metal-organic compounds
(Azido-κN){(E)-2-[1-(pyridin-2-yl)ethylideneamino]phenolato-κ3N,N′,O}copper(II)
aDepartment of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan, bSchool of Chemistry and Molecular Biosciences, University of Queensland, Brisbane St Lucia, Queensland 4072, Australia, and cDepartment of Occupational Health and Safety, Chang Jung Christian University, Tainan City 71101, Taiwan
*Correspondence e-mail: scschem@mail.cjcu.edu.tw
In the title complex, [Cu(C13H11N2O)(N3)], the CuII cation is four-coordinated by an N2O donor set of the tridentate Schiff base ligand and by the terminal N atom of the azide anion, forming a slightly distorted square-planar configuration.
Related literature
For related structures, see: Talukder et al. (2004); Sun (2008); Wang et al. (2012); Yu (2012). For the synthesis, see: Shita et al. (2009).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and WinGX32 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813019570/lr2111sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813019570/lr2111Isup2.hkl
The tridentate Schiff base ligand was prepared according to literature procedure (Shita et al., 2009). To a hot methanolic solution (20 ml) of Cu(CCl3COO)2.6H2O (0.484 g, 1.0 mmol), the ligand (1.0 mmol) was added, which produced immediately an intensely green solution. The solution was then heated to boiling and then, an aqueous solution (10 ml) of sodium azide (0.065 g, 1 mmol) was added dropwise slowly over 15 min in hot condition. After the completion of addition of sodium azide, the resulting solution was kept under boiling for another 10 min. On cooling and after slow evaporation of the solution, the dark-green plate-shaped single crystals of the complex were separated out in 3 d. The crystals were filtered off and washed with water and dried in air.
H atoms were placed at calculated positions (C—H = 0.95–0.98 Å) and were included in the
in the riding-model approximation, with Uiso(H) = 1.2Ueq(C) and 1.5 Ueq(C)Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and WinGX32 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title complex, showing displacement ellipsoids at the 50% probability level. |
[Cu(C13H11CuN2O)(N3)] | F(000) = 644 |
Mr = 316.81 | Dx = 1.712 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 2697 reflections |
a = 6.5881 (3) Å | θ = 4.4–71.9° |
b = 10.1576 (3) Å | µ = 2.54 mm−1 |
c = 18.3884 (7) Å | T = 120 K |
β = 92.810 (3)° | Plate, green |
V = 1229.06 (8) Å3 | 0.57 × 0.31 × 0.04 mm |
Z = 4 |
Agilent Xcalibur Gemini ultra diffractometer with Eos detector | 2357 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 2180 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 16.1183 pixels mm-1 | θmax = 72.0°, θmin = 4.8° |
ω scans | h = −8→6 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −11→12 |
Tmin = 0.709, Tmax = 1.000 | l = −21→22 |
4723 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0589P)2 + 0.5226P] where P = (Fo2 + 2Fc2)/3 |
2357 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[Cu(C13H11CuN2O)(N3)] | V = 1229.06 (8) Å3 |
Mr = 316.81 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 6.5881 (3) Å | µ = 2.54 mm−1 |
b = 10.1576 (3) Å | T = 120 K |
c = 18.3884 (7) Å | 0.57 × 0.31 × 0.04 mm |
β = 92.810 (3)° |
Agilent Xcalibur Gemini ultra diffractometer with Eos detector | 2357 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2180 reflections with I > 2σ(I) |
Tmin = 0.709, Tmax = 1.000 | Rint = 0.021 |
4723 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.34 e Å−3 |
2357 reflections | Δρmin = −0.40 e Å−3 |
182 parameters |
Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C11 | 0.1572 (3) | 0.7721 (2) | 0.10880 (11) | 0.0224 (4) | |
H11 | 0.1311 | 0.8364 | 0.1447 | 0.027* | |
C12 | 0.1511 (3) | 0.80806 (19) | 0.03531 (13) | 0.0238 (4) | |
H12 | 0.1217 | 0.8965 | 0.0216 | 0.029* | |
C13 | 0.1878 (3) | 0.7152 (2) | −0.01764 (11) | 0.0214 (4) | |
H13 | 0.1842 | 0.7401 | −0.0675 | 0.026* | |
N3 | 0.3338 (3) | 0.14937 (18) | 0.06852 (10) | 0.0267 (4) | |
N4 | 0.1971 (3) | 0.12200 (16) | 0.10667 (9) | 0.0225 (4) | |
N5 | 0.0684 (3) | 0.09080 (19) | 0.14363 (10) | 0.0300 (4) | |
C1 | 0.3018 (3) | 0.3279 (2) | −0.13806 (11) | 0.0190 (4) | |
C2 | 0.3721 (3) | 0.1131 (2) | −0.10036 (11) | 0.0233 (4) | |
H2 | 0.3975 | 0.0518 | −0.0620 | 0.028* | |
C3 | 0.3734 (3) | 0.0698 (2) | −0.17231 (12) | 0.0270 (4) | |
H3 | 0.3992 | −0.0201 | −0.1829 | 0.032* | |
C4 | 0.3368 (3) | 0.1587 (2) | −0.22775 (12) | 0.0281 (5) | |
H4 | 0.3346 | 0.1309 | −0.2771 | 0.034* | |
C5 | 0.3030 (3) | 0.2905 (2) | −0.21045 (11) | 0.0250 (4) | |
H5 | 0.2809 | 0.3539 | −0.2480 | 0.030* | |
C6 | 0.2590 (3) | 0.4639 (2) | −0.11276 (10) | 0.0190 (4) | |
C7 | 0.2071 (3) | 0.5713 (2) | −0.16602 (11) | 0.0269 (4) | |
H7A | 0.0753 | 0.6095 | −0.1553 | 0.040* | |
H7B | 0.2001 | 0.5351 | −0.2155 | 0.040* | |
H7C | 0.3120 | 0.6397 | −0.1622 | 0.040* | |
C8 | 0.2306 (3) | 0.58395 (19) | 0.00240 (10) | 0.0176 (4) | |
C9 | 0.2387 (3) | 0.54692 (19) | 0.07755 (10) | 0.0181 (4) | |
C10 | 0.2008 (3) | 0.6441 (2) | 0.12986 (11) | 0.0208 (4) | |
H10 | 0.2053 | 0.6214 | 0.1800 | 0.025* | |
N1 | 0.3362 (2) | 0.23872 (17) | −0.08411 (9) | 0.0193 (3) | |
N2 | 0.2667 (2) | 0.47613 (16) | −0.04273 (9) | 0.0172 (3) | |
O1 | 0.2789 (2) | 0.42425 (13) | 0.09719 (7) | 0.0201 (3) | |
Cu1 | 0.31041 (4) | 0.31370 (3) | 0.014256 (14) | 0.01721 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0158 (9) | 0.0196 (10) | 0.0318 (11) | −0.0014 (7) | 0.0007 (8) | −0.0067 (8) |
C12 | 0.0179 (10) | 0.0169 (10) | 0.0362 (12) | −0.0003 (7) | −0.0015 (8) | −0.0001 (8) |
C13 | 0.0173 (10) | 0.0203 (10) | 0.0262 (10) | −0.0010 (7) | −0.0023 (8) | 0.0030 (8) |
N3 | 0.0297 (10) | 0.0213 (8) | 0.0294 (9) | 0.0053 (7) | 0.0047 (8) | 0.0048 (7) |
N4 | 0.0305 (9) | 0.0141 (8) | 0.0221 (8) | 0.0025 (7) | −0.0051 (7) | −0.0003 (6) |
N5 | 0.0361 (10) | 0.0259 (9) | 0.0278 (9) | −0.0051 (8) | 0.0021 (8) | 0.0035 (8) |
C1 | 0.0107 (9) | 0.0248 (10) | 0.0213 (9) | 0.0000 (7) | 0.0001 (7) | 0.0001 (8) |
C2 | 0.0186 (9) | 0.0242 (10) | 0.0271 (10) | 0.0020 (8) | 0.0013 (7) | −0.0035 (8) |
C3 | 0.0209 (10) | 0.0283 (11) | 0.0320 (11) | −0.0001 (8) | 0.0019 (8) | −0.0091 (9) |
C4 | 0.0211 (10) | 0.0381 (12) | 0.0253 (10) | −0.0010 (9) | 0.0020 (8) | −0.0096 (9) |
C5 | 0.0190 (10) | 0.0330 (11) | 0.0230 (10) | 0.0007 (8) | 0.0010 (8) | −0.0004 (9) |
C6 | 0.0117 (8) | 0.0239 (10) | 0.0215 (9) | 0.0010 (7) | 0.0015 (7) | 0.0035 (8) |
C7 | 0.0322 (11) | 0.0283 (11) | 0.0202 (9) | 0.0067 (9) | 0.0017 (8) | 0.0039 (8) |
C8 | 0.0117 (8) | 0.0191 (9) | 0.0220 (9) | −0.0007 (7) | 0.0006 (7) | −0.0001 (7) |
C9 | 0.0124 (8) | 0.0184 (9) | 0.0236 (9) | −0.0006 (7) | 0.0017 (7) | −0.0008 (8) |
C10 | 0.0157 (9) | 0.0233 (10) | 0.0233 (9) | −0.0006 (7) | 0.0012 (7) | −0.0021 (8) |
N1 | 0.0139 (7) | 0.0221 (8) | 0.0218 (8) | 0.0013 (6) | 0.0016 (6) | −0.0016 (7) |
N2 | 0.0123 (7) | 0.0193 (8) | 0.0199 (7) | −0.0003 (6) | 0.0000 (6) | 0.0018 (6) |
O1 | 0.0241 (7) | 0.0180 (7) | 0.0182 (6) | 0.0025 (5) | 0.0011 (5) | 0.0012 (5) |
Cu1 | 0.0182 (2) | 0.01587 (19) | 0.01753 (19) | 0.00191 (10) | 0.00069 (12) | 0.00060 (10) |
C11—C10 | 1.383 (3) | C3—H3 | 0.9500 |
C11—C12 | 1.399 (3) | C4—C5 | 1.396 (3) |
C11—H11 | 0.9500 | C4—H4 | 0.9500 |
C12—C13 | 1.385 (3) | C5—H5 | 0.9500 |
C12—H12 | 0.9500 | C6—N2 | 1.292 (3) |
C13—C8 | 1.408 (3) | C6—C7 | 1.495 (3) |
C13—H13 | 0.9500 | C7—H7A | 0.9800 |
N3—N4 | 1.201 (3) | C7—H7B | 0.9800 |
N3—Cu1 | 1.9470 (18) | C7—H7C | 0.9800 |
N4—N5 | 1.157 (3) | C8—N2 | 1.402 (3) |
C1—N1 | 1.354 (3) | C8—C9 | 1.431 (3) |
C1—C5 | 1.385 (3) | C9—O1 | 1.320 (2) |
C1—C6 | 1.489 (3) | C9—C10 | 1.409 (3) |
C2—N1 | 1.334 (3) | C10—H10 | 0.9500 |
C2—C3 | 1.395 (3) | N1—Cu1 | 1.9775 (16) |
C2—H2 | 0.9500 | N2—Cu1 | 1.9682 (16) |
C3—C4 | 1.375 (3) | O1—Cu1 | 1.9134 (14) |
C10—C11—C12 | 120.79 (18) | C6—C7—H7A | 109.5 |
C10—C11—H11 | 119.6 | C6—C7—H7B | 109.5 |
C12—C11—H11 | 119.6 | H7A—C7—H7B | 109.5 |
C13—C12—C11 | 120.23 (19) | C6—C7—H7C | 109.5 |
C13—C12—H12 | 119.9 | H7A—C7—H7C | 109.5 |
C11—C12—H12 | 119.9 | H7B—C7—H7C | 109.5 |
C12—C13—C8 | 120.02 (19) | N2—C8—C13 | 128.50 (18) |
C12—C13—H13 | 120.0 | N2—C8—C9 | 111.54 (17) |
C8—C13—H13 | 120.0 | C13—C8—C9 | 119.96 (18) |
N4—N3—Cu1 | 117.06 (14) | O1—C9—C10 | 120.94 (18) |
N5—N4—N3 | 177.4 (2) | O1—C9—C8 | 120.65 (17) |
N1—C1—C5 | 120.84 (19) | C10—C9—C8 | 118.41 (18) |
N1—C1—C6 | 114.76 (17) | C11—C10—C9 | 120.59 (19) |
C5—C1—C6 | 124.37 (19) | C11—C10—H10 | 119.7 |
N1—C2—C3 | 121.6 (2) | C9—C10—H10 | 119.7 |
N1—C2—H2 | 119.2 | C2—N1—C1 | 120.03 (17) |
C3—C2—H2 | 119.2 | C2—N1—Cu1 | 126.68 (14) |
C4—C3—C2 | 119.1 (2) | C1—N1—Cu1 | 113.19 (14) |
C4—C3—H3 | 120.4 | C6—N2—C8 | 131.76 (18) |
C2—C3—H3 | 120.4 | C6—N2—Cu1 | 116.57 (14) |
C3—C4—C5 | 119.0 (2) | C8—N2—Cu1 | 111.37 (12) |
C3—C4—H4 | 120.5 | C9—O1—Cu1 | 111.35 (12) |
C5—C4—H4 | 120.5 | O1—Cu1—N3 | 95.95 (7) |
C1—C5—C4 | 119.3 (2) | O1—Cu1—N2 | 85.04 (6) |
C1—C5—H5 | 120.3 | N3—Cu1—N2 | 175.89 (7) |
C4—C5—H5 | 120.3 | O1—Cu1—N1 | 166.56 (7) |
N2—C6—C1 | 113.71 (17) | N3—Cu1—N1 | 97.49 (8) |
N2—C6—C7 | 125.38 (19) | N2—Cu1—N1 | 81.53 (7) |
C1—C6—C7 | 120.89 (17) | ||
C10—C11—C12—C13 | 0.3 (3) | C7—C6—N2—C8 | 0.6 (3) |
C11—C12—C13—C8 | 0.3 (3) | C1—C6—N2—Cu1 | −4.7 (2) |
Cu1—N3—N4—N5 | 166 (5) | C7—C6—N2—Cu1 | 173.67 (15) |
N1—C2—C3—C4 | 0.0 (3) | C13—C8—N2—C6 | −4.9 (3) |
C2—C3—C4—C5 | 1.1 (3) | C9—C8—N2—C6 | 174.29 (18) |
N1—C1—C5—C4 | 1.1 (3) | C13—C8—N2—Cu1 | −178.26 (16) |
C6—C1—C5—C4 | −177.32 (19) | C9—C8—N2—Cu1 | 0.96 (18) |
C3—C4—C5—C1 | −1.6 (3) | C10—C9—O1—Cu1 | 177.20 (14) |
N1—C1—C6—N2 | 1.7 (2) | C8—C9—O1—Cu1 | −2.2 (2) |
C5—C1—C6—N2 | −179.81 (18) | C9—O1—Cu1—N3 | −173.93 (13) |
N1—C1—C6—C7 | −176.72 (17) | C9—O1—Cu1—N2 | 2.06 (12) |
C5—C1—C6—C7 | 1.7 (3) | C9—O1—Cu1—N1 | 5.2 (3) |
C12—C13—C8—N2 | 178.35 (18) | N4—N3—Cu1—O1 | 56.36 (17) |
C12—C13—C8—C9 | −0.8 (3) | N4—N3—Cu1—N2 | −47.4 (11) |
N2—C8—C9—O1 | 0.8 (2) | N4—N3—Cu1—N1 | −123.42 (16) |
C13—C8—C9—O1 | −179.90 (17) | C6—N2—Cu1—O1 | −176.11 (14) |
N2—C8—C9—C10 | −178.59 (16) | C8—N2—Cu1—O1 | −1.67 (12) |
C13—C8—C9—C10 | 0.7 (3) | C6—N2—Cu1—N3 | −72.0 (10) |
C12—C11—C10—C9 | −0.4 (3) | C8—N2—Cu1—N3 | 102.5 (10) |
O1—C9—C10—C11 | −179.47 (17) | C6—N2—Cu1—N1 | 4.61 (14) |
C8—C9—C10—C11 | −0.1 (3) | C8—N2—Cu1—N1 | 179.05 (13) |
C3—C2—N1—C1 | −0.6 (3) | C2—N1—Cu1—O1 | 177.1 (2) |
C3—C2—N1—Cu1 | 175.50 (15) | C1—N1—Cu1—O1 | −6.5 (4) |
C5—C1—N1—C2 | 0.1 (3) | C2—N1—Cu1—N3 | −3.81 (17) |
C6—C1—N1—C2 | 178.62 (16) | C1—N1—Cu1—N3 | 172.56 (14) |
C5—C1—N1—Cu1 | −176.55 (15) | C2—N1—Cu1—N2 | −179.78 (17) |
C6—C1—N1—Cu1 | 2.0 (2) | C1—N1—Cu1—N2 | −3.41 (13) |
C1—C6—N2—C8 | −177.73 (17) |
Experimental details
Crystal data | |
Chemical formula | [Cu(C13H11CuN2O)(N3)] |
Mr | 316.81 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 6.5881 (3), 10.1576 (3), 18.3884 (7) |
β (°) | 92.810 (3) |
V (Å3) | 1229.06 (8) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.54 |
Crystal size (mm) | 0.57 × 0.31 × 0.04 |
Data collection | |
Diffractometer | Agilent Xcalibur Gemini ultra diffractometer with Eos detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.709, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4723, 2357, 2180 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.092, 1.05 |
No. of reflections | 2357 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.40 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and WinGX32 (Farrugia, 2012), publCIF (Westrip, 2010).
Acknowledgements
The authors are grateful to the National Science Council of Taiwan for financial support.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shita, S., Chakraborty, J., Samanta, B., Rosair, G. M. & Mitra, S. (2009). Z. Naturforsch. Teil B, 64, 403–408. Google Scholar
Sun, X. (2008). Acta Cryst. E64, m33. Web of Science CSD CrossRef IUCr Journals Google Scholar
Talukder, P., Datta, A., Mitra, S. & Rosair, G. (2004). Z. Naturforsch. Teil B, 59, 655–660. CAS Google Scholar
Wang, H., Lang, Y. & Wang, S. (2012). Acta Cryst. E68, m540. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, J. (2012). Acta Cryst. E68, m275. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the title complex, [Cu(C13H11N2O)(N3)], the CuII ion exhibits a slightly distorted square-planar coordination environment defined by the deprotonated tridentate Schiff base ligand that coordinates via the phenolate O, imine N and pyridyl N atoms and the N atom of azide ion (Fig. 1). The bond angles around CuII ion are slightly distorted from those of regular square-planar and range from 81.53 (7) to 175.89 (7)°. The [CuN3O] square plane and the aryl and pyridyl rings in the Schiff base are almost coplanar. The dihedral angles among these three planes are 3.55 (6)°, 4.70 (5)° and 4.99 (7)°. The bond distances to the central copper [Cu—Npy = 1.9775 (16) Å, Cu—Nimine = 1.9682 (16) Å, Cu—Nazide = 1.9470 (18) Å, Cu—Ophenolic = 1.9133 (14) Å] (Table 1) are similar to those in complexes [Cu(C14H13N2O2)(N3)] and [Cu(C13H10ClN2O)Cl] (Sun, 2008; Wang et al., 2012). The bond distances and bond angles in azide ion bound to CuII ion are similar to those in complexes [Cu(C14H13N2O2)(N3)] and [Cu(C16H23N2O)(N3)] (Sun, 2008; Talukder et al., 2004). The N3—N4 bond [1.201 (3) Å] in the complex is longer than the N4—N5 bond [1.157 (3) Å]. The NNN moiety is nearly linear and shows a bent coordination mode with the CuII ion [(N3—N4—N5/Cu1—N3—N4 = 177.4 (2)/117.06 (15)°].