organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1322-o1323

1-[(E)-2-(2-Hy­dr­oxy-5-methyl­phen­yl)diazen-2-ium-1-yl]naphthalen-2-olate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: issam.boudraa@gmail.com

(Received 8 July 2013; accepted 21 July 2013; online 27 July 2013)

The title zwitterion, C17H14N2O2, crystallizes with two independent mol­ecules in the asymmetric unit, both of which are approximately planar, the dihedral angles between the benzene ring and the naphthalene ring system being 4.39 (12)° in one mol­ecule and 5.83 (12)° in the other, and show an E conformation with respect to the azo double bond. An intra­molecular N—H⋯O hydrogen bond in each molecule helps to establish their near planar conformation. In the crystal, mol­ecules are linked through O—H⋯O hydrogen bonds into infinite chains running along the a-axis direction. In addition, the chains are stacked along the b axis via ππ inter­actions between the benzene and the naphthalene rings of adjacent mol­ecules, the centroid–centroid distances being 3.722 (3) and 3.823 (4) Å.

Related literature

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Lee et al. (2004[Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.]). For details of azo pigments, see: Herbst & Hunger (2004[Herbst, W. & Hunger, K. (2004). Industrial Organic Pigments, pp. 183-419. Weinheim: VCH.]). For related structures of hydrazone derivatives, see: Olivieri et al. (1989[Olivieri, A. C., Wilson, R. B., Paul, I. C. & Curtin, D. Y. (1989). J. Am. Chem. Soc. 111, 5525-5532.]); Oakes (2002[Oakes, J. (2002). Rev. Prog. Color. pp. 32-63.]). For bond-length data, see: Yazıcı et al. (2010[Yazıcı, S., Albayrak, Ç., Gümrükçüoğlu, İ., Şenel, İ. & Büyükgüngör, O. (2010). Acta Cryst. E66, o559-o560.]); Karadayı et al. (2006[Karadayı, N., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3695-o3696.]). Many azo compounds have been synthesized by diazo­tization and diazo coupling reactions, see: Wang et al. (2003[Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigments, 57, 77-86.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2O2

  • Mr = 278.31

  • Monoclinic, P 21 /a

  • a = 14.541 (5) Å

  • b = 6.052 (5) Å

  • c = 32.633 (5) Å

  • β = 101.871 (5)°

  • V = 2810 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.03 × 0.02 × 0.02 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.853, Tmax = 0.995

  • 20440 measured reflections

  • 6447 independent reflections

  • 3301 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.202

  • S = 1.05

  • 6447 reflections

  • 386 parameters

  • 2 restraints

  • All H-atom parameters refined

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 (2) 1.82 (3) 2.536 (4) 138 (2)
O2—H2⋯O6 0.82 1.85 2.631 (3) 159
O5—H5⋯O1i 0.82 1.81 2.622 (3) 168
N6—H6⋯O6 0.88 (2) 1.82 (3) 2.546 (4) 138 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Azo compounds are very important in the fields of dyes, pigments and advanced materials (Lee et al., 2004). Azo dyes are synthetic colours that contain an azo group, as part of the structure. We are involved in the color generation mechanism of azo pigments typically characterized by the chromophore of the azo group (–N=N–). However, some types of azo pigments are also known to possess the hydrazone structure (=N–NH–), often leading to the formation of intramolecular hydrogen bonds (Herbst & Hunger 2004). The azo– hydrazone tautomerism in azo dyes has been known for more than a hundred years and is directly connected with the presence of at least one protic donor group in conjugation to the azo bridge (i.e. 2-naphthol) (Olivieri et al.., 1989). In particular, azo dyes that contain a naphtholic hydroxy group conjugated with the azo linkage exist in aqueous solution as an equilibrium mixture of two chemically distinct tautomers, the azo or hydrazone forms (Oakes, 2002).It is suggested that in a real azo compound the N=N double bond should have a length of 1.20–1.28 Å and the bond length of N–N single bonds, as in hydrazone tautomers, should be more than 1.4 Å. In the title compound, N–N bond lengths are 1.385 Å for N1–N2 and 1.305 Å for N5–N6, between the suggested N=N double bond and N–N single bond lengths.In the molecule, all bond lengths are in good agreement with those reported for other azo compounds (Yazıcı et al., 2010; Karadayı et al., 2006).

The molecular structure of the title compound is shown in Figure 1.There are two independent molecules in the asymmetric unit, each consists of a benzene ring linked to the first nitrogen atom of the N = N chromophore and two aromatic rings of the core 2-naphthol, with a trans configuration with respect to the azo double bond. The dihedral angles between the benzene ring and naphthalene ring system being 4.39 (12)° in one molecule and 5.83 (12)° in the other. Intramolecular N—H···O hydrogen bonds stabilize the planar geommetry in each of the independent molecules. In the crystal, the molecules are linked through O—H···O into infinite one-dimensional chains running along the a axis, Figure 2. In addition, the chains are stacked along the b axis via π-π interactions between the benzene and the naphthalene rings of adjacent molecules, the centroid-centroid distances being 3.722 (3) and 3.823 (4) Å.

Related literature top

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Lee et al. (2004). For details of azo pigments, see: Herbst & Hunger (2004). For related structures of hydrazone derivatives, see: Olivieri et al. (1989); Oakes (2002). For bond-length data, see: Yazıcı et al. (2010); Karadayı et al. (2006). Many azo compounds have been synthesized by diazotization and diazo coupling reactions, see: Wang et al. (2003).

Experimental top

The title compound (E)-1-((2-hydroxy-5-methylphenyl)diazenyl)naphthalen-2-ol was prepared following the classical method of synthesis of other aromatic azo-compounds (Wang et al., 2003). Diazotization of 2-amino-4-methylphenol followed by a coupling reaction with 2-naphthol. This gives a red powder which was recrystallized from ethanol leading to crystals in the form of red prisms.

Refinement top

All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. All H atoms, attached to carbo(n atoms have been placed in geometrically idealized positions and refined as riding, with C—H = 0.93 (aromatic), 0.96 Å (methyl), and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C). Hydroxyl H atoms were introduced in calculated positions and treated as riding on their parent atoms with O—H = 0.82 Å (hydroxyl) and Uiso(H) = 1.5 Ueq(O). The remaining H atoms of amino-group were located in a difference Fourier map and refined freely with N—H= 0.88 Å and Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids for non-H atoms.The dashed lines indicate N—H···O hydrogen bond.
[Figure 2] Fig. 2. A view of the crystal packing showing the infinite one-dimensional chains.
1-[(E)-2-(2-Hydroxy-5-methylphenyl)diazen-2-ium-1-yl]naphthalen-2-olate top
Crystal data top
C17H14N2O2F(000) = 1168
Mr = 278.31Dx = 1.316 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 2052 reflections
a = 14.541 (5) Åθ = 3.1–28.6°
b = 6.052 (5) ŵ = 0.09 mm1
c = 32.633 (5) ÅT = 150 K
β = 101.871 (5)°Prism, red
V = 2810 (3) Å30.03 × 0.02 × 0.02 mm
Z = 8
Data collection top
Bruker APEXII
diffractometer
6447 independent reflections
Radiation source: fine-focus sealed tube3301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
CCD rotation images, thin slices ω scansθmax = 27.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1518
Tmin = 0.853, Tmax = 0.995k = 77
20440 measured reflectionsl = 4242
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068All H-atom parameters refined
wR(F2) = 0.202 w = 1/[σ2(Fo2) + (0.0877P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6447 reflectionsΔρmax = 0.44 e Å3
386 parametersΔρmin = 0.40 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (9)
Crystal data top
C17H14N2O2V = 2810 (3) Å3
Mr = 278.31Z = 8
Monoclinic, P21/aMo Kα radiation
a = 14.541 (5) ŵ = 0.09 mm1
b = 6.052 (5) ÅT = 150 K
c = 32.633 (5) Å0.03 × 0.02 × 0.02 mm
β = 101.871 (5)°
Data collection top
Bruker APEXII
diffractometer
6447 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3301 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.995Rint = 0.078
20440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0682 restraints
wR(F2) = 0.202All H-atom parameters refined
S = 1.05Δρmax = 0.44 e Å3
6447 reflectionsΔρmin = 0.40 e Å3
386 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.85799 (14)0.2548 (4)0.70663 (5)0.0333 (7)
O20.71941 (15)0.6953 (4)0.72953 (5)0.0412 (8)
N10.76040 (16)0.5426 (4)0.66053 (6)0.0258 (8)
N20.78287 (15)0.4506 (4)0.62766 (6)0.0242 (8)
C10.83515 (19)0.2673 (5)0.63285 (7)0.0231 (9)
C20.87195 (19)0.1652 (5)0.67294 (8)0.0266 (9)
C30.9241 (2)0.0362 (5)0.67367 (9)0.0313 (10)
C40.9385 (2)0.1299 (6)0.63794 (9)0.0353 (10)
C50.9043 (2)0.0319 (5)0.59751 (9)0.0314 (10)
C60.85416 (19)0.1681 (5)0.59467 (8)0.0269 (9)
C70.8225 (2)0.2665 (6)0.55501 (8)0.0323 (10)
C80.8408 (2)0.1641 (7)0.51963 (9)0.0405 (13)
C90.8902 (2)0.0332 (7)0.52232 (9)0.0460 (13)
C100.9220 (2)0.1313 (6)0.56069 (10)0.0417 (11)
C110.67371 (18)0.8433 (5)0.61950 (8)0.0260 (9)
C120.70569 (19)0.7317 (5)0.65715 (7)0.0239 (9)
C130.6843 (2)0.8137 (5)0.69426 (8)0.0294 (10)
C140.6314 (2)1.0036 (6)0.69274 (9)0.0329 (10)
C150.6020 (2)1.1148 (5)0.65539 (9)0.0329 (10)
C160.62311 (19)1.0343 (5)0.61810 (8)0.0290 (9)
C170.5923 (2)1.1604 (6)0.57752 (8)0.0381 (11)
O50.48488 (15)0.3516 (4)0.77309 (5)0.0463 (8)
O60.65278 (14)0.7820 (4)0.79689 (5)0.0320 (7)
N50.65874 (15)0.5554 (4)0.87388 (6)0.0237 (7)
N60.60151 (16)0.4768 (4)0.84100 (6)0.0242 (7)
C180.70644 (18)0.7387 (5)0.87009 (7)0.0221 (9)
C190.70315 (19)0.8573 (5)0.83094 (8)0.0258 (9)
C200.7571 (2)1.0531 (5)0.83189 (9)0.0328 (10)
C210.8074 (2)1.1348 (5)0.86792 (9)0.0334 (10)
C220.81280 (19)1.0263 (5)0.90750 (8)0.0296 (10)
C230.76401 (18)0.8269 (5)0.90856 (8)0.0271 (9)
C240.7715 (2)0.7172 (6)0.94742 (8)0.0318 (10)
C250.8247 (2)0.8060 (7)0.98344 (9)0.0409 (13)
C260.8725 (2)1.0028 (7)0.98229 (9)0.0445 (13)
C270.8668 (2)1.1131 (6)0.94502 (10)0.0398 (11)
C280.55747 (18)0.1612 (5)0.88028 (8)0.0253 (9)
C290.54976 (19)0.2860 (5)0.84352 (8)0.0241 (9)
C300.4884 (2)0.2180 (5)0.80699 (8)0.0290 (9)
C310.4377 (2)0.0253 (5)0.80731 (8)0.0328 (10)
C320.4475 (2)0.0984 (5)0.84354 (8)0.0313 (10)
C330.5071 (2)0.0301 (5)0.88087 (8)0.0274 (9)
C340.5164 (2)0.1643 (6)0.92034 (8)0.0367 (10)
H10.781 (2)0.481 (5)0.6851 (5)0.0489*
H20.703710.753700.749700.0619*
H30.948420.103650.699200.0376*
H40.971700.262030.639540.0423*
H70.789640.399270.552710.0386*
H80.819570.228750.493550.0487*
H90.901870.099380.498180.0552*
H100.955170.263480.562400.0499*
H110.687110.786630.594900.0311*
H140.615291.057170.717050.0396*
H150.567741.244890.654960.0396*
H17A0.557591.289180.582470.0573*
H17B0.553101.067480.557290.0573*
H17C0.646571.204410.567070.0573*
H50.447690.300350.753000.0694*
H60.598 (2)0.545 (5)0.8168 (5)0.0489*
H200.757801.126780.806950.0393*
H210.839821.266710.867190.0401*
H240.740250.583980.948630.0381*
H250.828450.733081.008810.0489*
H260.908671.060581.006800.0532*
H270.898771.245890.944490.0476*
H280.597390.208990.904690.0303*
H310.396910.021430.783070.0393*
H320.413890.229360.843200.0375*
H34A0.476130.291200.915040.0551*
H34B0.498650.075530.941830.0551*
H34C0.580410.211610.929330.0551*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0407 (12)0.0334 (14)0.0234 (10)0.0083 (11)0.0008 (8)0.0036 (9)
O20.0582 (14)0.0441 (16)0.0211 (10)0.0199 (12)0.0074 (9)0.0021 (9)
N10.0326 (14)0.0233 (15)0.0205 (11)0.0021 (12)0.0034 (10)0.0014 (10)
N20.0271 (13)0.0227 (15)0.0225 (11)0.0016 (11)0.0046 (9)0.0026 (10)
C10.0230 (14)0.0216 (17)0.0234 (13)0.0017 (13)0.0017 (10)0.0033 (11)
C20.0272 (15)0.0227 (18)0.0289 (14)0.0002 (13)0.0036 (11)0.0022 (12)
C30.0305 (16)0.0249 (19)0.0352 (15)0.0003 (14)0.0011 (12)0.0072 (13)
C40.0309 (17)0.0232 (19)0.0505 (18)0.0022 (15)0.0055 (14)0.0014 (14)
C50.0243 (15)0.028 (2)0.0412 (16)0.0043 (14)0.0054 (12)0.0087 (14)
C60.0255 (15)0.0253 (19)0.0278 (14)0.0042 (13)0.0007 (11)0.0077 (12)
C70.0341 (16)0.035 (2)0.0264 (14)0.0017 (15)0.0028 (12)0.0045 (13)
C80.0388 (18)0.053 (3)0.0277 (15)0.0015 (18)0.0021 (13)0.0096 (15)
C90.0393 (19)0.058 (3)0.0396 (18)0.0005 (19)0.0056 (15)0.0256 (17)
C100.0335 (18)0.036 (2)0.055 (2)0.0026 (16)0.0075 (15)0.0217 (16)
C110.0275 (15)0.0258 (18)0.0242 (13)0.0018 (14)0.0045 (11)0.0009 (12)
C120.0259 (14)0.0203 (17)0.0254 (13)0.0013 (13)0.0052 (11)0.0005 (11)
C130.0329 (16)0.028 (2)0.0274 (14)0.0023 (15)0.0065 (12)0.0018 (12)
C140.0348 (17)0.031 (2)0.0335 (15)0.0025 (15)0.0087 (13)0.0045 (13)
C150.0305 (16)0.0223 (19)0.0460 (17)0.0037 (14)0.0078 (13)0.0015 (14)
C160.0237 (15)0.0267 (19)0.0362 (15)0.0006 (14)0.0052 (12)0.0091 (13)
C170.0390 (18)0.034 (2)0.0411 (17)0.0098 (16)0.0079 (14)0.0145 (14)
O50.0615 (15)0.0451 (16)0.0242 (10)0.0219 (13)0.0100 (10)0.0046 (10)
O60.0402 (12)0.0312 (14)0.0244 (10)0.0030 (10)0.0061 (8)0.0013 (9)
N50.0246 (12)0.0242 (15)0.0209 (10)0.0002 (11)0.0018 (9)0.0020 (10)
N60.0290 (13)0.0226 (15)0.0188 (10)0.0024 (11)0.0002 (10)0.0003 (10)
C180.0240 (14)0.0196 (17)0.0225 (13)0.0014 (13)0.0044 (10)0.0018 (11)
C190.0286 (15)0.0236 (18)0.0258 (14)0.0041 (14)0.0067 (11)0.0002 (12)
C200.0340 (17)0.0259 (19)0.0403 (16)0.0018 (15)0.0121 (14)0.0067 (14)
C210.0298 (16)0.0188 (18)0.0541 (18)0.0031 (14)0.0144 (14)0.0020 (14)
C220.0276 (16)0.0257 (19)0.0364 (15)0.0008 (14)0.0085 (12)0.0077 (13)
C230.0231 (15)0.0278 (19)0.0293 (14)0.0016 (13)0.0028 (11)0.0093 (12)
C240.0301 (16)0.037 (2)0.0271 (14)0.0033 (15)0.0034 (12)0.0060 (13)
C250.0365 (18)0.059 (3)0.0262 (15)0.0017 (18)0.0040 (12)0.0110 (15)
C260.0336 (18)0.063 (3)0.0361 (17)0.0065 (18)0.0055 (14)0.0266 (17)
C270.0325 (17)0.033 (2)0.0536 (19)0.0080 (16)0.0085 (14)0.0188 (16)
C280.0251 (15)0.0258 (18)0.0237 (13)0.0019 (13)0.0022 (11)0.0017 (12)
C290.0250 (14)0.0210 (17)0.0254 (13)0.0002 (13)0.0030 (11)0.0023 (11)
C300.0345 (16)0.0289 (19)0.0217 (13)0.0034 (15)0.0013 (11)0.0002 (12)
C310.0326 (17)0.032 (2)0.0313 (15)0.0076 (15)0.0006 (12)0.0062 (13)
C320.0290 (16)0.0216 (18)0.0426 (16)0.0057 (14)0.0060 (13)0.0007 (13)
C330.0269 (15)0.0209 (18)0.0356 (15)0.0038 (14)0.0090 (12)0.0042 (12)
C340.0333 (17)0.033 (2)0.0441 (17)0.0015 (16)0.0088 (13)0.0099 (14)
Geometric parameters (Å, º) top
O1—C21.279 (3)C10—H100.9300
O2—C131.363 (3)C11—H110.9300
O2—H20.8200C14—H140.9300
O5—C301.363 (4)C15—H150.9300
O6—C191.282 (3)C17—H17B0.9600
O5—H50.8200C17—H17A0.9600
N1—C121.385 (4)C17—H17C0.9600
N1—N21.308 (3)C18—C191.458 (4)
N2—C11.336 (4)C18—C231.459 (4)
N1—H10.88 (2)C19—C201.418 (4)
N5—C181.328 (4)C20—C211.345 (4)
N5—N61.305 (3)C21—C221.437 (4)
N6—C291.390 (4)C22—C271.413 (4)
N6—H60.88 (2)C22—C231.404 (4)
C1—C21.446 (4)C23—C241.416 (4)
C1—C61.460 (4)C24—C251.377 (4)
C2—C31.433 (4)C25—C261.383 (6)
C3—C41.351 (4)C26—C271.375 (5)
C4—C51.439 (4)C28—C331.372 (4)
C5—C101.414 (5)C28—C291.402 (4)
C5—C61.406 (4)C29—C301.396 (4)
C6—C71.413 (4)C30—C311.381 (4)
C7—C81.384 (4)C31—C321.382 (4)
C8—C91.387 (6)C32—C331.404 (4)
C9—C101.377 (5)C33—C341.505 (4)
C11—C121.395 (4)C20—H200.9300
C11—C161.366 (4)C21—H210.9300
C12—C131.402 (4)C24—H240.9300
C13—C141.378 (5)C25—H250.9300
C14—C151.381 (4)C26—H260.9300
C15—C161.402 (4)C27—H270.9300
C16—C171.514 (4)C28—H280.9300
C3—H30.9300C31—H310.9300
C4—H40.9300C32—H320.9300
C7—H70.9300C34—H34A0.9600
C8—H80.9300C34—H34B0.9600
C9—H90.9300C34—H34C0.9600
O1···N12.536 (4)C17···H9vi2.8800
O1···N22.843 (4)C18···H34Civ2.9400
O1···O5i2.622 (3)C19···H22.7300
O2···O62.631 (3)C19···H62.42 (3)
O2···N12.614 (4)C20···H32i2.9700
O5···C3ii3.373 (4)C21···H32i3.1000
O5···O1ii2.622 (3)C22···H34Ai2.7400
O5···N62.611 (4)C23···H34Civ2.9000
O5···C2ii3.344 (4)C23···H34Ai3.0600
O6···N62.546 (4)C24···H34Civ2.7500
O6···N52.848 (4)C25···H24vii3.0800
O6···O22.631 (3)C26···H24vii3.0900
O1···H11.82 (3)C27···H34Ai2.8100
O1···H5i1.8100C31···H21viii2.9300
O2···H12.26 (3)C32···H21viii2.7500
O5···H3ii2.8100C33···H21viii2.8700
O5···H62.27 (3)C34···H26ix2.9200
O6···H61.82 (3)H1···O22.26 (3)
O6···H21.8500H1···C22.40 (3)
N1···C15iii3.446 (5)H1···O11.82 (3)
N1···O12.536 (4)H2···H142.3700
N1···O22.614 (4)H2···O61.8500
N2···O12.843 (4)H2···C192.7300
N2···C4iv3.372 (5)H3···O5i2.8100
N2···C16iii3.398 (5)H3···H5i2.5400
N2···C17iii3.402 (5)H4···C15i2.8300
N5···O62.848 (4)H4···H102.4800
N5···C33iv3.378 (5)H4···C14i2.9800
N5···C34iv3.279 (5)H4···C16i2.9500
N5···C21iii3.371 (5)H5···C2ii2.6300
N6···O52.611 (4)H5···C3ii2.9100
N6···O62.546 (4)H5···H3ii2.5400
N6···C32iv3.422 (5)H5···H312.3700
N2···H72.4900H5···O1ii1.8100
N2···H112.5700H6···C192.42 (3)
N2···H17Ciii2.9100H6···O52.27 (3)
N5···H34Civ2.7200H6···O61.82 (3)
N5···H242.4900H7···N22.4900
N5···H282.5600H7···H17Ciii2.5200
C1···C11iii3.445 (5)H9···C17x2.8800
C1···C16iii3.334 (5)H9···H17Cx2.4100
C2···C12iii3.533 (5)H10···H42.4800
C2···O5i3.344 (4)H10···C17i3.1000
C3···O5i3.373 (4)H10···H17Bi2.3500
C3···C12iii3.413 (5)H11···N22.5700
C4···N2iii3.372 (5)H14···H22.3700
C6···C11iii3.504 (5)H15···H17A2.3500
C11···C6iv3.504 (5)H15···C2viii3.0700
C11···C1iv3.445 (5)H15···C3viii2.8900
C12···C3iv3.413 (5)H15···C4viii2.9700
C12···C2iv3.533 (5)H17A···H152.3500
C15···N1iv3.446 (5)H17A···C5viii2.8000
C16···C1iv3.334 (5)H17A···C6viii3.0800
C16···N2iv3.398 (5)H17A···C10viii2.8500
C17···N2iv3.402 (5)H17B···H10ii2.3500
C18···C33iv3.302 (5)H17C···N2iv2.9100
C18···C28iv3.411 (5)H17C···C6iv2.9800
C18···C34iv3.540 (5)H17C···C7iv2.6900
C19···C28iv3.445 (5)H17C···H7iv2.5200
C19···C29iv3.500 (5)H17C···H9vi2.4100
C20···C29iv3.419 (5)H21···H272.4900
C21···N5iv3.371 (5)H21···C31v2.9300
C23···C28iv3.581 (5)H21···C32v2.7500
C28···C19iii3.445 (5)H21···C33v2.8700
C28···C18iii3.411 (5)H24···N52.4900
C28···C23iii3.581 (5)H24···H34Civ2.5900
C29···C19iii3.500 (5)H24···C25xi3.0800
C29···C20iii3.419 (5)H24···C26xi3.0900
C32···N6iii3.422 (5)H26···C34xii2.9200
C33···C18iii3.302 (5)H26···H34Cxii2.4800
C33···N5iii3.378 (5)H27···H212.4900
C34···N5iii3.279 (5)H27···H34Bv2.4800
C34···C18iii3.540 (5)H28···N52.5600
C2···H15v3.0700H31···H52.3700
C2···H12.40 (3)H32···H34A2.3600
C2···H5i2.6300H32···C20ii2.9700
C3···H15v2.8900H32···C21ii3.1000
C3···H5i2.9100H34A···H322.3600
C4···H15v2.9700H34A···C22ii2.7400
C5···H17Av2.8000H34A···C23ii3.0600
C6···H17Av3.0800H34A···C27ii2.8100
C6···H17Ciii2.9800H34B···H27viii2.4800
C7···H17Ciii2.6900H34C···N5iii2.7200
C10···H17Av2.8500H34C···C18iii2.9400
C14···H4ii2.9800H34C···C23iii2.9000
C15···H4ii2.8300H34C···C24iii2.7500
C16···H4ii2.9500H34C···H24iii2.5900
C17···H10ii3.1000H34C···H26ix2.4800
C13—O2—H2109.00H17B—C17—H17C109.00
C30—O5—H5109.00C16—C17—H17A109.00
N2—N1—C12121.5 (2)C16—C17—H17B109.00
N1—N2—C1118.8 (2)H17A—C17—H17B109.00
N2—N1—H1118.1 (18)C16—C17—H17C109.00
C12—N1—H1120.4 (18)N5—C18—C23116.4 (2)
N6—N5—C18119.0 (2)C19—C18—C23118.9 (3)
N5—N6—C29121.0 (2)N5—C18—C19124.7 (2)
N5—N6—H6118.3 (18)O6—C19—C20122.1 (3)
C29—N6—H6120.6 (18)O6—C19—C18119.6 (3)
N2—C1—C6115.9 (2)C18—C19—C20118.3 (2)
C2—C1—C6119.8 (3)C19—C20—C21121.7 (3)
N2—C1—C2124.4 (2)C20—C21—C22122.5 (3)
O1—C2—C3121.6 (2)C23—C22—C27119.5 (3)
C1—C2—C3118.3 (2)C21—C22—C23118.7 (2)
O1—C2—C1120.1 (3)C21—C22—C27121.8 (3)
C2—C3—C4121.2 (3)C18—C23—C22119.8 (2)
C3—C4—C5122.2 (3)C18—C23—C24121.6 (3)
C4—C5—C6119.5 (3)C22—C23—C24118.6 (3)
C4—C5—C10121.0 (3)C23—C24—C25120.5 (3)
C6—C5—C10119.5 (3)C24—C25—C26120.7 (3)
C1—C6—C7121.7 (3)C25—C26—C27120.2 (3)
C1—C6—C5119.0 (2)C22—C27—C26120.5 (3)
C5—C6—C7119.3 (3)C29—C28—C33121.2 (2)
C6—C7—C8119.6 (3)N6—C29—C28123.3 (2)
C7—C8—C9121.3 (3)N6—C29—C30116.9 (2)
C8—C9—C10120.1 (3)C28—C29—C30119.8 (3)
C5—C10—C9120.2 (3)O5—C30—C29115.4 (3)
C12—C11—C16121.3 (2)O5—C30—C31125.2 (2)
N1—C12—C11123.5 (2)C29—C30—C31119.4 (3)
N1—C12—C13116.7 (2)C30—C31—C32120.2 (3)
C11—C12—C13119.8 (3)C31—C32—C33121.3 (3)
O2—C13—C14125.3 (2)C28—C33—C32118.2 (2)
C12—C13—C14119.1 (3)C28—C33—C34120.9 (2)
O2—C13—C12115.6 (3)C32—C33—C34121.0 (3)
C13—C14—C15120.5 (3)C19—C20—H20119.00
C14—C15—C16120.9 (3)C21—C20—H20119.00
C15—C16—C17120.4 (3)C20—C21—H21119.00
C11—C16—C15118.5 (3)C22—C21—H21119.00
C11—C16—C17121.1 (2)C23—C24—H24120.00
C4—C3—H3119.00C25—C24—H24120.00
C2—C3—H3119.00C24—C25—H25120.00
C5—C4—H4119.00C26—C25—H25120.00
C3—C4—H4119.00C25—C26—H26120.00
C6—C7—H7120.00C27—C26—H26120.00
C8—C7—H7120.00C22—C27—H27120.00
C7—C8—H8119.00C26—C27—H27120.00
C9—C8—H8119.00C29—C28—H28119.00
C8—C9—H9120.00C33—C28—H28119.00
C10—C9—H9120.00C30—C31—H31120.00
C5—C10—H10120.00C32—C31—H31120.00
C9—C10—H10120.00C31—C32—H32119.00
C16—C11—H11119.00C33—C32—H32119.00
C12—C11—H11119.00C33—C34—H34A109.00
C13—C14—H14120.00C33—C34—H34B109.00
C15—C14—H14120.00C33—C34—H34C109.00
C14—C15—H15120.00H34A—C34—H34B109.00
C16—C15—H15120.00H34A—C34—H34C109.00
H17A—C17—H17C109.00H34B—C34—H34C109.00
C12—N1—N2—C1179.4 (3)O2—C13—C14—C15177.8 (3)
N2—N1—C12—C112.7 (4)C12—C13—C14—C151.7 (5)
N2—N1—C12—C13178.8 (3)C13—C14—C15—C161.7 (5)
N1—N2—C1—C22.1 (4)C14—C15—C16—C17178.7 (3)
N1—N2—C1—C6177.4 (2)C14—C15—C16—C110.2 (4)
N6—N5—C18—C192.8 (4)N5—C18—C19—O61.4 (4)
N6—N5—C18—C23175.7 (2)N5—C18—C19—C20179.1 (3)
C18—N5—N6—C29179.7 (3)C23—C18—C19—O6179.9 (3)
N5—N6—C29—C282.5 (4)C23—C18—C19—C200.6 (4)
N5—N6—C29—C30178.2 (3)N5—C18—C23—C22176.8 (3)
N2—C1—C6—C5176.5 (3)N5—C18—C23—C242.6 (4)
N2—C1—C6—C72.7 (4)C19—C18—C23—C221.8 (4)
N2—C1—C2—O12.6 (4)C19—C18—C23—C24178.8 (3)
N2—C1—C2—C3177.7 (3)O6—C19—C20—C21177.9 (3)
C6—C1—C2—O1177.9 (3)C18—C19—C20—C212.7 (4)
C6—C1—C2—C31.9 (4)C19—C20—C21—C222.3 (5)
C2—C1—C6—C53.1 (4)C20—C21—C22—C230.3 (4)
C2—C1—C6—C7177.7 (3)C20—C21—C22—C27179.3 (3)
C1—C2—C3—C40.3 (4)C21—C22—C23—C182.3 (4)
O1—C2—C3—C4180.0 (3)C21—C22—C23—C24178.3 (3)
C2—C3—C4—C51.2 (5)C27—C22—C23—C18178.7 (3)
C3—C4—C5—C60.0 (5)C27—C22—C23—C240.8 (4)
C3—C4—C5—C10178.7 (3)C21—C22—C27—C26178.4 (3)
C4—C5—C6—C7178.6 (3)C23—C22—C27—C260.6 (5)
C4—C5—C6—C12.2 (4)C18—C23—C24—C25178.7 (3)
C10—C5—C6—C70.1 (4)C22—C23—C24—C250.8 (4)
C4—C5—C10—C9178.8 (3)C23—C24—C25—C260.6 (5)
C10—C5—C6—C1179.1 (3)C24—C25—C26—C270.5 (5)
C6—C5—C10—C90.1 (5)C25—C26—C27—C220.5 (5)
C5—C6—C7—C80.4 (4)C33—C28—C29—N6177.9 (3)
C1—C6—C7—C8178.8 (3)C33—C28—C29—C301.4 (4)
C6—C7—C8—C90.4 (5)C29—C28—C33—C320.1 (4)
C7—C8—C9—C100.1 (5)C29—C28—C33—C34179.4 (3)
C8—C9—C10—C50.2 (5)N6—C29—C30—O51.6 (4)
C16—C11—C12—N1177.3 (3)N6—C29—C30—C31177.7 (3)
C12—C11—C16—C17177.2 (3)C28—C29—C30—O5179.1 (3)
C12—C11—C16—C151.3 (4)C28—C29—C30—C311.6 (4)
C16—C11—C12—C131.2 (4)O5—C30—C31—C32179.4 (3)
N1—C12—C13—C14178.9 (3)C29—C30—C31—C320.2 (4)
N1—C12—C13—O20.6 (4)C30—C31—C32—C331.4 (5)
C11—C12—C13—C140.3 (4)C31—C32—C33—C281.5 (4)
C11—C12—C13—O2179.3 (3)C31—C32—C33—C34179.2 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1/2, y+3/2, z; (vi) x+3/2, y+3/2, z+1; (vii) x+3/2, y+1/2, z+2; (viii) x1/2, y+3/2, z; (ix) x+3/2, y3/2, z+2; (x) x+3/2, y3/2, z+1; (xi) x+3/2, y1/2, z+2; (xii) x+3/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.88 (2)1.82 (3)2.536 (4)138 (2)
O2—H2···O60.821.852.631 (3)159
O5—H5···O1ii0.821.812.622 (3)168
N6—H6···O60.88 (2)1.82 (3)2.546 (4)138 (2)
Symmetry code: (ii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.88 (2)1.82 (3)2.536 (4)138 (2)
O2—H2···O60.821.852.631 (3)159
O5—H5···O1i0.821.812.622 (3)168
N6—H6···O60.88 (2)1.82 (3)2.546 (4)138 (2)
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

We thank all researchers of the CHEMS Research Unit, University of Constantine, Algeria, for their valuable assistance. Thanks are due to the MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique –Algérie) for financial support. We also express our gratitude to Professor L. Ouahab, Director of Research at the Laboratory UMR LCSIM 6511, CNRS, Rennes I (France), for recording the diffraction data and help with the structure determination.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHerbst, W. & Hunger, K. (2004). Industrial Organic Pigments, pp. 183–419. Weinheim: VCH.  Google Scholar
First citationKaradayı, N., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3695–o3696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOakes, J. (2002). Rev. Prog. Color. pp. 32-63.  Google Scholar
First citationOlivieri, A. C., Wilson, R. B., Paul, I. C. & Curtin, D. Y. (1989). J. Am. Chem. Soc. 111, 5525–5532.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigments, 57, 77–86.  Web of Science CrossRef CAS Google Scholar
First citationYazıcı, S., Albayrak, Ç., Gümrükçüoğlu, İ., Şenel, İ. & Büyükgüngör, O. (2010). Acta Cryst. E66, o559–o560.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1322-o1323
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds