metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m477-m478

catena-Poly[ammonium [aqua­bis­­(μ-2,3,5,6-tetra­oxo-4-nitro­pyridin-4-ido)argentate(I)]]

aHanoi University of Mining and Geology, Dong Ngac, Tu Liem, Ha Noi, Vietnam, bPeoples' Friendship University of Russia, 6 Miklukho-Mallaya, 117198 Moscow, Russian Federation, and cKarpov Institute of Physical Chemistry, 10 Vorontsovo Pole, 105064 Moscow, Russian Federation
*Correspondence e-mail: dondchem@gmail.com

(Received 1 July 2013; accepted 24 July 2013; online 31 July 2013)

In the title compound, {(NH4)[Ag(C5HN2O6)2(H2O)]}n, the AgI cation is seven-coordinated and is surrounded by four oxo O atoms of the 2,3,5,6-tetra­oxo-4-nitro­pyridin-4-ide species [Ag—O = 2.3848 (19), 2.4931 (18), 2.5361 (18) and 2.573 (2) Å], two nitro O atoms [Ag—O = 2.644 (2) and 2.661 (2) Å], and one water mol­ecule [Ag—O = 2.3133 (19) Å]. The pyridin-4-ide mono-anions act as polydentate bridging ligands and form a three-dimensional network that is stabilized through O—H⋯O and N—H⋯O hydrogen bonds involving the coordinating water mol­ecule and the imide function as donator groups. The ammonium cations are located in the cavities of the framework and are also involved in hydrogen bonding to O atoms of the ligand.

Related literature

For reviews of 1,2-dicarbonyl compounds, see: Aldoshin (2008[Aldoshin, S. M. (2008). Russ. Chem. Bull., 4, 718-735.]); Ohba & Okawa (2000[Ohba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313-328.]). The synthesis and crystal structures of ammonium and sodium 2,3,5,6-tetra­oxo-4-nitro­pyridinates have been reported previously (Palkina et al., 2000[Palkina, K. K., Kuzmina, N. E., Kovalchukova, O. V., Strashnova, S. B. & Zaitsev, B. E. (2000). Dokl. Russ. Akad. Nauk, 370, 361-365.]; Kuzmina et al., 2004[Kuzmina, N. E., Palkina, K. K., Kovalchukova, O. V., Zaitsev, B. E., Strashnova, S. B. & Isaeva, N. Yu. (2004). Crystallogr. Rep. 49, 758-762.]). The structure of the organic anion in its hexa­aqua metal salts is described by Kovalchukova et al. (2003[Kovalchukova, O. V., Kuzmina, N. E., Palkina, K. K., Strashnova, S. B. & Zaitsev, B. E. (2003). Russ. J. Inorg. Chem. 2, 194-198.] and 2013[Kovalchukova, O. V., Stash, A. I., Dinh Do, N., Strashnova, S. B. & Belskii, V. K. (2013). Russ. J. Coord. Chem. 39, 234-238.]). For references to related structures of metal complexes with cyclic polyoxo compounds, see: Coronado et al. (2007[Coronado, E., Curreli, S., Giménez-Saiz, C., Gómez-García, C. J., Deplano, P., Mercuri, M. L., Serpe, A., Pilia, L., Faulmann, C. & Canadell, E. (2007). Inorg. Chem. 46, 4446-4457.]); Kitagawa & Kawata (2002[Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11-34.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)[Ag(C5HN2O6)2(H2O)]

  • Mr = 514.08

  • Monoclinic, P 21 /c

  • a = 8.784 (2) Å

  • b = 18.551 (4) Å

  • c = 9.195 (2) Å

  • β = 90.70 (3)°

  • V = 1498.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 293 K

  • 0.35 × 0.31 × 0.08 mm

Data collection
  • Enraf Nonius CAD-4 diffractometer

  • Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.406, Tmax = 0.798

  • 2952 measured reflections

  • 2768 independent reflections

  • 2094 reflections with I > 2σ(I)

  • Rint = 0.014

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.066

  • S = 1.09

  • 2768 reflections

  • 283 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O11i 0.86 2.18 2.979 (3) 155
N10—H10⋯O2 0.86 2.26 2.945 (3) 137
N10—H10⋯O3 0.86 2.29 3.030 (3) 144
O1—H11⋯O131ii 0.80 (3) 2.06 (3) 2.851 (3) 177 (5)
O1—H12⋯O8iii 0.80 (3) 2.02 (3) 2.781 (2) 160 (3)
N2—H21⋯O6iv 0.83 (2) 2.16 (2) 2.962 (3) 163 (3)
N2—H22⋯O72v 0.83 (2) 2.20 (2) 2.998 (3) 160 (3)
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: CAD-4-PC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CIFTAB97 and SHELXL97.

Supporting information


Comment top

1,2-dicarbonyl compounds attract great interest because of the features of their structure and high reactivity. One of the simplest representatives of them is oxalic acid. As described by S. Aldoshin (Aldoshin, 2008), bimetallic coordination polymers based on oxalate and thiooxalate bridging ligands possess different types of magnetic activity and can intercalate complex organic molecules and ions. These have been extensively used as building units in supramolecular coordination systems (Ohba & Okawa, 2000). The replacement of oxalate anions by other 1,2-dicarbonyl cyclic compounds may be of interest from the synthetic and practical point of view. As an example (Coronado et al. 2007), the paramagnetic and chiral anion [Fe(C5O5)3]3- has been combined with the organic donor BEDT-TTF DET (bis(ethylenedithio)tetrathiafulvalene) to synthesize a novel paramagnetic semiconductor with the first chirality-induced α-phase, α-(BEDT-TTF)5[Fe(C5O5)3].5H2O, and one of the few known paramagnetic molecular metals, β-(BEDT-TTF)5[Fe(C5O5)3].C6H5CN. The variety of coordination modes, some geometric characteristics as well as electrical, magnetic and other properties of coordinate compounds of dibenzoquinone-1,4 derivatives of a general formula H2C6O4X2 are summarised by S. Kitagawa and S. Kawata (Kitagawa & Kawata, 2002). The present paper deals with the crystal structure determination of ammonium-silver 2,3,5,6-tetraoxo-4-nitropyridinate monohydrate (NH4)[Ag(C5HN2O6)2(H2O)]. The molecular structure of the above substance consists of Ag(I) and ammonium cations, two crystallographically unequivalent 2,3,5,6-tetraoxo-4-nitropyridinate mono anions, and one coordinated water molecule. Each of the Ag(I) cation displays sevenfold coordination by O2, O5, O8, and O11 of the keto-groups of the organic species. The Ag—O distances are 2.3848 (19); 2.4931 (18); 2.5361 (18); and 2.573 (2) Å. Two coordinate bonds involve the O atoms of the nitro-group of the organic anion (2.644 (2) and 2.661 (2) Å). The shortest distance in the coordination sphere of Ag(I) involves the coordinated water molecule (2.3133 (19) Å). The 2,3,5,6-tetraoxo-4-nitropyridinate anions act as polydentate bridging ligands. This coordination mode leads to formation of polymer chains. The coordination does not change significantly the C—O distances of the ligand comparing with its ammonium and sodium salts (Palkina et al., 2000; Kuzmina et al., 2004). The corresponding bond lengths are in the range 1.224 (3) to 1.220 (3) Å for the nitro-diketone fragment, and 1.210 (4) to 1.215 (4) Å for the amide fragment. These two fragments of the organic mono anion are connected by an almost single C—C bonds (C2—C3 length is 1.531 (4), and C5—C6 length is 1.544 (4) Å). The ammonium cation has the outer sphere character, and forms bridging H-bonds with the O atoms of the organic anions linking the polymer chains into three-dimensional structure. The H atoms of the coordinated water molecules are also involved into the H-bonding.

Related literature top

For reviews of 1,2-dicarbonyl compounds, see: Aldoshin (2008); Ohba & Okawa (2000). The synthesis and crystal structures of ammonium and sodium 2,3,5,6-tetraoxo-4-nitropyridinates have been reported previously (Palkina et al., 2000; Kuzmina et al., 2004). The structure of the organic anion in its hexaaqua metal salts is described by Kovalchukova et al. (2003 and 2013). For references to related structures of metal complexes with cyclic polyoxdo-compounds, see: Coronado et al. (2007); Kitagawa & Kawata (2002).

Experimental top

Single crystals of C10H8AgN5O13 were grown by the slow evaporation of the ethanol solution of the 1-to-1 molar mixture of silver nitrate and ammonium 2,3,5,6-tetraoxo-4-nitropyridinate.

Refinement top

The structure of of (NH4)[Ag(C5HN2O6)2(H2O)] was solved by direct method and all non-hydrogen atoms were located and refined in anisotropically. All the hydrogen atoms were located in difference electron density syntheses and their positions refined subject to chemically reasonable restraints.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC (Enraf–Nonius, 1993); data reduction: CAD-4-PC (Enraf–Nonius, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB97 and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of (NH4)[Ag(C5HN2O6)2(H2O)] with atom labeling scheme (displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms).
[Figure 2] Fig. 2. Structure of the coordination sphere of Ag(I).
[Figure 3] Fig. 3. Molecular packing in the crystal of the complex along the crystallographic axis c.
catena-Poly[ammonium [aquabis(µ-2,3,5,6-tetraoxo-4-nitropyridin-4-ido)argentate(I)]] top
Crystal data top
(NH4)[Ag(C5HN2O6)2(H2O)]F(000) = 1016
Mr = 514.08Dx = 2.279 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.784 (2) Åθ = 9.3–11.8°
b = 18.551 (4) ŵ = 1.44 mm1
c = 9.195 (2) ÅT = 293 K
β = 90.70 (3)°Plate, dark yellow
V = 1498.2 (5) Å30.35 × 0.31 × 0.08 mm
Z = 4
Data collection top
Enraf Nonius CAD-4
diffractometer
2094 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
β-filter monochromatorθmax = 25.5°, θmin = 2.2°
ω/2θ scansh = 010
Absorption correction: part of the refinement model (ΔF)
Walker & Stuart (1983)
k = 022
Tmin = 0.406, Tmax = 0.798l = 1111
2952 measured reflections3 standard reflections every 60 min
2768 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: difference Fourier map
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.0506P]
where P = (Fo2 + 2Fc2)/3
2768 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.42 e Å3
11 restraintsΔρmin = 0.58 e Å3
Crystal data top
(NH4)[Ag(C5HN2O6)2(H2O)]V = 1498.2 (5) Å3
Mr = 514.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.784 (2) ŵ = 1.44 mm1
b = 18.551 (4) ÅT = 293 K
c = 9.195 (2) Å0.35 × 0.31 × 0.08 mm
β = 90.70 (3)°
Data collection top
Enraf Nonius CAD-4
diffractometer
2094 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
Walker & Stuart (1983)
Rint = 0.014
Tmin = 0.406, Tmax = 0.7983 standard reflections every 60 min
2952 measured reflections intensity decay: none
2768 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02111 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.42 e Å3
2768 reflectionsΔρmin = 0.58 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.68914 (2)0.518350 (10)0.16959 (2)0.03092 (9)
O10.6981 (2)0.43383 (10)0.0151 (2)0.0367 (4)
O20.49428 (18)0.55092 (10)0.3355 (2)0.0337 (4)
O30.2721 (2)0.64390 (10)0.3252 (3)0.0437 (5)
O50.0852 (2)0.46912 (11)0.3204 (2)0.0430 (5)
O60.1206 (2)0.36677 (10)0.3468 (2)0.0380 (4)
O710.4081 (2)0.33294 (10)0.3308 (2)0.0374 (4)
O720.5781 (2)0.41601 (11)0.3380 (3)0.0434 (5)
O80.59699 (19)0.87943 (10)0.5161 (2)0.0346 (4)
O90.40503 (19)0.77524 (10)0.4454 (2)0.0371 (4)
O110.7861 (2)0.62851 (10)0.3053 (2)0.0335 (4)
O120.99467 (19)0.72206 (10)0.3830 (2)0.0361 (4)
O1311.0495 (2)0.83839 (10)0.5427 (3)0.0440 (5)
O1320.8913 (2)0.92310 (9)0.4915 (2)0.0337 (4)
N21.1853 (2)0.79954 (14)0.1619 (3)0.0356 (5)
N40.0902 (2)0.55773 (12)0.3224 (2)0.0277 (4)
H40.02000.59000.31740.033*
N70.4426 (2)0.39746 (11)0.3354 (2)0.0255 (4)
N100.5921 (2)0.70207 (10)0.3659 (2)0.0234 (4)
H100.52630.67180.33240.028*
N130.9224 (2)0.85893 (11)0.5015 (2)0.0250 (4)
C10.3262 (2)0.45034 (14)0.3364 (2)0.0232 (5)
C20.3668 (3)0.52426 (12)0.3337 (2)0.0230 (4)
C30.2389 (3)0.58051 (13)0.3276 (3)0.0267 (5)
C50.0468 (3)0.48715 (13)0.3246 (3)0.0264 (5)
C60.1700 (3)0.42790 (13)0.3368 (2)0.0243 (5)
C70.8114 (2)0.80583 (12)0.4653 (2)0.0219 (4)
C80.6544 (2)0.82305 (12)0.4741 (2)0.0212 (4)
C90.5389 (3)0.76440 (13)0.4277 (2)0.0236 (5)
C110.7427 (3)0.68490 (12)0.3543 (2)0.0222 (4)
C120.8630 (3)0.74009 (12)0.4048 (2)0.0222 (4)
H110.768 (3)0.4067 (17)0.019 (5)0.074 (6)*
H120.624 (3)0.4089 (17)0.015 (5)0.074 (6)*
H211.109 (3)0.8260 (14)0.166 (4)0.074 (6)*
H221.263 (3)0.8246 (14)0.176 (4)0.074 (6)*
H231.182 (4)0.7675 (14)0.225 (3)0.074 (6)*
H241.190 (4)0.7813 (16)0.080 (2)0.074 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03248 (13)0.03008 (13)0.03023 (13)0.00021 (7)0.00124 (8)0.00114 (8)
O10.0281 (9)0.0371 (10)0.0449 (11)0.0023 (8)0.0016 (8)0.0077 (8)
O20.0202 (8)0.0337 (9)0.0471 (11)0.0027 (7)0.0010 (7)0.0058 (8)
O30.0299 (9)0.0264 (9)0.0747 (15)0.0000 (8)0.0052 (9)0.0102 (9)
O50.0197 (9)0.0485 (11)0.0607 (13)0.0068 (8)0.0051 (8)0.0142 (10)
O60.0330 (9)0.0325 (10)0.0485 (11)0.0067 (7)0.0014 (8)0.0053 (8)
O710.0462 (11)0.0284 (9)0.0374 (10)0.0044 (8)0.0032 (8)0.0019 (8)
O720.0233 (9)0.0408 (10)0.0662 (14)0.0076 (8)0.0017 (9)0.0079 (10)
O80.0241 (8)0.0340 (9)0.0455 (11)0.0061 (7)0.0065 (8)0.0150 (8)
O90.0189 (9)0.0374 (10)0.0551 (12)0.0008 (7)0.0040 (8)0.0096 (9)
O110.0280 (9)0.0327 (10)0.0398 (10)0.0029 (7)0.0013 (7)0.0140 (8)
O120.0204 (9)0.0394 (10)0.0484 (11)0.0035 (7)0.0034 (8)0.0105 (8)
O1310.0251 (9)0.0359 (10)0.0707 (14)0.0020 (8)0.0166 (9)0.0045 (9)
O1320.0338 (9)0.0223 (9)0.0451 (11)0.0026 (7)0.0010 (8)0.0044 (7)
N20.0285 (11)0.0406 (13)0.0376 (13)0.0039 (9)0.0015 (9)0.0011 (10)
N40.0200 (9)0.0316 (10)0.0313 (11)0.0040 (8)0.0017 (8)0.0003 (9)
N70.0291 (10)0.0305 (11)0.0168 (9)0.0042 (8)0.0014 (7)0.0022 (8)
N100.0193 (9)0.0257 (10)0.0253 (10)0.0024 (7)0.0025 (7)0.0033 (8)
N130.0232 (9)0.0284 (10)0.0234 (10)0.0014 (8)0.0005 (7)0.0030 (8)
C10.0214 (11)0.0304 (12)0.0178 (11)0.0023 (9)0.0015 (8)0.0002 (9)
C20.0195 (10)0.0311 (12)0.0183 (10)0.0002 (9)0.0004 (8)0.0034 (9)
C30.0244 (11)0.0291 (13)0.0266 (12)0.0007 (10)0.0020 (9)0.0059 (9)
C50.0234 (11)0.0356 (13)0.0202 (11)0.0018 (10)0.0018 (8)0.0029 (10)
C60.0245 (11)0.0300 (12)0.0184 (11)0.0022 (9)0.0013 (9)0.0011 (9)
C70.0211 (11)0.0239 (10)0.0204 (11)0.0023 (9)0.0028 (8)0.0001 (9)
C80.0197 (10)0.0250 (11)0.0187 (10)0.0006 (8)0.0022 (8)0.0022 (9)
C90.0221 (11)0.0269 (11)0.0218 (11)0.0003 (9)0.0013 (9)0.0024 (9)
C110.0250 (11)0.0257 (11)0.0157 (10)0.0020 (9)0.0015 (8)0.0002 (9)
C120.0202 (11)0.0257 (11)0.0207 (10)0.0020 (9)0.0001 (8)0.0005 (9)
Geometric parameters (Å, º) top
Ag1—O12.3133 (19)O132—N131.225 (3)
Ag1—O22.3848 (19)O132—Ag1iv2.661 (2)
Ag1—O8i2.4931 (18)N2—H210.832 (19)
Ag1—O112.5361 (18)N2—H220.83 (2)
Ag1—O5ii2.573 (2)N2—H230.830 (19)
Ag1—O722.644 (2)N2—H240.827 (19)
Ag1—O132i2.661 (2)N4—C51.364 (3)
O1—H110.80 (3)N4—C31.373 (3)
O1—H120.80 (3)N4—H40.8600
O2—C21.224 (3)N7—C11.417 (3)
O3—C31.212 (3)N10—C111.366 (3)
O5—C51.206 (3)N10—C91.373 (3)
O5—Ag1iii2.573 (2)N10—H100.8600
O6—C61.218 (3)N13—C71.423 (3)
O71—N71.235 (3)C1—C21.417 (3)
O72—N71.239 (3)C1—C61.434 (3)
O8—C81.225 (3)C2—C31.534 (3)
O8—Ag1iv2.4931 (18)C5—C61.546 (3)
O9—C91.206 (3)C7—C121.417 (3)
O11—C111.203 (3)C7—C81.419 (3)
O12—C121.223 (3)C8—C91.544 (3)
O131—N131.235 (3)C11—C121.539 (3)
O1—Ag1—O2132.26 (6)C5—N4—H4117.9
O1—Ag1—O2132.26 (6)C3—N4—H4117.9
O2—Ag1—O20.00 (5)O71—N7—O72120.3 (2)
O1—Ag1—O8i96.52 (7)O71—N7—C1119.6 (2)
O2—Ag1—O8i86.50 (7)O72—N7—C1120.0 (2)
O2—Ag1—O8i86.50 (7)C11—N10—C9124.3 (2)
O1—Ag1—O11153.27 (7)C11—N10—H10117.8
O2—Ag1—O1173.76 (6)C9—N10—H10117.8
O2—Ag1—O1173.76 (6)O132—N13—O131121.6 (2)
O8i—Ag1—O1176.73 (7)O132—N13—C7120.24 (19)
O1—Ag1—O5ii97.02 (7)O131—N13—C7118.21 (19)
O2—Ag1—O5ii107.42 (7)N7—C1—C2119.23 (19)
O2—Ag1—O5ii107.42 (7)N7—C1—C6119.3 (2)
O8i—Ag1—O5ii144.87 (6)C2—C1—C6121.5 (2)
O11—Ag1—O5ii76.64 (7)O2—C2—O20.00 (16)
O1—Ag1—O7287.67 (7)O2—C2—C1128.4 (2)
O2—Ag1—O7262.25 (7)O2—C2—C1128.4 (2)
O2—Ag1—O7262.25 (7)O2—C2—C3113.3 (2)
O8i—Ag1—O72139.31 (6)O2—C2—C3113.3 (2)
O11—Ag1—O72114.48 (7)C1—C2—C3118.3 (2)
O5ii—Ag1—O7273.55 (6)O3—C3—O30.0 (2)
O1—Ag1—O132i78.24 (6)O3—C3—N4121.8 (2)
O2—Ag1—O132i141.23 (6)O3—C3—N4121.8 (2)
O2—Ag1—O132i141.23 (6)O3—C3—C2119.0 (2)
O8i—Ag1—O132i63.63 (6)O3—C3—C2119.0 (2)
O11—Ag1—O132i75.60 (6)N4—C3—C2119.2 (2)
O5ii—Ag1—O132i87.76 (6)O5—C5—N4122.3 (2)
O72—Ag1—O132i155.09 (5)O5—C5—C6118.5 (2)
Ag1—O1—H11120 (3)N4—C5—C6119.2 (2)
Ag1—O1—H12111 (3)O6—C6—C1127.8 (2)
H11—O1—H12105.3 (9)O6—C6—C5114.7 (2)
O2—O2—C20 (10)C1—C6—C5117.6 (2)
O2—O2—Ag10 (6)C12—C7—C8122.1 (2)
C2—O2—Ag1123.54 (16)C12—C7—N13117.8 (2)
O3—O3—C30 (10)C8—C7—N13119.65 (19)
C5—O5—Ag1iii130.73 (17)O8—C8—C7127.9 (2)
N7—O72—Ag1123.30 (16)O8—C8—C9114.66 (19)
C8—O8—Ag1iv134.07 (15)C7—C8—C9117.45 (19)
C11—O11—Ag1141.17 (16)O9—C9—N10122.3 (2)
N13—O132—Ag1iv120.06 (15)O9—C9—C8118.9 (2)
H21—N2—H22108.8 (9)N10—C9—C8118.83 (19)
H21—N2—H23111 (3)O11—C11—N10122.9 (2)
H22—N2—H23109.0 (9)O11—C11—C12118.2 (2)
H21—N2—H24109.7 (9)N10—C11—C12118.9 (2)
H22—N2—H24108 (3)O12—C12—C7127.4 (2)
H23—N2—H24110.0 (9)O12—C12—C11114.6 (2)
C5—N4—C3124.1 (2)C7—C12—C11118.00 (19)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O11iii0.862.182.979 (3)155
N10—H10···O20.862.262.945 (3)137
N10—H10···O30.862.293.030 (3)144
O1—H11···O131v0.80 (3)2.06 (3)2.851 (3)177 (5)
O1—H12···O8vi0.80 (3)2.02 (3)2.781 (2)160 (3)
N2—H21···O6vii0.83 (2)2.16 (2)2.962 (3)163 (3)
N2—H22···O72viii0.83 (2)2.20 (2)2.998 (3)160 (3)
Symmetry codes: (iii) x1, y, z; (v) x+2, y1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x+1, y+1/2, z+1/2; (viii) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O11i0.862.182.979 (3)155.0
N10—H10···O20.862.262.945 (3)136.5
N10—H10···O30.862.293.030 (3)143.9
O1—H11···O131ii0.80 (3)2.06 (3)2.851 (3)177 (5)
O1—H12···O8iii0.80 (3)2.02 (3)2.781 (2)160 (3)
N2—H21···O6iv0.832 (19)2.16 (2)2.962 (3)163 (3)
N2—H22···O72v0.83 (2)2.20 (2)2.998 (3)160 (3)
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+2, y+1/2, z+1/2.
 

Acknowledgements

This research was supported by the Russian Foundation for Basic Research (grant 13–03–00079).

References

First citationAldoshin, S. M. (2008). Russ. Chem. Bull., 4, 718–735.  CrossRef Google Scholar
First citationCoronado, E., Curreli, S., Giménez-Saiz, C., Gómez-García, C. J., Deplano, P., Mercuri, M. L., Serpe, A., Pilia, L., Faulmann, C. & Canadell, E. (2007). Inorg. Chem. 46, 4446–4457.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1993). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34.  Web of Science CrossRef CAS Google Scholar
First citationKovalchukova, O. V., Kuzmina, N. E., Palkina, K. K., Strashnova, S. B. & Zaitsev, B. E. (2003). Russ. J. Inorg. Chem. 2, 194–198.  Google Scholar
First citationKovalchukova, O. V., Stash, A. I., Dinh Do, N., Strashnova, S. B. & Belskii, V. K. (2013). Russ. J. Coord. Chem. 39, 234–238.  Web of Science CrossRef CAS Google Scholar
First citationKuzmina, N. E., Palkina, K. K., Kovalchukova, O. V., Zaitsev, B. E., Strashnova, S. B. & Isaeva, N. Yu. (2004). Crystallogr. Rep. 49, 758–762.  CAS Google Scholar
First citationOhba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313–328.  Web of Science CrossRef CAS Google Scholar
First citationPalkina, K. K., Kuzmina, N. E., Kovalchukova, O. V., Strashnova, S. B. & Zaitsev, B. E. (2000). Dokl. Russ. Akad. Nauk, 370, 361–365.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m477-m478
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds