organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-(4-chloro­phen­yl)-2-phenyl-3-(4-phenyl-1,2,3-selena­diazol-5-yl)propano­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Chemistry, Sri Sarada College for Women (Autonomous), Fairlands, Salem 636 016, India, and cDepartment of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 14 June 2013; accepted 28 June 2013; online 10 July 2013)

In the title compound, C25H21ClN2O2Se, the selena­diazole ring is almost planar [maximum deviation = 0.004 (2) Å], and the adjacent benzene ring is twisted by 50.6 (1)° with respect to this ring.

Related literature

For general background to selena­diazol derivatives, see: Khanna (2005[Khanna, P. K. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 951-955.]). For related structures, see: Marx et al. (2008[Marx, A., Saravanan, S., Muthusubramanian, S., Manivannan, V. & Rath, N. P. (2008). Acta Cryst. E64, o349.]); Muthukumaran et al. (2011[Muthukumaran, J., Nachiappan, M., Chitra, S., Manisankar, P., Bhattacharya, S., Muthusubramanian, S., Krishna, R. & Jeyakanthan, J. (2011). Acta Cryst. E67, o2010-o2011.]).

[Scheme 1]

Experimental

Crystal data
  • C25H21ClN2O2Se

  • Mr = 495.85

  • Monoclinic, P 21 /c

  • a = 12.1337 (3) Å

  • b = 12.2267 (3) Å

  • c = 16.4423 (4) Å

  • β = 107.744 (1)°

  • V = 2323.26 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.663, Tmax = 0.729

  • 22323 measured reflections

  • 5764 independent reflections

  • 3745 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.02

  • 5764 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Selenadiazoles, having one selenium and two nitrogen atoms in a five membered ring, are the important class of organoselenium compounds utilized in the synthesis of semiconductor nanoparticles (Khanna, 2005). The crystal structure of the title compound is carried out to elucidate the conformational status of the molecule.

The ORTEP plot of the molecule is shown in Fig.1. The selenadiazol ring is planar[with maximum deviation for the atom N2 is -0.004 (2) Å]. The attached phenyl ring is twisted away at an angle of 50.6 (1)° with respect to selenadiazol ring. The bond lengths [Se1—N2] 1.874 (2) Å, [Se1—C8] 1.838 (2) Å & [Cl1—C13] 1.736 (2)° are comparable with the values reported in the literature (Marx et al. 2008; Muthukumaran et al. 2011). The bond C9—C16 is slightly lengthened due to streic interaction between the phenyl and chlorophenyl rings.

The dihedral angle between the selenadiazol and chlorophenyl ring is 74.3 (1)°. The propanoate group assumes an extended conformation which can be seen from the torsion angle (C16—C23—O2—C24) value of -177.8 (2)°.

Related literature top

For general background to selenadiazol derivatives, see: Khanna (2005). For related structures, see: Marx et al. (2008); Muthukumaran et al. (2011).

Experimental top

A mixture of ethyl 3-(4-chlorophenyl)-5-oxo-2,5-diphenylpentanoate (1 mM), semicarbazide hydrochloride(2 mM) and sodium acetate (3 mM) in ethanol (10 ml) was refluxed for 4 hrs. After completion of the reaction as monitored by TLC, the mixture was poured into ice cold water and the resulting semicarbazone was filtered off. Then, a mixture of semicarbazone (1 mM) and SeO2 (2 mM) in tetrahydrofuran (10 ml) were refluxed on a water bath for 1hr. The selenium deposited on cooling was removed by filtration, and the filtrate was poured into crushed ice, extracted with dichloromethane, and purified by column chromatography using silica gel (60–120 mesh) with 97:3 petroleum ether: ethyl acetate as eluent to give ethyl-3-(4-chlorophenyl)-2-phenyl-3- (4-phenyl-1,2, 3-selenadiazol-5-yl)propanoate.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the displacement ellipsoids drawn at 30% probability level.
Ethyl 3-(4-chlorophenyl)-2-phenyl-3-(4-phenyl-1,2,3-selenadiazol-5-yl)propanoate top
Crystal data top
C25H21ClN2O2SeF(000) = 1008
Mr = 495.85Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5764 reflections
a = 12.1337 (3) Åθ = 1.8–28.4°
b = 12.2267 (3) ŵ = 1.76 mm1
c = 16.4423 (4) ÅT = 293 K
β = 107.744 (1)°Block, yellow
V = 2323.26 (10) Å30.25 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
5764 independent reflections
Radiation source: fine-focus sealed tube3745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1216
Tmin = 0.663, Tmax = 0.729k = 1615
22323 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.6047P]
where P = (Fo2 + 2Fc2)/3
5764 reflections(Δ/σ)max = 0.002
280 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C25H21ClN2O2SeV = 2323.26 (10) Å3
Mr = 495.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1337 (3) ŵ = 1.76 mm1
b = 12.2267 (3) ÅT = 293 K
c = 16.4423 (4) Å0.25 × 0.20 × 0.18 mm
β = 107.744 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5764 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3745 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 0.729Rint = 0.035
22323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
5764 reflectionsΔρmin = 0.27 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7760 (2)0.5374 (2)0.74986 (16)0.0633 (6)
H10.76560.53100.69160.076*
C20.7134 (3)0.6137 (2)0.7793 (2)0.0836 (9)
H20.66100.65880.74070.100*
C30.7278 (3)0.6234 (3)0.8652 (3)0.0954 (10)
H30.68470.67440.88460.114*
C40.8054 (3)0.5580 (3)0.9219 (2)0.0908 (10)
H40.81510.56470.98000.109*
C50.8696 (2)0.4818 (2)0.89387 (17)0.0706 (7)
H50.92300.43810.93310.085*
C60.85467 (19)0.47046 (18)0.80734 (14)0.0536 (5)
C70.92554 (18)0.38995 (18)0.77867 (13)0.0502 (5)
C80.88943 (17)0.31106 (18)0.71769 (13)0.0469 (5)
C90.76586 (16)0.28344 (17)0.66740 (12)0.0428 (4)
H90.71910.34920.66590.051*
C100.72046 (16)0.19519 (17)0.71371 (12)0.0426 (4)
C110.64815 (19)0.2233 (2)0.76108 (15)0.0549 (5)
H110.62690.29600.76340.066*
C120.6070 (2)0.1451 (2)0.80495 (15)0.0656 (7)
H120.55850.16480.83670.079*
C130.6383 (2)0.0383 (2)0.80109 (15)0.0631 (7)
C140.7116 (2)0.0082 (2)0.75615 (15)0.0622 (6)
H140.73380.06440.75510.075*
C150.7521 (2)0.08659 (19)0.71257 (14)0.0538 (5)
H150.80160.06630.68180.065*
C160.75310 (17)0.25174 (17)0.57420 (13)0.0456 (5)
H160.79310.18200.57470.055*
C170.62689 (19)0.23681 (19)0.52183 (13)0.0497 (5)
C180.5471 (2)0.3186 (2)0.51442 (14)0.0640 (6)
H180.56990.38530.54150.077*
C190.4325 (2)0.3023 (3)0.46674 (16)0.0834 (9)
H190.37850.35790.46190.100*
C200.3993 (3)0.2040 (4)0.4268 (2)0.0985 (12)
H200.32220.19230.39580.118*
C210.4772 (3)0.1247 (3)0.4322 (2)0.1093 (13)
H210.45420.05890.40370.131*
C220.5919 (3)0.1399 (2)0.47981 (18)0.0818 (8)
H220.64540.08420.48330.098*
C230.80904 (19)0.3363 (2)0.53277 (14)0.0533 (5)
C240.9294 (3)0.3559 (3)0.4427 (2)0.0910 (9)
H24A0.90330.34060.38200.109*
H24B0.91490.43250.45090.109*
C251.0522 (3)0.3337 (3)0.4767 (3)0.1152 (13)
H25A1.09350.37820.44770.173*
H25B1.06630.25790.46830.173*
H25C1.07810.35020.53660.173*
N11.04418 (17)0.39168 (19)0.81995 (13)0.0663 (5)
N21.10574 (18)0.3221 (2)0.79702 (15)0.0766 (6)
O10.80184 (17)0.43304 (16)0.54165 (12)0.0777 (5)
O20.86582 (16)0.28857 (15)0.48558 (11)0.0679 (5)
Cl10.58491 (9)0.06117 (8)0.85433 (6)0.1057 (3)
Se11.01461 (2)0.23132 (3)0.710678 (17)0.06928 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0524 (13)0.0566 (14)0.0712 (15)0.0052 (11)0.0043 (11)0.0039 (12)
C20.0652 (17)0.0621 (17)0.109 (2)0.0021 (14)0.0058 (16)0.0044 (16)
C30.090 (2)0.079 (2)0.120 (3)0.0026 (18)0.036 (2)0.025 (2)
C40.119 (3)0.079 (2)0.080 (2)0.015 (2)0.039 (2)0.0217 (17)
C50.0822 (19)0.0585 (16)0.0642 (16)0.0078 (13)0.0121 (13)0.0058 (12)
C60.0494 (12)0.0467 (12)0.0576 (13)0.0146 (10)0.0057 (10)0.0040 (10)
C70.0385 (11)0.0530 (13)0.0515 (12)0.0106 (9)0.0025 (9)0.0027 (10)
C80.0350 (10)0.0535 (12)0.0485 (11)0.0031 (9)0.0071 (8)0.0028 (9)
C90.0331 (9)0.0476 (12)0.0437 (11)0.0031 (8)0.0056 (8)0.0046 (8)
C100.0336 (9)0.0515 (12)0.0391 (10)0.0046 (8)0.0058 (8)0.0060 (8)
C110.0436 (11)0.0644 (14)0.0559 (13)0.0018 (10)0.0142 (10)0.0053 (11)
C120.0503 (13)0.093 (2)0.0591 (14)0.0091 (13)0.0247 (11)0.0038 (13)
C130.0588 (14)0.0749 (18)0.0536 (13)0.0249 (13)0.0141 (11)0.0025 (12)
C140.0702 (16)0.0545 (14)0.0609 (14)0.0117 (12)0.0185 (12)0.0019 (11)
C150.0561 (13)0.0543 (14)0.0546 (13)0.0043 (10)0.0222 (10)0.0054 (10)
C160.0383 (10)0.0516 (13)0.0451 (11)0.0037 (9)0.0098 (8)0.0024 (9)
C170.0447 (11)0.0649 (14)0.0365 (10)0.0117 (10)0.0082 (8)0.0027 (9)
C180.0468 (13)0.0940 (19)0.0471 (13)0.0022 (13)0.0082 (10)0.0126 (12)
C190.0429 (13)0.148 (3)0.0523 (14)0.0061 (16)0.0045 (11)0.0008 (16)
C200.0558 (18)0.154 (4)0.0665 (18)0.038 (2)0.0093 (14)0.011 (2)
C210.097 (3)0.095 (3)0.101 (2)0.043 (2)0.024 (2)0.007 (2)
C220.0739 (18)0.0680 (18)0.0809 (18)0.0149 (14)0.0103 (14)0.0079 (14)
C230.0448 (12)0.0626 (16)0.0478 (12)0.0083 (10)0.0073 (9)0.0007 (10)
C240.085 (2)0.114 (3)0.086 (2)0.0062 (19)0.0439 (17)0.0262 (18)
C250.087 (3)0.094 (3)0.179 (4)0.016 (2)0.062 (3)0.019 (2)
N10.0416 (11)0.0765 (14)0.0671 (13)0.0124 (10)0.0039 (9)0.0003 (10)
N20.0349 (10)0.0998 (18)0.0827 (15)0.0066 (11)0.0002 (10)0.0018 (13)
O10.0910 (14)0.0613 (12)0.0898 (13)0.0124 (10)0.0409 (11)0.0029 (9)
O20.0688 (11)0.0807 (12)0.0641 (10)0.0032 (9)0.0352 (9)0.0054 (9)
Cl10.1182 (7)0.1091 (7)0.1002 (6)0.0457 (5)0.0485 (5)0.0149 (5)
Se10.03892 (14)0.0867 (2)0.0777 (2)0.00811 (12)0.01107 (11)0.00725 (13)
Geometric parameters (Å, º) top
C1—C21.380 (4)C14—H140.9300
C1—C61.387 (3)C15—H150.9300
C1—H10.9300C16—C231.509 (3)
C2—C31.374 (4)C16—C171.522 (3)
C2—H20.9300C16—H160.9800
C3—C41.364 (5)C17—C181.372 (3)
C3—H30.9300C17—C221.372 (3)
C4—C51.381 (4)C18—C191.386 (3)
C4—H40.9300C18—H180.9300
C5—C61.385 (3)C19—C201.371 (5)
C5—H50.9300C19—H190.9300
C6—C71.476 (3)C20—C211.338 (5)
C7—C81.364 (3)C20—H200.9300
C7—N11.392 (3)C21—C221.386 (4)
C8—C91.513 (3)C21—H210.9300
C8—Se11.838 (2)C22—H220.9300
C9—C101.518 (3)C23—O11.198 (3)
C9—C161.542 (3)C23—O21.320 (3)
C9—H90.9800C24—C251.448 (5)
C10—C111.382 (3)C24—O21.449 (3)
C10—C151.384 (3)C24—H24A0.9700
C11—C121.379 (3)C24—H24B0.9700
C11—H110.9300C25—H25A0.9600
C12—C131.367 (4)C25—H25B0.9600
C12—H120.9300C25—H25C0.9600
C13—C141.368 (3)N1—N21.263 (3)
C13—Cl11.736 (2)N2—Se11.874 (2)
C14—C151.374 (3)
C2—C1—C6119.8 (3)C14—C15—H15119.4
C2—C1—H1120.1C10—C15—H15119.4
C6—C1—H1120.1C23—C16—C17109.90 (17)
C3—C2—C1120.5 (3)C23—C16—C9110.70 (17)
C3—C2—H2119.7C17—C16—C9111.81 (17)
C1—C2—H2119.7C23—C16—H16108.1
C4—C3—C2119.8 (3)C17—C16—H16108.1
C4—C3—H3120.1C9—C16—H16108.1
C2—C3—H3120.1C18—C17—C22118.9 (2)
C3—C4—C5120.6 (3)C18—C17—C16121.6 (2)
C3—C4—H4119.7C22—C17—C16119.5 (2)
C5—C4—H4119.7C17—C18—C19120.3 (3)
C4—C5—C6120.0 (3)C17—C18—H18119.8
C4—C5—H5120.0C19—C18—H18119.8
C6—C5—H5120.0C20—C19—C18119.7 (3)
C5—C6—C1119.2 (2)C20—C19—H19120.2
C5—C6—C7119.2 (2)C18—C19—H19120.2
C1—C6—C7121.5 (2)C21—C20—C19120.3 (3)
C8—C7—N1115.0 (2)C21—C20—H20119.8
C8—C7—C6128.22 (19)C19—C20—H20119.8
N1—C7—C6116.80 (19)C20—C21—C22120.6 (3)
C7—C8—C9127.0 (2)C20—C21—H21119.7
C7—C8—Se1109.56 (15)C22—C21—H21119.7
C9—C8—Se1123.19 (16)C17—C22—C21120.2 (3)
C8—C9—C10109.59 (16)C17—C22—H22119.9
C8—C9—C16112.45 (17)C21—C22—H22119.9
C10—C9—C16112.21 (16)O1—C23—O2125.4 (2)
C8—C9—H9107.4O1—C23—C16124.2 (2)
C10—C9—H9107.4O2—C23—C16110.4 (2)
C16—C9—H9107.4C25—C24—O2110.1 (3)
C11—C10—C15118.2 (2)C25—C24—H24A109.6
C11—C10—C9119.7 (2)O2—C24—H24A109.6
C15—C10—C9122.06 (19)C25—C24—H24B109.6
C12—C11—C10121.1 (2)O2—C24—H24B109.6
C12—C11—H11119.5H24A—C24—H24B108.2
C10—C11—H11119.5C24—C25—H25A109.5
C13—C12—C11119.1 (2)C24—C25—H25B109.5
C13—C12—H12120.4H25A—C25—H25B109.5
C11—C12—H12120.4C24—C25—H25C109.5
C14—C13—C12121.2 (2)H25A—C25—H25C109.5
C14—C13—Cl1119.2 (2)H25B—C25—H25C109.5
C12—C13—Cl1119.6 (2)N2—N1—C7117.5 (2)
C13—C14—C15119.3 (2)N1—N2—Se1111.03 (15)
C13—C14—H14120.4C23—O2—C24119.0 (2)
C15—C14—H14120.4C8—Se1—N286.93 (10)
C14—C15—C10121.2 (2)
C6—C1—C2—C30.4 (4)C11—C10—C15—C141.0 (3)
C1—C2—C3—C40.7 (5)C9—C10—C15—C14178.84 (19)
C2—C3—C4—C50.1 (5)C8—C9—C16—C2350.6 (2)
C3—C4—C5—C60.7 (5)C10—C9—C16—C23174.72 (17)
C4—C5—C6—C11.0 (4)C8—C9—C16—C17173.52 (18)
C4—C5—C6—C7179.0 (2)C10—C9—C16—C1762.4 (2)
C2—C1—C6—C50.5 (4)C23—C16—C17—C1866.8 (3)
C2—C1—C6—C7178.4 (2)C9—C16—C17—C1856.6 (3)
C5—C6—C7—C8129.5 (3)C23—C16—C17—C22112.2 (3)
C1—C6—C7—C852.6 (3)C9—C16—C17—C22124.4 (2)
C5—C6—C7—N148.6 (3)C22—C17—C18—C191.4 (4)
C1—C6—C7—N1129.3 (2)C16—C17—C18—C19179.6 (2)
N1—C7—C8—C9174.8 (2)C17—C18—C19—C200.1 (4)
C6—C7—C8—C93.3 (4)C18—C19—C20—C211.4 (5)
N1—C7—C8—Se10.1 (2)C19—C20—C21—C221.6 (6)
C6—C7—C8—Se1178.24 (18)C18—C17—C22—C211.3 (4)
C7—C8—C9—C1091.3 (3)C16—C17—C22—C21179.7 (3)
Se1—C8—C9—C1083.0 (2)C20—C21—C22—C170.2 (6)
C7—C8—C9—C16143.2 (2)C17—C16—C23—O182.5 (3)
Se1—C8—C9—C1642.5 (2)C9—C16—C23—O141.5 (3)
C8—C9—C10—C11101.5 (2)C17—C16—C23—O297.2 (2)
C16—C9—C10—C11132.8 (2)C9—C16—C23—O2138.78 (19)
C8—C9—C10—C1576.3 (2)C8—C7—N1—N20.5 (3)
C16—C9—C10—C1549.4 (2)C6—C7—N1—N2178.9 (2)
C15—C10—C11—C121.1 (3)C7—N1—N2—Se10.7 (3)
C9—C10—C11—C12178.98 (19)O1—C23—O2—C242.6 (4)
C10—C11—C12—C130.1 (4)C16—C23—O2—C24177.8 (2)
C11—C12—C13—C141.5 (4)C25—C24—O2—C23115.2 (3)
C11—C12—C13—Cl1178.78 (18)C7—C8—Se1—N20.22 (17)
C12—C13—C14—C151.5 (4)C9—C8—Se1—N2175.37 (18)
Cl1—C13—C14—C15178.69 (18)N1—N2—Se1—C80.5 (2)
C13—C14—C15—C100.3 (3)

Experimental details

Crystal data
Chemical formulaC25H21ClN2O2Se
Mr495.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.1337 (3), 12.2267 (3), 16.4423 (4)
β (°) 107.744 (1)
V3)2323.26 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.663, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
22323, 5764, 3745
Rint0.035
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.02
No. of reflections5764
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

PS thanks the UGC, New Delhi, for financial support in the form of a Research Fellowship in Science for Meritorious Students. The authors thank the TBI Consultancy, University of Madras, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhanna, P. K. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 951–955.  Web of Science CrossRef CAS Google Scholar
First citationMarx, A., Saravanan, S., Muthusubramanian, S., Manivannan, V. & Rath, N. P. (2008). Acta Cryst. E64, o349.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuthukumaran, J., Nachiappan, M., Chitra, S., Manisankar, P., Bhattacharya, S., Muthusubramanian, S., Krishna, R. & Jeyakanthan, J. (2011). Acta Cryst. E67, o2010–o2011.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds