organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1359-o1360

Bis(1-ethyl-3-methyl­imidazolium) 3,6-diselanyl­­idene-1,2,4,5-tetra­selena-3,6-diphospha­cyclo­hexane-3,6-di­selen­olate

aLake Forest College, 555 N. Sheridan Rd, Lake Forest, IL 60045, USA, and bInstitut des Matériaux Jean Rouxel (IMN), UMR 6502 CNRS-Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
*Correspondence e-mail: cody@lakeforest.edu

(Received 10 July 2013; accepted 22 July 2013; online 31 July 2013)

In the title compound, 2C6H11N2+·P2Se82− or [EMIM]2P2Se8 (EMIM = 1-ethyl-3-methyl­imidazolium), the anions, located about inversion centers between EMIM cations, exhibit a cyclo­hexane-like chair conformation. The cations are found in columns along the a axis, with centroid–centroid distances of 3.8399 (3) and 4.7530 (2) Å. The observed P—Se distances and Se—P—Se angles agree with other salts of this anion.

Related literature

For similar seleno­phosphate compounds, see: Biswas et al. (2010[Biswas, K., Zhang, Q., Chung, I., Song, J., Androulakis, J., Freeman, A. J. & Kanatzidis, M. G. (2010). J. Am. Chem. Soc. 132, 14760-14762.]); Lin et al. (2012[Lin, Y., Massa, W. & Dehnen, S. (2012). Chem. Eur. J. 18, 13427-, 13434.]). For ionothermal reactions in room-temperature ionic liquids, see: Morris (2009[Morris, R. E. (2009). Chem. Commun. pp. 2990-2998.]); Parnham & Morris (2007[Parnham, E. R. & Morris, R. E. (2007). Acc. Chem. Res. 40, 1005-1013.]); Cody et al. (2012[Cody, J. A., Finch, K. B., Reynders, G. J. III, Alexander, G. C. B., Lim, H. G., Näther, C. & Bensch, W. (2012). Inorg. Chem. 51, 13357-13362.]). For the preparation of EMIM(BF4), see: Egashira et al. (2006[Egashira, M., Yamamoto, Y., Fukutake, T., Yoshimoto, N. & Morita, M. (2006). J. Fluorine Chem. 127, 1261-1264.]). For the structure of the P2Se82− anion, see: Zhao et al. (1992[Zhao, J., Pennington, W. T. & Kolis, J. W. (1992). J. Chem. Soc. Chem. Commun. pp. 265-266.]); Rotter et al. (2008[Rotter, C., Schuster, M., Kidik, M., Schön, O., Klapötke, T. M. & Karaghiosoff, K. (2008). Inorg. Chem. 47, 1663-1673.]). For ππ inter­actions between imidazolium cations, see: Wilkes & Zaworotko (1993[Wilkes, J. S. & Zaworotko, M. J. (1993). Supramol. Chem. 1, 191-193.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H11N2+·P2Se82−

  • Mr = 915.96

  • Triclinic, [P \overline 1]

  • a = 7.8885 (4) Å

  • b = 9.3783 (4) Å

  • c = 9.8039 (5) Å

  • α = 110.390 (3)°

  • β = 96.395 (4)°

  • γ = 102.992 (5)°

  • V = 648.00 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 11.41 mm−1

  • T = 293 K

  • 0.19 × 0.07 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian [JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]) and X-SHAPE (Stoe & Cie, 1998[Stoe & Cie (1998). X-SHAPE. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.204, Tmax = 0.754

  • 22118 measured reflections

  • 3719 independent reflections

  • 2622 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.063

  • S = 1.02

  • 3719 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected geometric parameters (Å, °)

P1—Se4 2.1104 (8)
P1—Se3 2.1334 (8)
P1—Se1 2.2794 (9)
P1—Se2i 2.2809 (8)
Se1—Se2 2.3442 (5)
Se4—P1—Se3 122.19 (4)
Se4—P1—Se1 113.49 (4)
Se3—P1—Se1 100.04 (3)
Se4—P1—Se2i 113.90 (4)
Se3—P1—Se2i 100.49 (3)
Se1—P1—Se2i 104.32 (3)
P1—Se1—Se2 102.89 (2)
P1i—Se2—Se1 102.37 (2)
Symmetry code: (i) -x+1, -y, -z.

Data collection: COLLECT (Hooft, 2009[Hooft, R. W. W. (2009). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiophosphate and selenophosphate compounds are sought for their interesting and fine-tunable electronic properties (Lin et al., 2012). As new synthetic methods are often needed to gain access to new compounds with interesting properties, ionothermal reactions of thio- and selenophosphates were explored. Recently, room-temperature ionic liquids have received much interest for the preparation of inorganic materials (Morris, 2009; Parnham & Morris, 2007; Cody, et al., 2012).

The structure of the anion in the title compound was first reported by Zhao et al. (1992) and the EMIM cation is well known. All interatomic distances and angles found in the current study (Fig. 1) are within normal ranges (Rotter et al., 2008). Although the EMIM cations are found in columns in the title compound, the centroid-to-centroid distances of 3.8399 (3) Å and 4.7530 (2) Å (Fig. 2) indicate only weak pi-pi interactions (Wilkes & Zaworotko, 1993).

Related literature top

For similar selenophosphate compounds, see: Biswas et al. (2010); Lin et al. (2012). For ionothermal reactions in room-temperature ionic liquids, see: Morris (2009); Parnham & Morris (2007); Cody et al. (2012). For the preparation of EMIMBF4, see: Egashira et al. (2006). For the structure of the P2Se82- anion, see: Zhao et al. (1992); Rotter et al. (2008). For ππ interactions between imidazolium cations, see: Wilkes & Zaworotko (1993).

Experimental top

The title compound was prepared by the literature method (Cody et al., 2012) for ionothermal synthesis of related sulfur compounds. A total mass of 125 mg of the elements with a stoichiometry of Ni: 4P: 16Se was ground together in a glove box and then placed in a Pyrex tube. An aliquot of 1.25 ml of the ionic liquid EMIMBF4, prepared according to the literature (Egashira, et al., 2006), was added to the tube in a glove bag. The tube was then evacuated and sealed. The reaction mixture was heated at 150 °C for 96 h and then slowly cooled to room temperature at a rate of 0.5 °C/min. The tube was opened, the product mixture was filtered, and individual crystals were selected for analysis by hand. The products included black powder, large red blocks, and small yellow plates. The latter were both the title compound; the color difference is attributed to absorption effects from the thickness of the crystals. Although elemental nickel was included in the reaction mixture, it was not observed in the isolated crystalline products.

Refinement top

All H atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.93 Å for aromatic, 0.97 Å for methylene and 0.96 Å for methyl H-atoms.

Computing details top

Data collection: COLLECT (Hooft, 2009); cell refinement: COLLECT (Hooft, 2009); data reduction: COLLECT (Hooft, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atomic labeling scheme for the title compound. Thermal elipsoids are shown at the 50% level. Symmetry code for the generation of equivalent atoms: i = 1 - x, -y, -z.
[Figure 2] Fig. 2. A packing diagram of the title compound showing the column of EMIM cations along the a axis.
Bis(1-ethyl-3-methylimidazolium) 3,6-diselanylidene-1,2,4,5-tetraselena-3,6-diphosphacyclohexane-3,6-diselenolate top
Crystal data top
2C6H11N2+·P2Se82Z = 1
Mr = 915.96F(000) = 424
Triclinic, P1Dx = 2.347 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8885 (4) ÅCell parameters from 3719 reflections
b = 9.3783 (4) Åθ = 6.5–30.0°
c = 9.8039 (5) ŵ = 11.41 mm1
α = 110.390 (3)°T = 293 K
β = 96.395 (4)°Plate, yellow
γ = 102.992 (5)°0.19 × 0.07 × 0.03 mm
V = 648.00 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
3719 independent reflections
Radiation source: fine-focus sealed tube2622 reflections with I > 2σ(I)
Unknown monochromatorRint = 0.072
ω scansθmax = 30.0°, θmin = 6.5°
Absorption correction: gaussian
[JANA2006 (Petříček et al., 2006) and X-SHAPE (Stoe & Cie, 1998)]
h = 1011
Tmin = 0.204, Tmax = 0.754k = 1313
22118 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0252P)2 + 0.2292P]
where P = (Fo2 + 2Fc2)/3
3719 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
2C6H11N2+·P2Se82γ = 102.992 (5)°
Mr = 915.96V = 648.00 (5) Å3
Triclinic, P1Z = 1
a = 7.8885 (4) ÅMo Kα radiation
b = 9.3783 (4) ŵ = 11.41 mm1
c = 9.8039 (5) ÅT = 293 K
α = 110.390 (3)°0.19 × 0.07 × 0.03 mm
β = 96.395 (4)°
Data collection top
Nonius KappaCCD
diffractometer
3719 independent reflections
Absorption correction: gaussian
[JANA2006 (Petříček et al., 2006) and X-SHAPE (Stoe & Cie, 1998)]
2622 reflections with I > 2σ(I)
Tmin = 0.204, Tmax = 0.754Rint = 0.072
22118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
3719 reflectionsΔρmin = 0.55 e Å3
118 parameters
Special details top

Experimental. A set of 280 frames were collected with a rotation of 2° per frame and an exposure time of 190 s; the crystal to detector distance was 25.00 mm. Refinements were done with the SHELXTL97 (Sheldrick, 2008) software package; absorption correction was made with the program Jana2006 (Petricek et al., 2006) using the program X-SHAPE (Stoe & Cie, 1998).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.62769 (11)0.10004 (9)0.13027 (9)0.03455 (17)
Se10.38273 (4)0.24755 (3)0.05425 (4)0.04208 (9)
Se20.21381 (4)0.06847 (4)0.03916 (4)0.04234 (9)
Se30.77764 (6)0.26777 (5)0.09996 (4)0.05519 (11)
Se40.56642 (5)0.01558 (4)0.33743 (4)0.04503 (10)
N10.2827 (4)0.4858 (3)0.3773 (3)0.0413 (6)
N20.2005 (3)0.2740 (3)0.4218 (3)0.0422 (6)
C10.2281 (4)0.3279 (4)0.3154 (4)0.0415 (7)
H10.21220.26610.21480.050*
C20.2379 (5)0.4007 (5)0.5542 (4)0.0530 (9)
H20.22980.39610.64650.064*
C30.2884 (5)0.5333 (4)0.5270 (4)0.0525 (9)
H30.32100.63720.59650.063*
C40.3182 (5)0.5911 (4)0.2952 (4)0.0486 (8)
H4A0.35970.53820.20680.058*
H4B0.41150.68690.35720.058*
C50.1558 (6)0.6340 (6)0.2513 (6)0.0735 (13)
H5A0.18320.70260.19860.110*
H5B0.11560.68770.33880.110*
H5C0.06410.53950.18830.110*
C60.1325 (5)0.1069 (4)0.3983 (5)0.0606 (10)
H6A0.12480.09800.49220.091*
H6B0.21140.04960.35270.091*
H6C0.01650.06340.33450.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0454 (4)0.0353 (4)0.0258 (4)0.0132 (3)0.0065 (3)0.0144 (3)
Se10.0560 (2)0.03274 (15)0.03188 (17)0.00568 (13)0.00294 (14)0.01201 (13)
Se20.03936 (17)0.05217 (19)0.03963 (19)0.00924 (13)0.00866 (14)0.02474 (16)
Se30.0774 (3)0.0598 (2)0.0454 (2)0.0411 (2)0.01621 (19)0.02586 (19)
Se40.0639 (2)0.04233 (17)0.02882 (17)0.01506 (15)0.01340 (15)0.01247 (14)
N10.0472 (15)0.0410 (14)0.0361 (15)0.0097 (11)0.0087 (12)0.0172 (12)
N20.0435 (14)0.0439 (15)0.0431 (16)0.0089 (11)0.0079 (12)0.0239 (13)
C10.0461 (18)0.0424 (16)0.0338 (17)0.0084 (13)0.0078 (14)0.0147 (14)
C20.063 (2)0.066 (2)0.036 (2)0.0179 (18)0.0138 (17)0.0268 (19)
C30.071 (2)0.0468 (18)0.0329 (18)0.0121 (17)0.0126 (17)0.0101 (16)
C40.054 (2)0.0459 (18)0.052 (2)0.0092 (15)0.0174 (17)0.0277 (17)
C50.065 (3)0.095 (3)0.095 (4)0.030 (2)0.025 (2)0.069 (3)
C60.064 (2)0.051 (2)0.075 (3)0.0095 (17)0.013 (2)0.038 (2)
Geometric parameters (Å, º) top
P1—Se42.1104 (8)C2—C31.345 (5)
P1—Se32.1334 (8)C2—H20.9300
P1—Se12.2794 (9)C3—H30.9300
P1—Se2i2.2809 (8)C4—C51.489 (5)
Se1—Se22.3442 (5)C4—H4A0.9700
Se2—P1i2.2809 (8)C4—H4B0.9700
N1—C11.332 (4)C5—H5A0.9600
N1—C31.370 (4)C5—H5B0.9600
N1—C41.477 (4)C5—H5C0.9600
N2—C11.327 (4)C6—H6A0.9600
N2—C21.366 (4)C6—H6B0.9600
N2—C61.463 (4)C6—H6C0.9600
C1—H10.9300
Se4—P1—Se3122.19 (4)C2—C3—H3126.6
Se4—P1—Se1113.49 (4)N1—C3—H3126.6
Se3—P1—Se1100.04 (3)N1—C4—C5111.4 (3)
Se4—P1—Se2i113.90 (4)N1—C4—H4A109.3
Se3—P1—Se2i100.49 (3)C5—C4—H4A109.3
Se1—P1—Se2i104.32 (3)N1—C4—H4B109.3
P1—Se1—Se2102.89 (2)C5—C4—H4B109.3
P1i—Se2—Se1102.37 (2)H4A—C4—H4B108.0
C1—N1—C3108.8 (3)C4—C5—H5A109.5
C1—N1—C4125.1 (3)C4—C5—H5B109.5
C3—N1—C4126.0 (3)H5A—C5—H5B109.5
C1—N2—C2108.5 (3)C4—C5—H5C109.5
C1—N2—C6125.1 (3)H5A—C5—H5C109.5
C2—N2—C6126.3 (3)H5B—C5—H5C109.5
N2—C1—N1108.3 (3)N2—C6—H6A109.5
N2—C1—H1125.9N2—C6—H6B109.5
N1—C1—H1125.9H6A—C6—H6B109.5
C3—C2—N2107.8 (3)N2—C6—H6C109.5
C3—C2—H2126.1H6A—C6—H6C109.5
N2—C2—H2126.1H6B—C6—H6C109.5
C2—C3—N1106.7 (3)
Symmetry code: (i) x+1, y, z.
Selected geometric parameters (Å, º) top
P1—Se42.1104 (8)P1—Se2i2.2809 (8)
P1—Se32.1334 (8)Se1—Se22.3442 (5)
P1—Se12.2794 (9)
Se4—P1—Se3122.19 (4)Se3—P1—Se2i100.49 (3)
Se4—P1—Se1113.49 (4)Se1—P1—Se2i104.32 (3)
Se3—P1—Se1100.04 (3)P1—Se1—Se2102.89 (2)
Se4—P1—Se2i113.90 (4)P1i—Se2—Se1102.37 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank Lake Forest College and Pays de la Loire for sabbatical support for JAC at the Institut des Matériaux Jean Rouxel (IMN) in Nantes, France. We also thank Stéphane Jobic for his assistance with this structure and sabbatical.

References

First citationBiswas, K., Zhang, Q., Chung, I., Song, J., Androulakis, J., Freeman, A. J. & Kanatzidis, M. G. (2010). J. Am. Chem. Soc. 132, 14760–14762.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCody, J. A., Finch, K. B., Reynders, G. J. III, Alexander, G. C. B., Lim, H. G., Näther, C. & Bensch, W. (2012). Inorg. Chem. 51, 13357–13362.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEgashira, M., Yamamoto, Y., Fukutake, T., Yoshimoto, N. & Morita, M. (2006). J. Fluorine Chem. 127, 1261–1264.  Web of Science CrossRef CAS Google Scholar
First citationHooft, R. W. W. (2009). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLin, Y., Massa, W. & Dehnen, S. (2012). Chem. Eur. J. 18, 13427–, 13434.  Google Scholar
First citationMorris, R. E. (2009). Chem. Commun. pp. 2990–2998.  Web of Science CrossRef Google Scholar
First citationParnham, E. R. & Morris, R. E. (2007). Acc. Chem. Res. 40, 1005–1013.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRotter, C., Schuster, M., Kidik, M., Schön, O., Klapötke, T. M. & Karaghiosoff, K. (2008). Inorg. Chem. 47, 1663–1673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1998). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWilkes, J. S. & Zaworotko, M. J. (1993). Supramol. Chem. 1, 191–193.  CSD CrossRef CAS Google Scholar
First citationZhao, J., Pennington, W. T. & Kolis, J. W. (1992). J. Chem. Soc. Chem. Commun. pp. 265–266.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1359-o1360
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds