organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-N′-methyl-5-nitro­benzohydrazide

aCollege of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
*Correspondence e-mail: longfei.jin@yahoo.com

(Received 7 July 2013; accepted 17 July 2013; online 24 July 2013)

In the title compound, C8H9N3O4, there are two mol­ecules in the asymmetric unit, one of which is in the zwitterionic form. The zwitterion contains an intra­molecular N—H⋯O hydrogen bond and the other mol­ecule contains both an intra­molecular N—H⋯O and an intra­molecular O—H⋯O hydrogen bond. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules, formimg a two-dimensional network parallel to (10-1).

Related literature

For the biological activities of salicylhydrazide derivatives, see: Bagchi et al. (2004[Bagchi, M. C., Maiti, B. C. & Bose, S. (2004). J. Mol. Struct. (Theochem), 679, 179-186.]); Thompson et al. (2004[Thompson, S. A., Wheat, L., Brown, N. A., Wingrove, P. B., Pillai, G. V., Whiting, P. G., Adkins, C., Woodward, C. H., Smith, A. J., Simpson, P. B., Collins, I. & Wafford, K. A. (2004). Br. J. Pharmacol. 142, 97-106.]); Al-Mawsawi et al. (2007[Al-Mawsawi, L. Q., Dayam, R., Taheri, L., Witvrouw, M., Debyser, Z. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6472-6475.]). For metal complexes involving derivatives of the title compound, see: Jin et al. (2006a[Jin, L.-F., Xiao, F.-P., Cheng, G.-Z. & Ji, Z.-P. (2006a). Inorg. Chem. Commun. 9, 758-760.],b[Jin, L.-F., Xiao, F.-P., Cheng, G.-Z. & Ji, Z.-P. (2006b). J. Organomet. Chem. 691, 2909-2914.]). For related crystal structures, see: Liu et al. (2006[Liu, M.-L., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2006). Acta Cryst. E62, o1009-o1010.]); Luo et al. (2007[Luo, W., Meng, X.-G., Li, X., Cheng, G.-Z. & Ji, Z.-P. (2007). Acta Cryst. E63, m2482.]); Xu & Liu (2006[Xu, H.-M. & Liu, S.-X. (2006). Acta Cryst. E62, o3026-o3027.]); Zhang (2012[Zhang, X. (2012). Acta Cryst. E68, o2686.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N3O4

  • Mr = 211.18

  • Monoclinic, P 21 /n

  • a = 7.3818 (15) Å

  • b = 13.106 (3) Å

  • c = 18.719 (4) Å

  • β = 95.25 (3)°

  • V = 1803.4 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.26 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.987

  • 11293 measured reflections

  • 3536 independent reflections

  • 2356 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.142

  • S = 1.06

  • 3536 reflections

  • 291 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2 0.90 (2) 1.92 (2) 2.756 (3) 154 (3)
N1—H1⋯O1 0.90 (2) 1.78 (2) 2.550 (3) 141 (3)
N2—H2B⋯N5 1.02 (3) 1.84 (3) 2.858 (3) 174 (3)
O5—H5⋯O6 0.85 (2) 1.74 (2) 2.549 (3) 158 (4)
N5—H5A⋯O6 0.83 (2) 2.44 (3) 2.719 (3) 101 (2)
N5—H5A⋯O4i 0.83 (2) 2.46 (2) 3.162 (3) 143 (3)
N2—H2A⋯O1ii 0.94 (2) 2.08 (3) 2.762 (3) 128 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of salicylhydrazide exhibit prominent biological activites such as antimicrobial activity, inhibitor of receptor and enzyme inhibitor (Bagchi et al., 2004; Thompson et al., 2004; Al-Mawsawi et al., 2007). Several coordination sites exist in these compounds to lead to potential supramolecular structures. In our previous work, some anologs and their metal complexes were successfully sythesized and some latent functional studies were made (Jin et al., 2006a,b). As part of our ongoing studies, the preparation and X-ray structure determination of the title compound (I) was undertaken.

The asymmetric unit of (I) is shown in Fig. 1. There are two molecules in the asymmetric unit. One of the molecules is in the zwitterionic form. In the zwitterion N2 is protonated and O1 deprotonated. The bond lengths and angles in each molecule are unexceptional and agree with those reported for similar structures (Liu et al., 2006; Luo et al., 2007; Xu & Liu, 2006; Zhang, 2012). In each molecule the non-H atoms, with the exception of the methyl and nitro groups, lie in an approximate plane with r.m.s deviations of 0.073 and 0.104 Å. The zwitterion contains an intramolecular N—H···O hydrogen bond and the other molecule contains intramolecular O—H···O and N—H···O hydrogen bonds. In the crystal, N—H···O and N—H···N hydrogen bonds link the molecules formimg a two-dimensional network (see Fig. 2) parallel to (101).

Related literature top

For the biological activities of salicylhydrazide derivatives, see: Bagchi et al. (2004); Thompson et al. (2004); Al-Mawsawi et al. (2007). For metal complexes involving derivatives of the title compound, see: Jin et al. (2006a,b). For related crystal structures, see: Liu et al. (2006); Luo et al. (2007); Xu & Liu (2006); Zhang (2012).

Experimental top

The title compound was systhesized by refluxing a mixture of ethyl 5-nitro-salicylate (0.1 mol) and methylhydrazine (0.2 mol) for 14 h. To the resulting solution acetic acid was added and it was cooled to room temperature. The mixture was evaporated and washed with diethyl ether. Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation from a solution of (I) in methanol at room temperature.

Refinement top

H atoms bonded to C atoms were placed in calculated positions, with C—H distances of 0.93–0.96 Å. They were included in the refinement in the riding-model approximation, with isotropic displacement parameters set to 1.2Ueq of the carrier atom (1.5Ueq for CH3 H atoms). The amide and hydroxy H atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines
2-Hydroxy-N'-methyl-5-nitrobenzohydrazide top
Crystal data top
C8H9N3O4F(000) = 880
Mr = 211.18Dx = 1.556 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1664 reflections
a = 7.3818 (15) Åθ = 2.9–21.8°
b = 13.106 (3) ŵ = 0.13 mm1
c = 18.719 (4) ÅT = 293 K
β = 95.25 (3)°Block, yellow
V = 1803.4 (6) Å30.26 × 0.20 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
3536 independent reflections
Radiation source: fine-focus sealed tube2356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.968, Tmax = 0.987k = 1516
11293 measured reflectionsl = 2316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.5317P]
where P = (Fo2 + 2Fc2)/3
3536 reflections(Δ/σ)max = 0.026
291 parametersΔρmax = 0.22 e Å3
5 restraintsΔρmin = 0.18 e Å3
Crystal data top
C8H9N3O4V = 1803.4 (6) Å3
Mr = 211.18Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.3818 (15) ŵ = 0.13 mm1
b = 13.106 (3) ÅT = 293 K
c = 18.719 (4) Å0.26 × 0.20 × 0.10 mm
β = 95.25 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3536 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2356 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.987Rint = 0.044
11293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0585 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.22 e Å3
3536 reflectionsΔρmin = 0.18 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5851 (3)0.42908 (18)0.18014 (13)0.0339 (6)
C20.5537 (4)0.53339 (19)0.15979 (15)0.0422 (7)
C30.5864 (4)0.6078 (2)0.21338 (15)0.0472 (7)
H30.56080.67570.20210.057*
C40.6544 (4)0.5839 (2)0.28124 (15)0.0445 (7)
H40.67540.63470.31570.053*
C50.6921 (3)0.4822 (2)0.29859 (14)0.0377 (6)
C60.6547 (3)0.40610 (19)0.24911 (13)0.0358 (6)
H60.67660.33850.26220.043*
C70.5512 (3)0.34258 (18)0.12929 (13)0.0336 (6)
C80.6571 (4)0.2470 (2)0.00925 (16)0.0549 (8)
H8A0.73400.30000.02490.082*
H8B0.63340.19790.04710.082*
H8C0.71670.21390.03220.082*
C90.3376 (3)0.01241 (18)0.22768 (14)0.0341 (6)
C100.3287 (4)0.1136 (2)0.25337 (15)0.0427 (7)
C110.3917 (4)0.1365 (2)0.32380 (17)0.0559 (8)
H110.38730.20340.34000.067*
C120.4595 (4)0.0621 (2)0.36920 (17)0.0557 (8)
H120.50130.07780.41630.067*
C130.4657 (4)0.0376 (2)0.34444 (14)0.0421 (7)
C140.4053 (3)0.06248 (19)0.27498 (14)0.0382 (6)
H140.40990.12990.25970.046*
C150.2762 (3)0.00751 (19)0.15166 (14)0.0363 (6)
C160.0855 (4)0.1430 (2)0.03122 (17)0.0601 (9)
H16A0.01220.09040.04970.090*
H16B0.06300.14550.02010.090*
H16C0.05500.20760.05110.090*
N10.5069 (3)0.37013 (16)0.06155 (12)0.0432 (6)
H10.489 (4)0.4367 (15)0.0517 (16)0.072*
N20.4833 (3)0.29164 (17)0.00913 (12)0.0400 (5)
H2A0.420 (4)0.321 (2)0.0313 (12)0.072*
H2B0.409 (4)0.233 (2)0.0275 (16)0.072*
N30.7769 (3)0.45572 (19)0.36861 (12)0.0463 (6)
N40.3109 (3)0.09987 (16)0.12471 (12)0.0422 (6)
H4A0.393 (3)0.143 (2)0.1470 (15)0.072*
N50.2755 (3)0.12117 (16)0.05067 (12)0.0421 (6)
H5A0.306 (4)0.0673 (17)0.0315 (16)0.072*
N60.5389 (3)0.1169 (2)0.39330 (13)0.0570 (7)
O10.4975 (3)0.55896 (14)0.09395 (10)0.0593 (6)
O20.5657 (3)0.25254 (12)0.14945 (10)0.0452 (5)
O30.8350 (3)0.36913 (18)0.37959 (11)0.0684 (7)
O40.7919 (3)0.52224 (16)0.41560 (11)0.0664 (6)
O50.2604 (3)0.19058 (14)0.21215 (12)0.0598 (6)
H50.223 (5)0.159 (3)0.1736 (14)0.090*
O60.1955 (3)0.05861 (14)0.11305 (10)0.0507 (5)
O70.5987 (4)0.0933 (2)0.45398 (13)0.0933 (9)
O80.5409 (4)0.20419 (19)0.37205 (13)0.0902 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0403 (14)0.0276 (13)0.0339 (15)0.0005 (10)0.0036 (11)0.0025 (11)
C20.0498 (16)0.0315 (15)0.0446 (17)0.0026 (12)0.0010 (13)0.0023 (13)
C30.0621 (19)0.0282 (15)0.0507 (19)0.0000 (12)0.0016 (15)0.0019 (13)
C40.0556 (17)0.0333 (15)0.0443 (17)0.0073 (12)0.0033 (14)0.0107 (13)
C50.0383 (14)0.0418 (15)0.0327 (15)0.0069 (11)0.0009 (11)0.0009 (12)
C60.0388 (14)0.0310 (14)0.0373 (15)0.0015 (11)0.0013 (12)0.0036 (12)
C70.0423 (15)0.0271 (14)0.0309 (15)0.0015 (10)0.0013 (11)0.0042 (11)
C80.067 (2)0.0474 (17)0.0516 (19)0.0106 (15)0.0131 (16)0.0002 (15)
C90.0372 (14)0.0276 (13)0.0379 (15)0.0025 (10)0.0056 (11)0.0001 (12)
C100.0430 (15)0.0366 (15)0.0483 (18)0.0012 (12)0.0033 (13)0.0046 (13)
C110.064 (2)0.0409 (17)0.062 (2)0.0032 (14)0.0016 (16)0.0222 (16)
C120.0602 (19)0.060 (2)0.0470 (19)0.0040 (15)0.0020 (15)0.0199 (16)
C130.0446 (16)0.0467 (17)0.0349 (16)0.0002 (12)0.0030 (12)0.0007 (13)
C140.0461 (15)0.0346 (14)0.0341 (15)0.0024 (11)0.0046 (12)0.0029 (12)
C150.0430 (15)0.0285 (14)0.0374 (16)0.0007 (11)0.0030 (12)0.0033 (12)
C160.067 (2)0.057 (2)0.054 (2)0.0022 (16)0.0081 (16)0.0028 (16)
N10.0739 (16)0.0235 (11)0.0315 (13)0.0052 (11)0.0010 (11)0.0010 (10)
N20.0568 (15)0.0314 (12)0.0304 (13)0.0039 (10)0.0032 (11)0.0032 (10)
N30.0541 (15)0.0462 (15)0.0379 (15)0.0087 (12)0.0004 (11)0.0008 (12)
N40.0580 (15)0.0364 (13)0.0305 (13)0.0075 (10)0.0048 (11)0.0004 (10)
N50.0590 (15)0.0362 (13)0.0297 (13)0.0020 (11)0.0023 (11)0.0008 (10)
N60.0685 (17)0.0639 (19)0.0370 (16)0.0011 (14)0.0036 (13)0.0037 (14)
O10.1027 (17)0.0323 (10)0.0399 (12)0.0062 (10)0.0102 (11)0.0077 (9)
O20.0681 (13)0.0256 (10)0.0391 (11)0.0029 (8)0.0099 (9)0.0051 (8)
O30.0945 (17)0.0608 (15)0.0451 (13)0.0100 (13)0.0185 (12)0.0041 (11)
O40.0981 (17)0.0579 (14)0.0412 (13)0.0164 (12)0.0037 (12)0.0104 (11)
O50.0765 (15)0.0308 (11)0.0702 (16)0.0083 (10)0.0033 (12)0.0015 (11)
O60.0681 (13)0.0373 (11)0.0454 (12)0.0088 (9)0.0029 (10)0.0066 (9)
O70.131 (2)0.102 (2)0.0402 (14)0.0151 (17)0.0271 (14)0.0047 (14)
O80.155 (3)0.0508 (15)0.0583 (16)0.0083 (15)0.0239 (16)0.0097 (13)
Geometric parameters (Å, º) top
C1—C61.379 (3)C11—H110.9300
C1—C21.432 (3)C12—C131.389 (4)
C1—C71.487 (3)C12—H120.9300
C2—O11.308 (3)C13—C141.375 (4)
C2—C31.404 (4)C13—N61.455 (4)
C3—C41.359 (4)C14—H140.9300
C3—H30.9300C15—O61.245 (3)
C4—C51.394 (4)C15—N41.345 (3)
C4—H40.9300C16—N51.445 (4)
C5—C61.372 (3)C16—H16A0.9600
C5—N31.443 (3)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C7—O21.240 (3)N1—N21.421 (3)
C7—N11.330 (3)N1—H10.899 (17)
C8—N21.479 (3)N2—H2A0.937 (17)
C8—H8A0.9600N2—H2B1.02 (3)
C8—H8B0.9600N3—O31.224 (3)
C8—H8C0.9600N3—O41.236 (3)
C9—C141.384 (3)N4—N51.415 (3)
C9—C101.414 (3)N4—H4A0.903 (18)
C9—C151.477 (3)N5—H5A0.832 (17)
C10—O51.340 (3)N6—O81.212 (3)
C10—C111.390 (4)N6—O71.220 (3)
C11—C121.359 (4)O5—H50.854 (18)
C6—C1—C2119.7 (2)C13—C12—H12120.4
C6—C1—C7117.3 (2)C14—C13—C12121.4 (3)
C2—C1—C7123.0 (2)C14—C13—N6119.7 (2)
O1—C2—C3121.0 (2)C12—C13—N6118.9 (3)
O1—C2—C1121.7 (2)C13—C14—C9120.3 (2)
C3—C2—C1117.4 (2)C13—C14—H14119.9
C4—C3—C2122.2 (3)C9—C14—H14119.9
C4—C3—H3118.9O6—C15—N4120.4 (2)
C2—C3—H3118.9O6—C15—C9121.7 (2)
C3—C4—C5119.2 (2)N4—C15—C9117.9 (2)
C3—C4—H4120.4N5—C16—H16A109.5
C5—C4—H4120.4N5—C16—H16B109.5
C6—C5—C4121.0 (2)H16A—C16—H16B109.5
C6—C5—N3118.8 (2)N5—C16—H16C109.5
C4—C5—N3120.2 (2)H16A—C16—H16C109.5
C5—C6—C1120.5 (2)H16B—C16—H16C109.5
C5—C6—H6119.7C7—N1—N2117.7 (2)
C1—C6—H6119.7C7—N1—H1119 (2)
O2—C7—N1123.7 (2)N2—N1—H1124 (2)
O2—C7—C1121.7 (2)N1—N2—C8113.2 (2)
N1—C7—C1114.6 (2)N1—N2—H2A106.1 (19)
N2—C8—H8A109.5C8—N2—H2A110.8 (19)
N2—C8—H8B109.5N1—N2—H2B110.2 (17)
H8A—C8—H8B109.5C8—N2—H2B106.7 (17)
N2—C8—H8C109.5H2A—N2—H2B110 (3)
H8A—C8—H8C109.5O3—N3—O4121.8 (2)
H8B—C8—H8C109.5O3—N3—C5119.5 (2)
C14—C9—C10118.2 (2)O4—N3—C5118.7 (2)
C14—C9—C15123.5 (2)C15—N4—N5121.4 (2)
C10—C9—C15118.3 (2)C15—N4—H4A122 (2)
O5—C10—C11117.3 (2)N5—N4—H4A113 (2)
O5—C10—C9122.5 (2)N4—N5—C16111.9 (2)
C11—C10—C9120.2 (3)N4—N5—H5A103 (2)
C12—C11—C10120.7 (3)C16—N5—H5A111 (2)
C12—C11—H11119.6O8—N6—O7122.1 (3)
C10—C11—H11119.6O8—N6—C13118.9 (2)
C11—C12—C13119.2 (3)O7—N6—C13119.1 (3)
C11—C12—H12120.4C10—O5—H5102 (3)
C6—C1—C2—O1176.1 (2)C11—C12—C13—C140.2 (4)
C7—C1—C2—O11.9 (4)C11—C12—C13—N6179.9 (3)
C6—C1—C2—C33.7 (4)C12—C13—C14—C90.5 (4)
C7—C1—C2—C3178.3 (2)N6—C13—C14—C9179.1 (2)
O1—C2—C3—C4176.3 (3)C10—C9—C14—C131.5 (4)
C1—C2—C3—C43.5 (4)C15—C9—C14—C13177.8 (2)
C2—C3—C4—C50.4 (4)C14—C9—C15—O6170.9 (2)
C3—C4—C5—C62.7 (4)C10—C9—C15—O69.8 (4)
C3—C4—C5—N3175.3 (2)C14—C9—C15—N49.4 (4)
C4—C5—C6—C12.4 (4)C10—C9—C15—N4169.9 (2)
N3—C5—C6—C1175.6 (2)O2—C7—N1—N23.0 (4)
C2—C1—C6—C50.8 (4)C1—C7—N1—N2176.3 (2)
C7—C1—C6—C5179.0 (2)C7—N1—N2—C875.0 (3)
C6—C1—C7—O27.7 (4)C6—C5—N3—O39.4 (4)
C2—C1—C7—O2174.2 (2)C4—C5—N3—O3168.7 (3)
C6—C1—C7—N1171.6 (2)C6—C5—N3—O4172.0 (2)
C2—C1—C7—N16.5 (3)C4—C5—N3—O410.0 (4)
C14—C9—C10—O5178.0 (2)O6—C15—N4—N57.0 (4)
C15—C9—C10—O52.7 (4)C9—C15—N4—N5172.7 (2)
C14—C9—C10—C111.8 (4)C15—N4—N5—C1680.1 (3)
C15—C9—C10—C11177.5 (2)C14—C13—N6—O81.8 (4)
O5—C10—C11—C12178.7 (3)C12—C13—N6—O8178.5 (3)
C9—C10—C11—C121.1 (4)C14—C13—N6—O7177.2 (3)
C10—C11—C12—C130.1 (4)C12—C13—N6—O72.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O20.90 (2)1.92 (2)2.756 (3)154 (3)
N1—H1···O10.90 (2)1.78 (2)2.550 (3)141 (3)
N2—H2B···N51.02 (3)1.84 (3)2.858 (3)174 (3)
O5—H5···O60.85 (2)1.74 (2)2.549 (3)158 (4)
N5—H5A···O60.83 (2)2.44 (3)2.719 (3)101 (2)
N5—H5A···O4i0.83 (2)2.46 (2)3.162 (3)143 (3)
N2—H2A···O7i0.94 (2)2.61 (3)3.296 (3)130 (2)
N2—H2A···O1ii0.94 (2)2.08 (3)2.762 (3)128 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O20.903 (18)1.92 (2)2.756 (3)154 (3)
N1—H1···O10.899 (17)1.78 (2)2.550 (3)141 (3)
N2—H2B···N51.02 (3)1.84 (3)2.858 (3)174 (3)
O5—H5···O60.854 (18)1.74 (2)2.549 (3)158 (4)
N5—H5A···O60.832 (17)2.44 (3)2.719 (3)101 (2)
N5—H5A···O4i0.832 (17)2.46 (2)3.162 (3)143 (3)
N2—H2A···O1ii0.937 (17)2.08 (3)2.762 (3)128 (2)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Hubei Province, China (grant No. 2008CDA067), and the Graduate Student Research Funds of South-Central University for Nationalities.

References

First citationAl-Mawsawi, L. Q., Dayam, R., Taheri, L., Witvrouw, M., Debyser, Z. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6472–6475.  Web of Science PubMed CAS Google Scholar
First citationBagchi, M. C., Maiti, B. C. & Bose, S. (2004). J. Mol. Struct. (Theochem), 679, 179–186.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, L.-F., Xiao, F.-P., Cheng, G.-Z. & Ji, Z.-P. (2006a). Inorg. Chem. Commun. 9, 758–760.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, L.-F., Xiao, F.-P., Cheng, G.-Z. & Ji, Z.-P. (2006b). J. Organomet. Chem. 691, 2909–2914.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, M.-L., Dou, J.-M., Li, D.-C. & Wang, D.-Q. (2006). Acta Cryst. E62, o1009–o1010.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLuo, W., Meng, X.-G., Li, X., Cheng, G.-Z. & Ji, Z.-P. (2007). Acta Cryst. E63, m2482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, S. A., Wheat, L., Brown, N. A., Wingrove, P. B., Pillai, G. V., Whiting, P. G., Adkins, C., Woodward, C. H., Smith, A. J., Simpson, P. B., Collins, I. & Wafford, K. A. (2004). Br. J. Pharmacol. 142, 97–106.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, H.-M. & Liu, S.-X. (2006). Acta Cryst. E62, o3026–o3027.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. (2012). Acta Cryst. E68, o2686.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds