactions with the participation of water H-donor atoms and carboxylic group O atoms acting as acceptors. Complex molecules are combined into ladder-like tapes via alternation of two similar R22(8) (Bernstein et al., 1995) graph-set motifs (Table 1, Figs. 2 and 3). The overall hydrogen bond motif is a two-dimensional layer parallel to (100). The title compound is isotypic with [Mn(C6H4NO2)2(H2O)2].0.5C2H3N (Groni et al., 2008), where the dimethylformamide solvent in the title compound is substituted by the acetonitrile.