metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m462-m463

Tetra­ethyl­ammonium dicyanido(5,10,15,20-tetra­phenyl­porphyrinato)ferrate(III) di­chloro­methane monosolvate

aDepartment of Chemistry, L.N. Gumilyov Eurasian National University, 5 Munaitpasov Str, 010008 Astana, Kazakhstan, and bDepartment of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390, USA
*Correspondence e-mail: shatruk@chem.fsu.edu

(Received 6 June 2013; accepted 10 July 2013; online 17 July 2013)

The title compound, (C8H20N)[Fe(C44H28N4)(CN)2]·CH2Cl2 or (Et4N)[Fe(TPP)(CN)2], was recrystallized from di­chloro­methane–diethyl ether. The compound crystallizes with the two unique halves of the FeIII porphyrinato complex, one tetra­ethyl­ammonium cation and one inter­stitial di­chloro­methane mol­ecule within the asymmetric unit. Both anionic FeIII complexes exhibit inversion symmetry. Both the cation and the solvent mol­ecules show positional disorder. The cation is disordered over two sets of sites with an occupancy ratio of 0.710 (3):0.290 (3); the solvent mol­ecule is disordered over three positions with a 0.584 (6):0.208 (3):0.202 (5) ratio. The crystal packing features columns of [Fe(TPP)(CN)2] anions that propagate along [001]. The columns further pack into layers that are parallel to (011) and also include the Et4N+ cations. The inter­stitial CH2Cl2 mol­ecules appear in the inter­layer space. This complex may serve as a useful precursor for the assembly of multinuclear and extended CN-bridged complexes for the design of single-mol­ecule and single-chain magnets, respectively.

Related literature

For transition metal ions bridged by cyanide, see: Corsi et al. (1999[Corsi, D. M., Murthy, N. N., Young, V. G. Jr & Karlin, K. D. (1999). Inorg. Chem. 38, 848-858.]); Dunbar & Heintz (1997[Dunbar, K. R. & Heintz, R. (1997). Prog. Inorg. Chem. 45, 283-391.]); Scott et al. (1994[Scott, M. J., Lee, S. C. & Holm, R. H. (1994). Inorg. Chem. 33, 4651-4662.]); Schelter et al. (2004[Schelter, E. J., Prosvirin, A. V., Reiff, W. M. & Dunbar, K. R. (2004). Angew. Chem. Int. Ed. 43, 4912-4915.], 2007[Schelter, E. J., Karadas, F., Avendano, C., Prosvirin, A. V., Wernsdorfer, W. & Dunbar, K. R. (2007). J. Am. Chem. Soc. 129, 8139-8149.]); Shatruk et al. (2009[Shatruk, M., Avendano, C. & Dunbar, K. R. (2009). Prog. Inorg. Chem. 56, 155-334.]). For similar porphyrin compounds, see: Li et al. (2009[Li, J., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2009). Angew. Chem. Int. Ed. 48, 5010-5013.]); Scheidt et al. (1980[Scheidt, W. R., Haller, K. J. & Hatano, K. (1980). J. Am. Chem. Soc. 102, 3017-3021.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[Fe(C44H28N4)(CN)2]·CH2Cl2

  • Mr = 935.77

  • Triclinic, [P \overline 1]

  • a = 11.0069 (8) Å

  • b = 15.0344 (11) Å

  • c = 15.4350 (11) Å

  • α = 80.075 (1)°

  • β = 77.527 (1)°

  • γ = 83.077 (1)°

  • V = 2447.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 173 K

  • 0.22 × 0.15 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.960

  • 19913 measured reflections

  • 9891 independent reflections

  • 7117 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.129

  • S = 1.12

  • 9891 reflections

  • 682 parameters

  • 37 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Mononuclear metal complexes with terminal cyanide ligands have been shown to be useful building blocks for the construction of coordination oligomers and polymers based on the CN-bridged transition metal ions.(Dunbar & Heintz, 1997) A particular interest in these materials stems from the possibility of a judicious design and preparation of magnetically bistable materials, such as single-molecule and single-chain magnets (SMMs and SCMs). (Shatruk et al., 2009) A prerequisite for the existence of SMM and SCM properties is a significant magnetic anisotropy and high ground-state spin value of the transition metal ion. An effective approach uses a combination of two monometallic building blocks to satisfy both these criteria in the final structure.

A number of recent approaches have considered the mononuclear CN-terminated complexes as metalloligands that can be combined with solvated or partially ligated metal ions to create specific molecular shapes in a predictable (modular) manner.(Schelter et al., 2004 and Schelter et al., 2007) With the goal to prepare such metalloligand that would incorporate a magnetically anisotropic metal center, we turned to iron(III) tetraphenylporphyrinato anion, [Fe(TPP)]- (S = 1/2). It was reported that a reaction between [Fe(TPP)Cl] and KCN leads to the desired salt, K[Fe(TPP)(CN)2], and the crystal structure of this salt was established, (Scheidt et al.,1980) as well as the structure of its close analogue, in which the K+ ion was ligated by 18-crown-6 macrocycle.(Li et al., 2009) Nevertheless, reports on oligomeric or polymeric CN-bridged structures obtained with the [Fe(TPP)2(CN)2]- building block are very scarce.(Scott et al., 1994 and Corsi et al., 1999) Therefore, we set out to obtain a convenient, readily soluble precursor that could be used for the preparation of such structures.

A metathesis reaction between K[Fe(TPP)(CN)2] and (Et4N)Cl led to the isolation of dark-violet solid, (Et4N)[Fe(TPP)(CN)2] that could be readily recrystallized from CH2Cl2/Et2O. The compound is soluble in a variety of organic solvents, including dichloromethane, chloroform, acetonitrile, acetone, and N,N'-dimethylformamide. The results of our current efforts to use this precursor in the preparation of CN-bridged multinuclear assemblies will be reported in due course.

Related literature top

For transition metal ions bridged by cyanide, see: Corsi et al. (1999); Dunbar & Heintz (1997); Scott et al. (1994); Schelter et al. (2004, 2007); Shatruk et al. (2009). For similar porphyrin compounds, see: Li et al. (2009); Scheidt et al. (1980).

Experimental top

Caution: Potassium cyanide (KCN) used in this preparation is extremely poisonous. It should be used in small amounts and handled with great care!

[Fe(TPP)Cl] (200 mg, 0.284 mmol) was dissolved in 50 mL of methanol. To this solution was added an excess of KCN (185 mg, 2.84 mmol), and the reaction mixture was stirred under reflux for 12 h. After cooling down to room temperature, the obtained dark-violet solid was recovered by filtration and washed thoroughly with copious amount of water to remove the remaining KCN. The filter cake was redissolved in 200 mL of acetonitrile and filtered. The filtrate was evaporated to dryness. The dark-violet solid residue was redissolved in 50 mL of dichloromethane and layered with an equal volume of diethyl ether in a Schlenk tube. Within a few hours, needle-like dark-violet crystals of (Et4N)[Fe(TPP)(CN)2] appeared in the the tube. The crystals were harvested once the diffusion of Et2O into the solution of the complex was complete.

Refinement top

The tetraethylammonium cation was disordered over two positions around the central N atom, which were refined under the constraint that the total occupancy of both position is equal to 1. The interstitial dichloromethane molecule was disordered over three positions, the total occupancy of which also was set equal to 1. (An attempt to refine the CH2Cl2 molecule with only two disorder components consisently led to the appearance of significant peaks in the difference Fourier electron density maps.) The isotropic atomic displacement parameters (ADPs) of all C atoms from the three disorder components of the CH2Cl2 molecule were set equal, in order to minimize the correlation with the site occupancy factors (SOFs) and taking into account that these atoms were located nearby one another. The Cl atoms of the CH2Cl2 molecule were refined anisotropically, since the isotropic refinement consistently led to the appearance of significant residual electron density peaks in the vicinity of these atoms. To minimize the correlation between the ADPs and SOFs, the ADPs of the disordered Cl atoms that appeared closer than 1.2 Å to each other were restricted to be similar, using the SIMU instruction in SHELXL.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Approximately octahedral coordination about one FeIII. Displacement ellipsoids are drawn at the 50% probability level.
Tetraethylammonium dicyanido(5,10,15,20-tetraphenylporphyrinato)ferrate(III) dichloromethane monosolvate top
Crystal data top
(C8H20N)[Fe(C44H28N4)(CN)2]·CH2Cl2V = 2447.4 (3) Å3
Mr = 935.77Z = 2
Triclinic, P1F(000) = 978
Hall symbol: -P 1Dx = 1.270 Mg m3
a = 11.0069 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.0344 (11) ÅCell parameters from 374 reflections
c = 15.4350 (11) ŵ = 0.46 mm1
α = 80.075 (1)°T = 173 K
β = 77.527 (1)°Block, violet
γ = 83.077 (1)°0.22 × 0.15 × 0.09 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9891 independent reflections
Radiation source: fine-focus sealed tube7117 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
profile data from ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: numerical
(SADABS; Bruker, 2003)
h = 1313
Tmin = 0.905, Tmax = 0.960k = 1818
19913 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0577P)2]
where P = (Fo2 + 2Fc2)/3
9891 reflections(Δ/σ)max = 0.011
682 parametersΔρmax = 0.40 e Å3
37 restraintsΔρmin = 0.43 e Å3
Crystal data top
(C8H20N)[Fe(C44H28N4)(CN)2]·CH2Cl2γ = 83.077 (1)°
Mr = 935.77V = 2447.4 (3) Å3
Triclinic, P1Z = 2
a = 11.0069 (8) ÅMo Kα radiation
b = 15.0344 (11) ŵ = 0.46 mm1
c = 15.4350 (11) ÅT = 173 K
α = 80.075 (1)°0.22 × 0.15 × 0.09 mm
β = 77.527 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9891 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2003)
7117 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.960Rint = 0.034
19913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05037 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.40 e Å3
9891 reflectionsΔρmin = 0.43 e Å3
682 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.00000.50000.00000.01869 (13)
Fe20.50000.00000.50000.01952 (13)
N10.1628 (2)0.42371 (15)0.18511 (15)0.0333 (5)
N20.2623 (2)0.04837 (16)0.44363 (15)0.0379 (6)
N30.14203 (17)0.41953 (12)0.03907 (12)0.0205 (4)
N40.04346 (17)0.59835 (12)0.05767 (12)0.0197 (4)
N50.46273 (17)0.12961 (13)0.44784 (12)0.0215 (4)
N60.60197 (17)0.02392 (13)0.38148 (12)0.0218 (4)
N70.00444 (19)0.17939 (14)0.34375 (14)0.0297 (5)
C10.1057 (2)0.45270 (16)0.11609 (17)0.0220 (5)
C20.3502 (2)0.03109 (16)0.46476 (15)0.0242 (5)
C30.1698 (2)0.32906 (16)0.03127 (15)0.0220 (5)
C40.2723 (2)0.29234 (17)0.07419 (16)0.0267 (6)
H40.30930.23170.07780.032*
C50.3062 (2)0.36000 (16)0.10847 (17)0.0279 (6)
H50.37230.35620.14000.033*
C60.2240 (2)0.43871 (16)0.08838 (15)0.0216 (5)
C70.2201 (2)0.51980 (16)0.12243 (15)0.0219 (5)
C80.1332 (2)0.59287 (15)0.10891 (15)0.0207 (5)
C90.1306 (2)0.67796 (16)0.14082 (16)0.0254 (6)
H90.18120.69130.17880.030*
C100.0428 (2)0.73499 (16)0.10639 (16)0.0258 (6)
H100.02070.79640.11500.031*
C110.0111 (2)0.68592 (15)0.05439 (15)0.0223 (5)
C120.1068 (2)0.72216 (16)0.00936 (16)0.0229 (5)
C130.3131 (2)0.52463 (16)0.17977 (17)0.0257 (6)
C140.2745 (3)0.52788 (18)0.27039 (18)0.0372 (7)
H140.18790.53000.29640.045*
C150.3606 (3)0.5280 (2)0.3240 (2)0.0526 (9)
H150.33270.53080.38620.063*
C160.4861 (4)0.5242 (2)0.2874 (3)0.0601 (10)
H160.54480.52340.32460.072*
C170.5266 (3)0.5217 (2)0.1978 (3)0.0596 (10)
H170.61350.51940.17260.072*
C180.4402 (2)0.52258 (19)0.1431 (2)0.0414 (7)
H180.46860.52180.08050.050*
C190.1397 (2)0.82238 (17)0.00045 (16)0.0271 (6)
C200.0519 (3)0.87988 (17)0.05242 (18)0.0355 (7)
H200.02950.85520.07650.043*
C210.0822 (3)0.97271 (19)0.0692 (2)0.0467 (8)
H210.02151.01100.10450.056*
C220.1998 (3)1.0094 (2)0.0350 (2)0.0501 (9)
H220.22101.07280.04760.060*
C230.2868 (3)0.9538 (2)0.0175 (2)0.0457 (8)
H230.36780.97920.04180.055*
C240.2568 (3)0.86053 (18)0.03540 (18)0.0357 (7)
H240.31720.82290.07240.043*
C250.3902 (2)0.19649 (16)0.49195 (16)0.0234 (5)
C260.3856 (2)0.27988 (17)0.43057 (17)0.0310 (6)
H260.34410.33630.44450.037*
C270.4508 (2)0.26329 (16)0.35002 (17)0.0291 (6)
H270.46240.30560.29620.035*
C280.5000 (2)0.16996 (16)0.36010 (16)0.0233 (5)
C290.5730 (2)0.12724 (16)0.29087 (15)0.0234 (5)
C300.6228 (2)0.03713 (16)0.30303 (15)0.0227 (5)
C310.7066 (2)0.00506 (17)0.23383 (16)0.0287 (6)
H310.73640.02280.17410.034*
C320.7351 (2)0.09116 (17)0.26913 (16)0.0281 (6)
H320.78910.13540.23910.034*
C330.6684 (2)0.10386 (16)0.36095 (15)0.0229 (5)
C340.6721 (2)0.18564 (16)0.41893 (16)0.0251 (6)
C350.5930 (2)0.17737 (16)0.19703 (16)0.0246 (5)
C360.5446 (2)0.14431 (17)0.13316 (16)0.0265 (6)
H360.50020.09150.15030.032*
C370.5608 (2)0.18797 (17)0.04515 (16)0.0290 (6)
H370.52850.16460.00210.035*
C380.6235 (2)0.26498 (19)0.02011 (18)0.0345 (6)
H380.63330.29540.03990.041*
C390.6723 (2)0.29803 (19)0.08211 (18)0.0356 (7)
H390.71660.35080.06430.043*
C400.6571 (2)0.25502 (17)0.16997 (17)0.0302 (6)
H400.69070.27860.21220.036*
C410.7494 (2)0.26561 (17)0.38376 (16)0.0291 (6)
C420.7143 (3)0.3075 (2)0.3214 (2)0.0585 (10)
H420.63960.28540.30060.070*
C430.7865 (3)0.3816 (2)0.2883 (3)0.0655 (11)
H430.76020.40990.24580.079*
C440.8940 (3)0.4134 (2)0.3167 (2)0.0540 (9)
H440.94340.46400.29430.065*
C450.9299 (4)0.3726 (3)0.3767 (3)0.0819 (13)
H451.00500.39490.39700.098*
C460.8588 (3)0.2983 (2)0.4095 (2)0.0639 (11)
H460.88730.26980.45090.077*
C47A0.0168 (4)0.2646 (3)0.2738 (3)0.0416 (11)0.710 (3)
H47A0.06570.28640.25870.050*0.710 (3)
H47B0.07470.25020.21840.050*0.710 (3)
C47B0.0593 (8)0.2357 (6)0.3891 (6)0.034 (2)0.290 (3)
H47C0.14330.20950.39820.041*0.290 (3)
H47D0.00570.24480.44780.041*0.290 (3)
C48A0.0676 (3)0.3408 (2)0.3107 (3)0.0724 (12)0.710 (3)
H48A0.00740.35800.36310.109*0.710 (3)
H48B0.07960.39390.26390.109*0.710 (3)
H48C0.14760.31820.32800.109*0.710 (3)
C48B0.0676 (3)0.3408 (2)0.3107 (3)0.0724 (12)0.29
H48D0.01400.38920.33880.109*0.290 (3)
H48E0.03940.33290.25670.109*0.290 (3)
H48F0.15410.35720.29420.109*0.290 (3)
C49A0.0808 (4)0.1996 (3)0.4304 (3)0.0385 (10)0.710 (3)
H49A0.04000.23930.45840.046*0.710 (3)
H49B0.09330.14230.47240.046*0.710 (3)
C49B0.1269 (8)0.2211 (7)0.3257 (6)0.036 (2)0.290 (3)
H49C0.16680.17660.30310.043*0.290 (3)
H49D0.11740.27570.27960.043*0.290 (3)
C50A0.2114 (3)0.2472 (2)0.4158 (2)0.0580 (9)0.710 (3)
H50A0.20030.30660.37880.087*0.710 (3)
H50B0.26510.25490.47400.087*0.710 (3)
H50C0.25050.20960.38540.087*0.710 (3)
C50B0.2114 (3)0.2472 (2)0.4158 (2)0.0580 (9)0.29
H50D0.27200.29820.40180.087*0.290 (3)
H50E0.15880.26450.45280.087*0.290 (3)
H50F0.25600.19500.44860.087*0.290 (3)
C51A0.0429 (4)0.1098 (3)0.3038 (3)0.0461 (12)0.710 (3)
H51A0.01140.10370.24460.055*0.710 (3)
H51B0.12800.13160.29360.055*0.710 (3)
C51B0.0146 (8)0.0877 (6)0.4082 (6)0.028 (2)0.290 (3)
H51C0.06310.06650.43090.034*0.290 (3)
H51D0.08210.09780.46030.034*0.290 (3)
C52A0.0476 (3)0.0148 (2)0.3627 (2)0.0537 (9)0.710 (3)
H52A0.03670.00840.37130.081*0.710 (3)
H52B0.08020.02680.33270.081*0.710 (3)
H52C0.10220.01990.42120.081*0.710 (3)
C52B0.0476 (3)0.0148 (2)0.3627 (2)0.0537 (9)0.29
H52D0.13330.02870.35290.081*0.290 (3)
H52E0.04080.04400.40090.081*0.290 (3)
H52F0.01000.01280.30480.081*0.290 (3)
C53A0.1330 (3)0.1462 (3)0.3667 (3)0.0353 (10)0.710 (3)
H53A0.12560.09180.41320.042*0.710 (3)
H53B0.16430.19400.39070.042*0.710 (3)
C53B0.0757 (5)0.1613 (6)0.2532 (6)0.037 (2)0.290 (3)
H53C0.07880.21710.20830.044*0.290 (3)
H53D0.03990.11410.23140.044*0.290 (3)
C54A0.2278 (3)0.1224 (3)0.2790 (3)0.0806 (14)0.710 (3)
H54A0.18870.08510.24840.121*0.710 (3)
H54B0.30350.08890.29560.121*0.710 (3)
H54C0.24980.17860.23870.121*0.710 (3)
C54B0.2278 (3)0.1224 (3)0.2790 (3)0.0806 (14)0.29
C1A0.3425 (7)0.8040 (7)0.3096 (5)0.074 (2)*0.584 (6)
H1A10.39020.74520.32450.089*0.584 (6)
H1A20.35160.84340.35270.089*0.584 (6)
Cl1A0.1862 (3)0.7849 (3)0.3279 (3)0.1086 (13)0.584 (6)
Cl2A0.4121 (5)0.8529 (5)0.2030 (3)0.184 (3)0.584 (6)
C1B0.3142 (15)0.8672 (12)0.2567 (16)0.074 (2)*0.202 (5)
H1B10.33830.87870.31170.089*0.202 (5)
H1B20.31560.92460.21410.089*0.202 (5)
Cl1B0.1710 (10)0.8330 (9)0.2823 (10)0.127 (4)0.202 (5)
Cl2B0.4202 (7)0.7859 (7)0.2089 (6)0.088 (3)0.202 (5)
C1C0.409 (2)0.8496 (11)0.2754 (14)0.074 (2)*0.208 (3)
H1C10.50060.84310.27270.089*0.208 (3)
H1C20.36950.88310.32550.089*0.208 (3)
Cl1C0.3561 (15)0.7451 (6)0.2959 (10)0.208 (8)0.208 (3)
Cl2C0.3785 (13)0.9107 (7)0.1765 (6)0.142 (4)0.208 (3)
H54D0.2700 (17)0.079 (2)0.2397 (19)0.213*0.290 (3)
H54E0.2180 (7)0.093 (3)0.3417 (8)0.213*0.290 (3)
H54F0.2780 (15)0.1741 (6)0.269 (3)0.213*0.290 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0177 (3)0.0193 (3)0.0194 (3)0.00194 (19)0.0052 (2)0.0044 (2)
Fe20.0203 (3)0.0192 (3)0.0185 (3)0.0006 (2)0.0025 (2)0.0039 (2)
N10.0309 (13)0.0365 (13)0.0309 (13)0.0030 (10)0.0021 (11)0.0060 (11)
N20.0343 (14)0.0445 (15)0.0361 (14)0.0105 (11)0.0102 (11)0.0000 (11)
N30.0194 (10)0.0203 (10)0.0219 (11)0.0028 (8)0.0063 (8)0.0043 (8)
N40.0198 (10)0.0205 (10)0.0191 (10)0.0013 (8)0.0053 (8)0.0039 (8)
N50.0224 (11)0.0208 (11)0.0203 (11)0.0019 (8)0.0014 (9)0.0041 (8)
N60.0229 (11)0.0207 (11)0.0205 (11)0.0010 (9)0.0033 (9)0.0033 (8)
N70.0271 (12)0.0315 (12)0.0293 (12)0.0027 (10)0.0089 (10)0.0034 (10)
C10.0200 (13)0.0213 (13)0.0272 (14)0.0036 (10)0.0099 (11)0.0076 (11)
C20.0278 (14)0.0239 (13)0.0177 (13)0.0010 (11)0.0011 (11)0.0007 (10)
C30.0192 (12)0.0235 (13)0.0217 (13)0.0068 (10)0.0045 (10)0.0043 (10)
C40.0245 (14)0.0253 (13)0.0303 (14)0.0087 (11)0.0091 (11)0.0071 (11)
C50.0225 (13)0.0310 (15)0.0320 (15)0.0063 (11)0.0125 (11)0.0071 (12)
C60.0180 (12)0.0242 (13)0.0214 (13)0.0031 (10)0.0043 (10)0.0028 (10)
C70.0185 (12)0.0242 (13)0.0233 (13)0.0010 (10)0.0055 (10)0.0035 (10)
C80.0183 (12)0.0230 (13)0.0199 (12)0.0020 (10)0.0032 (10)0.0015 (10)
C90.0282 (14)0.0284 (14)0.0224 (13)0.0022 (11)0.0081 (11)0.0082 (11)
C100.0295 (14)0.0216 (13)0.0280 (14)0.0021 (11)0.0080 (11)0.0087 (11)
C110.0232 (13)0.0213 (13)0.0222 (13)0.0014 (10)0.0047 (10)0.0049 (10)
C120.0223 (13)0.0218 (13)0.0238 (13)0.0038 (10)0.0042 (10)0.0060 (10)
C130.0227 (13)0.0217 (13)0.0352 (15)0.0023 (10)0.0122 (11)0.0061 (11)
C140.0432 (17)0.0341 (16)0.0395 (17)0.0068 (13)0.0173 (14)0.0060 (13)
C150.072 (2)0.048 (2)0.048 (2)0.0080 (18)0.0355 (18)0.0036 (16)
C160.069 (3)0.047 (2)0.083 (3)0.0031 (18)0.059 (2)0.0119 (19)
C170.0314 (17)0.056 (2)0.106 (3)0.0034 (15)0.035 (2)0.030 (2)
C180.0271 (15)0.0437 (17)0.059 (2)0.0036 (13)0.0135 (14)0.0211 (15)
C190.0340 (15)0.0252 (13)0.0260 (14)0.0059 (11)0.0154 (12)0.0083 (11)
C200.0439 (17)0.0275 (15)0.0385 (16)0.0023 (13)0.0162 (14)0.0076 (12)
C210.065 (2)0.0254 (16)0.053 (2)0.0028 (15)0.0207 (17)0.0041 (14)
C220.074 (2)0.0238 (16)0.058 (2)0.0129 (16)0.0295 (19)0.0128 (15)
C230.055 (2)0.0371 (17)0.0500 (19)0.0236 (15)0.0226 (16)0.0235 (15)
C240.0398 (16)0.0338 (16)0.0370 (16)0.0084 (13)0.0143 (13)0.0146 (13)
C250.0248 (13)0.0192 (13)0.0256 (13)0.0011 (10)0.0047 (11)0.0043 (10)
C260.0364 (16)0.0211 (14)0.0310 (15)0.0033 (11)0.0011 (12)0.0029 (11)
C270.0353 (15)0.0220 (13)0.0266 (14)0.0019 (11)0.0053 (12)0.0013 (11)
C280.0237 (13)0.0229 (13)0.0225 (13)0.0025 (10)0.0034 (10)0.0026 (10)
C290.0234 (13)0.0258 (13)0.0205 (13)0.0048 (11)0.0029 (10)0.0019 (10)
C300.0233 (13)0.0245 (13)0.0201 (13)0.0014 (10)0.0036 (10)0.0041 (10)
C310.0312 (15)0.0349 (15)0.0172 (13)0.0019 (12)0.0004 (11)0.0054 (11)
C320.0318 (15)0.0301 (15)0.0204 (13)0.0049 (11)0.0019 (11)0.0078 (11)
C330.0225 (13)0.0233 (13)0.0221 (13)0.0005 (10)0.0027 (10)0.0050 (10)
C340.0243 (13)0.0245 (13)0.0265 (14)0.0010 (11)0.0032 (11)0.0081 (11)
C350.0233 (13)0.0245 (13)0.0223 (13)0.0025 (11)0.0004 (10)0.0020 (10)
C360.0242 (13)0.0257 (13)0.0280 (14)0.0011 (11)0.0036 (11)0.0040 (11)
C370.0236 (14)0.0378 (16)0.0238 (14)0.0067 (12)0.0042 (11)0.0066 (12)
C380.0309 (15)0.0411 (17)0.0252 (14)0.0032 (13)0.0024 (12)0.0038 (12)
C390.0319 (15)0.0376 (16)0.0319 (16)0.0070 (13)0.0004 (12)0.0035 (13)
C400.0324 (15)0.0317 (15)0.0256 (14)0.0046 (12)0.0036 (12)0.0030 (11)
C410.0337 (15)0.0244 (14)0.0244 (14)0.0016 (11)0.0024 (12)0.0034 (11)
C420.0323 (17)0.061 (2)0.093 (3)0.0073 (15)0.0122 (18)0.050 (2)
C430.045 (2)0.054 (2)0.104 (3)0.0023 (17)0.001 (2)0.052 (2)
C440.055 (2)0.0324 (17)0.061 (2)0.0126 (15)0.0128 (18)0.0148 (16)
C450.069 (3)0.102 (3)0.077 (3)0.057 (2)0.030 (2)0.046 (3)
C460.056 (2)0.084 (3)0.062 (2)0.0368 (19)0.0269 (18)0.048 (2)
C47A0.038 (2)0.040 (2)0.039 (2)0.0023 (19)0.0091 (19)0.0141 (19)
C47B0.023 (5)0.041 (6)0.040 (6)0.009 (4)0.009 (4)0.004 (4)
C48A0.063 (2)0.038 (2)0.108 (3)0.0171 (18)0.006 (2)0.008 (2)
C48B0.063 (2)0.038 (2)0.108 (3)0.0171 (18)0.006 (2)0.008 (2)
C49A0.036 (2)0.042 (2)0.035 (2)0.0070 (19)0.0023 (19)0.0026 (19)
C49B0.032 (5)0.039 (6)0.038 (6)0.008 (4)0.020 (4)0.011 (4)
C50A0.0380 (19)0.054 (2)0.072 (2)0.0066 (16)0.0001 (17)0.0049 (19)
C50B0.0380 (19)0.054 (2)0.072 (2)0.0066 (16)0.0001 (17)0.0049 (19)
C51A0.034 (2)0.051 (3)0.063 (3)0.001 (2)0.024 (2)0.017 (2)
C51B0.023 (5)0.029 (5)0.030 (5)0.003 (4)0.010 (4)0.010 (4)
C52A0.057 (2)0.0359 (18)0.072 (2)0.0098 (16)0.0217 (18)0.0050 (17)
C52B0.057 (2)0.0359 (18)0.072 (2)0.0098 (16)0.0217 (18)0.0050 (17)
C53A0.030 (2)0.035 (2)0.041 (2)0.0074 (18)0.0176 (18)0.0106 (18)
C53B0.049 (6)0.043 (6)0.017 (5)0.001 (5)0.007 (4)0.001 (4)
C54A0.046 (2)0.062 (2)0.099 (3)0.0162 (18)0.025 (2)0.020 (2)
C54B0.046 (2)0.062 (2)0.099 (3)0.0162 (18)0.025 (2)0.020 (2)
Cl1A0.094 (2)0.141 (3)0.116 (3)0.010 (2)0.0330 (17)0.088 (2)
Cl2A0.178 (4)0.257 (8)0.076 (3)0.039 (5)0.004 (2)0.008 (4)
Cl1B0.115 (6)0.134 (9)0.165 (11)0.025 (6)0.063 (7)0.095 (8)
Cl2B0.089 (5)0.121 (7)0.066 (5)0.013 (5)0.022 (3)0.037 (5)
Cl1C0.345 (19)0.085 (6)0.247 (15)0.047 (8)0.204 (15)0.035 (7)
Cl2C0.230 (12)0.140 (8)0.073 (6)0.061 (8)0.033 (6)0.029 (5)
Geometric parameters (Å, º) top
Fe1—C11.982 (3)C30—C311.435 (3)
Fe1—C1i1.982 (3)C31—C321.343 (3)
Fe1—N3i1.9928 (18)C31—H310.9500
Fe1—N31.9928 (18)C32—C331.440 (3)
Fe1—N42.0038 (17)C32—H320.9500
Fe1—N4i2.0038 (17)C33—C341.392 (3)
Fe2—C21.973 (2)C34—C25ii1.390 (3)
Fe2—C2ii1.973 (2)C34—C411.498 (3)
Fe2—N6ii1.9945 (19)C35—C401.393 (3)
Fe2—N61.9946 (19)C35—C361.401 (3)
Fe2—N5ii2.0056 (19)C36—C371.387 (3)
Fe2—N52.0056 (19)C36—H360.9500
N1—C11.156 (3)C37—C381.375 (4)
N2—C21.155 (3)C37—H370.9500
N3—C31.378 (3)C38—C391.379 (4)
N3—C61.383 (3)C38—H380.9500
N4—C111.377 (3)C39—C401.382 (3)
N4—C81.380 (3)C39—H390.9500
N5—C281.381 (3)C40—H400.9500
N5—C251.385 (3)C41—C461.359 (4)
N6—C331.378 (3)C41—C421.378 (4)
N6—C301.382 (3)C42—C431.393 (4)
N7—C47B1.442 (9)C42—H420.9500
N7—C51A1.497 (4)C43—C441.355 (5)
N7—C53B1.500 (8)C43—H430.9500
N7—C49A1.514 (4)C44—C451.343 (5)
N7—C47A1.525 (4)C44—H440.9500
N7—C53A1.537 (4)C45—C461.390 (4)
N7—C51B1.562 (8)C45—H450.9500
N7—C49B1.567 (9)C46—H460.9500
C3—C12i1.397 (3)C47A—C48A1.571 (5)
C3—C41.437 (3)C47A—H47A0.9900
C4—C51.348 (3)C47A—H47B0.9900
C4—H40.9500C47B—H47C0.9900
C5—C61.433 (3)C47B—H47D0.9900
C5—H50.9500C48A—H48A0.9800
C6—C71.401 (3)C48A—H48B0.9800
C7—C81.385 (3)C48A—H48C0.9800
C7—C131.506 (3)C49A—C50A1.571 (5)
C8—C91.443 (3)C49A—H49A0.9900
C9—C101.348 (3)C49A—H49B0.9900
C9—H90.9500C49B—H49C0.9900
C10—C111.434 (3)C49B—H49D0.9900
C10—H100.9500C50A—H50A0.9800
C11—C121.392 (3)C50A—H50B0.9800
C12—C3i1.397 (3)C50A—H50C0.9800
C12—C191.496 (3)C51A—C52A1.555 (5)
C13—C141.379 (4)C51A—H51A0.9900
C13—C181.390 (4)C51A—H51B0.9900
C14—C151.386 (4)C51B—H51C0.9900
C14—H140.9500C51B—H51D0.9900
C15—C161.373 (5)C52A—H52A0.9800
C15—H150.9500C52A—H52B0.9800
C16—C171.364 (5)C52A—H52C0.9800
C16—H160.9500C53A—C54A1.586 (5)
C17—C181.400 (4)C53A—H53A0.9900
C17—H170.9500C53A—H53B0.9900
C18—H180.9500C53A—H54E1.19 (3)
C19—C241.386 (4)C53B—H53C0.9900
C19—C201.397 (4)C53B—H53D0.9900
C20—C211.388 (4)C54A—H54A0.9800
C20—H200.9500C54A—H54B0.9800
C21—C221.376 (4)C54A—H54C0.9800
C21—H210.9500C54A—H54D0.9801 (10)
C22—C231.377 (4)C54A—H54E0.9801 (10)
C22—H220.9500C54A—H54F0.9801 (10)
C23—C241.395 (4)C1A—Cl1A1.733 (8)
C23—H230.9500C1A—Cl2A1.735 (9)
C24—H240.9500C1A—H1A10.9900
C25—C34ii1.390 (3)C1A—H1A20.9900
C25—C261.438 (3)C1B—Cl1B1.662 (15)
C26—C271.342 (3)C1B—Cl2B1.730 (15)
C26—H260.9500C1B—H1B10.9900
C27—C281.437 (3)C1B—H1B20.9900
C27—H270.9500C1C—Cl1C1.697 (16)
C28—C291.393 (3)C1C—Cl2C1.720 (16)
C29—C301.396 (3)C1C—H1C10.9900
C29—C351.497 (3)C1C—H1C20.9900
C1—Fe1—C1i180.00 (13)N5—C25—C26109.6 (2)
C1—Fe1—N3i92.38 (8)C34ii—C25—C26124.3 (2)
C1i—Fe1—N3i87.62 (8)C27—C26—C25107.4 (2)
C1—Fe1—N387.62 (8)C27—C26—H26126.3
C1i—Fe1—N392.38 (8)C25—C26—H26126.3
N3i—Fe1—N3180.00 (10)C26—C27—C28107.5 (2)
C1—Fe1—N489.31 (8)C26—C27—H27126.2
C1i—Fe1—N490.69 (8)C28—C27—H27126.2
N3i—Fe1—N490.51 (7)N5—C28—C29125.7 (2)
N3—Fe1—N489.49 (7)N5—C28—C27109.7 (2)
C1—Fe1—N4i90.69 (8)C29—C28—C27124.6 (2)
C1i—Fe1—N4i89.31 (8)C28—C29—C30123.4 (2)
N3i—Fe1—N4i89.49 (7)C28—C29—C35119.2 (2)
N3—Fe1—N4i90.51 (7)C30—C29—C35117.3 (2)
N4—Fe1—N4i180.00 (8)N6—C30—C29126.3 (2)
C2—Fe2—C2ii180.0N6—C30—C31110.0 (2)
C2—Fe2—N6ii90.31 (9)C29—C30—C31123.7 (2)
C2ii—Fe2—N6ii89.69 (9)C32—C31—C30107.4 (2)
C2—Fe2—N689.69 (8)C32—C31—H31126.3
C2ii—Fe2—N690.31 (9)C30—C31—H31126.3
N6ii—Fe2—N6180.0C31—C32—C33107.2 (2)
C2—Fe2—N5ii90.82 (9)C31—C32—H32126.4
C2ii—Fe2—N5ii89.18 (9)C33—C32—H32126.4
N6ii—Fe2—N5ii90.06 (8)N6—C33—C34126.1 (2)
N6—Fe2—N5ii89.94 (8)N6—C33—C32109.9 (2)
C2—Fe2—N589.18 (9)C34—C33—C32124.0 (2)
C2ii—Fe2—N590.82 (9)C25ii—C34—C33123.5 (2)
N6ii—Fe2—N589.94 (8)C25ii—C34—C41118.3 (2)
N6—Fe2—N590.06 (8)C33—C34—C41118.2 (2)
N5ii—Fe2—N5180.00 (10)C40—C35—C36118.4 (2)
C3—N3—C6105.30 (18)C40—C35—C29123.4 (2)
C3—N3—Fe1126.50 (15)C36—C35—C29118.2 (2)
C6—N3—Fe1127.82 (15)C37—C36—C35120.6 (2)
C11—N4—C8105.63 (18)C37—C36—H36119.7
C11—N4—Fe1126.77 (15)C35—C36—H36119.7
C8—N4—Fe1127.59 (15)C38—C37—C36120.1 (2)
C28—N5—C25105.70 (19)C38—C37—H37120.0
C28—N5—Fe2127.35 (15)C36—C37—H37120.0
C25—N5—Fe2126.91 (15)C37—C38—C39120.0 (2)
C33—N6—C30105.54 (19)C37—C38—H38120.0
C33—N6—Fe2127.45 (15)C39—C38—H38120.0
C30—N6—Fe2127.00 (15)C38—C39—C40120.5 (2)
C47B—N7—C51A171.9 (4)C38—C39—H39119.7
C47B—N7—C53B116.8 (5)C40—C39—H39119.7
C51A—N7—C53B63.8 (4)C39—C40—C35120.5 (2)
C47B—N7—C49A68.0 (4)C39—C40—H40119.8
C51A—N7—C49A112.2 (3)C35—C40—H40119.8
C53B—N7—C49A173.4 (3)C46—C41—C42117.0 (3)
C47B—N7—C47A79.6 (4)C46—C41—C34121.7 (2)
C51A—N7—C47A107.4 (3)C42—C41—C34121.2 (2)
C53B—N7—C47A66.7 (4)C41—C42—C43121.2 (3)
C49A—N7—C47A110.9 (3)C41—C42—H42119.4
C47B—N7—C53A62.1 (4)C43—C42—H42119.4
C51A—N7—C53A110.9 (3)C44—C43—C42120.2 (3)
C53B—N7—C53A80.2 (2)C44—C43—H43119.9
C49A—N7—C53A106.4 (2)C42—C43—H43119.9
C47A—N7—C53A109.1 (2)C45—C44—C43119.2 (3)
C47B—N7—C51B106.6 (5)C45—C44—H44120.4
C51A—N7—C51B66.5 (4)C43—C44—H44120.4
C53B—N7—C51B109.6 (5)C44—C45—C46120.9 (3)
C49A—N7—C51B72.1 (4)C44—C45—H45119.5
C47A—N7—C51B173.8 (4)C46—C45—H45119.5
C53A—N7—C51B74.6 (3)C41—C46—C45121.4 (3)
C47B—N7—C49B112.3 (5)C41—C46—H46119.3
C51A—N7—C49B74.7 (4)C45—C46—H46119.3
C53B—N7—C49B103.7 (4)N7—C47A—C48A110.4 (3)
C49A—N7—C49B69.8 (4)N7—C47A—H47A109.6
C47A—N7—C49B69.3 (4)C48A—C47A—H47A109.6
C53A—N7—C49B174.3 (4)N7—C47A—H47B109.6
C51B—N7—C49B107.6 (5)C48A—C47A—H47B109.6
N1—C1—Fe1177.2 (2)H47A—C47A—H47B108.1
N2—C2—Fe2179.3 (2)N7—C47B—H47C111.4
N3—C3—C12i126.2 (2)N7—C47B—H47D111.4
N3—C3—C4110.14 (19)H47C—C47B—H47D109.2
C12i—C3—C4123.7 (2)N7—C49A—C50A112.6 (3)
C5—C4—C3107.2 (2)N7—C49A—H49A109.1
C5—C4—H4126.4C50A—C49A—H49A109.1
C3—C4—H4126.4N7—C49A—H49B109.1
C4—C5—C6107.2 (2)C50A—C49A—H49B109.1
C4—C5—H5126.4H49A—C49A—H49B107.8
C6—C5—H5126.4N7—C49B—H49C109.8
N3—C6—C7125.5 (2)N7—C49B—H49D109.8
N3—C6—C5110.2 (2)H49C—C49B—H49D108.3
C7—C6—C5124.0 (2)N7—C51A—C52A114.0 (3)
C8—C7—C6123.6 (2)N7—C51A—H51A108.7
C8—C7—C13119.3 (2)C52A—C51A—H51A108.7
C6—C7—C13117.1 (2)N7—C51A—H51B108.7
N4—C8—C7125.7 (2)C52A—C51A—H51B108.7
N4—C8—C9109.9 (2)H51A—C51A—H51B107.6
C7—C8—C9124.2 (2)N7—C51B—H51C109.1
C10—C9—C8106.9 (2)N7—C51B—H51D109.1
C10—C9—H9126.5H51C—C51B—H51D107.8
C8—C9—H9126.5N7—C53A—C54A109.5 (3)
C9—C10—C11107.4 (2)N7—C53A—H53A109.8
C9—C10—H10126.3C54A—C53A—H53A109.8
C11—C10—H10126.3N7—C53A—H53B109.8
N4—C11—C12125.7 (2)C54A—C53A—H53B109.8
N4—C11—C10110.2 (2)H53A—C53A—H53B108.2
C12—C11—C10124.2 (2)N7—C53A—H54E136.5 (14)
C11—C12—C3i123.7 (2)C54A—C53A—H54E38.09 (17)
C11—C12—C19118.3 (2)H53A—C53A—H54E74.3
C3i—C12—C19117.9 (2)H53B—C53A—H54E109.5
C14—C13—C18118.5 (2)N7—C53B—H53C111.7
C14—C13—C7120.8 (2)N7—C53B—H53D111.7
C18—C13—C7120.6 (2)H53C—C53B—H53D109.5
C13—C14—C15120.8 (3)C53A—C54A—H54D151 (2)
C13—C14—H14119.6H54A—C54A—H54D52.8
C15—C14—H14119.6H54B—C54A—H54D64.8
C16—C15—C14120.2 (3)H54C—C54A—H54D99.0
C16—C15—H15119.9C53A—C54A—H54E48.7 (15)
C14—C15—H15119.9H54A—C54A—H54E106.6
C17—C16—C15120.2 (3)H54B—C54A—H54E65.0
C17—C16—H16119.9H54C—C54A—H54E142.9
C15—C16—H16119.9H54D—C54A—H54E109.42 (16)
C16—C17—C18120.0 (3)C53A—C54A—H54F98 (2)
C16—C17—H17120.0H54A—C54A—H54F143.7
C18—C17—H17120.0H54B—C54A—H54F82.4
C13—C18—C17120.3 (3)H54C—C54A—H54F36.4
C13—C18—H18119.8H54D—C54A—H54F109.41 (16)
C17—C18—H18119.8H54E—C54A—H54F109.42 (16)
C24—C19—C20118.4 (2)Cl1A—C1A—Cl2A117.7 (5)
C24—C19—C12122.5 (2)Cl1A—C1A—H1A1107.9
C20—C19—C12119.0 (2)Cl2A—C1A—H1A1107.9
C21—C20—C19120.8 (3)Cl1A—C1A—H1A2107.9
C21—C20—H20119.6Cl2A—C1A—H1A2107.9
C19—C20—H20119.6H1A1—C1A—H1A2107.2
C22—C21—C20120.3 (3)Cl1B—C1B—Cl2B110.6 (10)
C22—C21—H21119.9Cl1B—C1B—H1B1109.5
C20—C21—H21119.9Cl2B—C1B—H1B1109.5
C21—C22—C23119.7 (3)Cl1B—C1B—H1B2109.5
C21—C22—H22120.2Cl2B—C1B—H1B2109.5
C23—C22—H22120.2H1B1—C1B—H1B2108.1
C22—C23—C24120.4 (3)Cl1C—C1C—Cl2C112.0 (10)
C22—C23—H23119.8Cl1C—C1C—H1C1109.2
C24—C23—H23119.8Cl2C—C1C—H1C1109.2
C19—C24—C23120.5 (3)Cl1C—C1C—H1C2109.2
C19—C24—H24119.8Cl2C—C1C—H1C2109.2
C23—C24—H24119.8H1C1—C1C—H1C2107.9
N5—C25—C34ii126.1 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C8H20N)[Fe(C44H28N4)(CN)2]·CH2Cl2
Mr935.77
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.0069 (8), 15.0344 (11), 15.4350 (11)
α, β, γ (°)80.075 (1), 77.527 (1), 83.077 (1)
V3)2447.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.22 × 0.15 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2003)
Tmin, Tmax0.905, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
19913, 9891, 7117
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.129, 1.12
No. of reflections9891
No. of parameters682
No. of restraints37
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.43

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

 

Acknowledgements

The National Science Foundation is gratefully acknowledged for the support of this research via grant CHE-0911109 to MS.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorsi, D. M., Murthy, N. N., Young, V. G. Jr & Karlin, K. D. (1999). Inorg. Chem. 38, 848–858.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDunbar, K. R. & Heintz, R. (1997). Prog. Inorg. Chem. 45, 283–391.  CrossRef CAS Google Scholar
First citationLi, J., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2009). Angew. Chem. Int. Ed. 48, 5010–5013.  Web of Science CSD CrossRef CAS Google Scholar
First citationScheidt, W. R., Haller, K. J. & Hatano, K. (1980). J. Am. Chem. Soc. 102, 3017–3021.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchelter, E. J., Karadas, F., Avendano, C., Prosvirin, A. V., Wernsdorfer, W. & Dunbar, K. R. (2007). J. Am. Chem. Soc. 129, 8139–8149.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchelter, E. J., Prosvirin, A. V., Reiff, W. M. & Dunbar, K. R. (2004). Angew. Chem. Int. Ed. 43, 4912–4915.  Web of Science CSD CrossRef CAS Google Scholar
First citationScott, M. J., Lee, S. C. & Holm, R. H. (1994). Inorg. Chem. 33, 4651–4662.  CSD CrossRef CAS Web of Science Google Scholar
First citationShatruk, M., Avendano, C. & Dunbar, K. R. (2009). Prog. Inorg. Chem. 56, 155–334.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m462-m463
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds