organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2,4-Di­nitro­phen­yl)acetohydrazide monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bChemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: houda_marouani@voila.fr

(Received 18 June 2013; accepted 8 July 2013; online 13 July 2013)

In the crystal structure of the title compound, C8H8N4O5·H2O, the organic and lattice water mol­ecules are linked together via N—H⋯O and O—H⋯O hydrogen bonds. A C—H⋯O inter­action is also observed between the organic mol­ecules. These hydrogen bonds and inter­actions lead to the formation of a three-dimensional network. An intra­molecular N—H⋯O hydrogen bond also occurs. The dihedral angle between the acetyl group and the almost planar hydrazide moiety [maximum deviation from the least-squares plane is 0.209 (2) Å for one of the nitro O atoms] is 88.5 (3)°.

Related literature

For background to the biological activity of hydrazines and hydrazones, see: Zahid & Sherazi (1997[Zahid, H. C. & Sherazi, S. K. A. (1997). Met. Based Drugs, 4, 327-332.]); Monfared et al. (2007[Monfared, H. H., Pouralimardan, O. & Janiak, C. (2007). Z. Naturforsch. Teil B, 62, 717-720.]). For a related crystal structure, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N4O5·H2O

  • Mr = 258.20

  • Monoclinic, P 21 /c

  • a = 7.702 (2) Å

  • b = 7.057 (3) Å

  • c = 21.550 (4) Å

  • β = 109.044 (19)°

  • V = 1107.3 (6) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56083 Å

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 7469 measured reflections

  • 5411 independent reflections

  • 2771 reflections with I > 2σ(I)

  • Rint = 0.064

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.195

  • S = 0.98

  • 5411 reflections

  • 181 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—H1W⋯O5 0.86 (1) 1.91 (1) 2.759 (3) 175 (3)
OW—H2W⋯O4i 0.84 (1) 2.05 (1) 2.868 (3) 165 (3)
N1—H1N⋯OWii 0.88 (3) 2.04 (3) 2.883 (3) 160 (2)
N2—H2N⋯O1 0.90 (3) 1.96 (3) 2.607 (2) 128 (2)
N2—H2N⋯OWiii 0.90 (3) 2.15 (3) 2.910 (3) 142 (2)
C6—H6⋯O5iv 0.93 2.40 3.310 (3) 165
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y-1, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Hydrazine and its derivatives have been intensively investigated due to their attractive pharmacological applications (Zahid & Sherazi, 1997). In addition, hydrazones exhibit physiological activities in the treatment of several diseases such as tuberculosis (Monfared et al., 2007). We report here the synthesis and the crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Okabe, et al., 1993). There is a strong intramolecular N—H···O hydrogen bond that stabilizes the molecular structure of the title compound. In the crystal structure, pairs of symmetry-related molecules are connected into centrosymmetric clusters via medium O—H···O and N—H···O hydrogen bonds forming twenty-six-membered rings with an R66 (26) motif (Bernstein, et al., 1995). The water molecule is surrounded by three organic groups through hydrogen bonds type O—H···O and N—H···O. The crystal packing (Fig. 2) is stabilized by these intermolecular hydrogen bonds and C—H···O interactions (Table 1) resulting in a three dimensional network.

Related literature top

For background to the biological activity of hydrazines and hydrazones, see: Zahid & Sherazi (1997); Monfared et al. (2007). For a related crystal structure, see: Okabe et al. (1993). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).

Experimental top

An aqueous solution (10 ml) containing of 2,4-dinitro-phenylhydrazine (2 mmol) was added to pure acetic acid (10 ml). The obtained solution was stirred at 333 K for 30 min and then left to stand at room temperature. Yellow single crystals of the title compound were obtained after some days.

Refinement top

H atoms were treated as riding, with C—H = 0.93 and 0.96 A° for phenyl and methyl H-atoms, respectively. The H-atoms bonded to O and N were located from difference maps and were allowed to refine freely. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(C phenyl).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.
[Figure 2] Fig. 2. Unit cell packing of the title compound projected along the a axis. The H-atoms not involved in H-bonding are omitted.
N'-(2,4-Dinitrophenyl)acetohydrazide monohydrate top
Crystal data top
C8H8N4O5·H2OF(000) = 536
Mr = 258.20Dx = 1.549 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56083 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.702 (2) Åθ = 9–11°
b = 7.057 (3) ŵ = 0.08 mm1
c = 21.550 (4) ÅT = 293 K
β = 109.044 (19)°Prism, yellow
V = 1107.3 (6) Å30.5 × 0.4 × 0.3 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.064
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.2°
Graphite monochromatorh = 1212
non–profiled ω scansk = 112
7469 measured reflectionsl = 3614
5411 independent reflections2 standard reflections every 120 min
2771 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.2081P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.004
5411 reflectionsΔρmax = 0.25 e Å3
181 parametersΔρmin = 0.23 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (4)
Crystal data top
C8H8N4O5·H2OV = 1107.3 (6) Å3
Mr = 258.20Z = 4
Monoclinic, P21/cAg Kα radiation, λ = 0.56083 Å
a = 7.702 (2) ŵ = 0.08 mm1
b = 7.057 (3) ÅT = 293 K
c = 21.550 (4) Å0.5 × 0.4 × 0.3 mm
β = 109.044 (19)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.064
7469 measured reflections2 standard reflections every 120 min
5411 independent reflections intensity decay: 1%
2771 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0713 restraints
wR(F2) = 0.195H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.25 e Å3
5411 reflectionsΔρmin = 0.23 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
OW0.8341 (3)0.6774 (3)0.23696 (8)0.0526 (5)
H1W0.784 (4)0.583 (3)0.2497 (13)0.088 (11)*
H2W0.827 (4)0.672 (5)0.1972 (6)0.091 (11)*
H2N0.894 (4)0.171 (4)0.1927 (14)0.073 (9)*
H1N0.762 (3)0.050 (4)0.2501 (11)0.052 (7)*
C10.6447 (3)0.1614 (3)0.12985 (10)0.0332 (4)
N20.7775 (3)0.1390 (3)0.18850 (8)0.0416 (5)
C20.6778 (3)0.2383 (3)0.07398 (10)0.0347 (5)
C40.3649 (3)0.2020 (3)0.00937 (10)0.0387 (5)
N30.8583 (3)0.2980 (3)0.07563 (10)0.0467 (5)
N40.2219 (3)0.2185 (3)0.05403 (10)0.0496 (5)
C30.5376 (3)0.2593 (3)0.01484 (10)0.0383 (5)
H30.56150.31250.02100.046*
N10.7353 (3)0.0698 (3)0.24205 (9)0.0410 (5)
C60.4620 (3)0.1034 (3)0.12134 (10)0.0385 (5)
H60.43490.05150.15680.046*
C50.3250 (3)0.1218 (3)0.06262 (11)0.0422 (5)
H50.20650.08150.05800.051*
O50.6823 (3)0.3600 (3)0.27355 (9)0.0607 (5)
C70.6972 (3)0.1892 (3)0.28405 (10)0.0388 (5)
O40.2556 (3)0.3098 (3)0.09698 (8)0.0683 (6)
O20.8788 (3)0.3578 (3)0.02501 (9)0.0723 (6)
O10.9859 (2)0.2867 (3)0.12714 (9)0.0685 (6)
C80.6708 (3)0.1000 (4)0.34342 (10)0.0492 (6)
H8A0.76720.14030.38200.074*
H8B0.67410.03550.33970.074*
H8C0.55420.13780.34650.074*
O30.0748 (3)0.1398 (3)0.06187 (10)0.0722 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
OW0.0634 (11)0.0483 (11)0.0435 (10)0.0030 (9)0.0139 (9)0.0001 (8)
C10.0400 (11)0.0272 (10)0.0339 (10)0.0000 (9)0.0142 (9)0.0027 (9)
N20.0431 (10)0.0511 (12)0.0333 (9)0.0026 (10)0.0161 (8)0.0035 (9)
C20.0404 (11)0.0309 (11)0.0367 (10)0.0045 (9)0.0179 (9)0.0028 (9)
C40.0432 (12)0.0331 (11)0.0358 (10)0.0044 (10)0.0074 (9)0.0024 (9)
N30.0510 (12)0.0503 (12)0.0443 (10)0.0083 (10)0.0234 (10)0.0013 (10)
N40.0566 (13)0.0416 (11)0.0436 (11)0.0072 (10)0.0068 (10)0.0066 (10)
C30.0543 (14)0.0305 (11)0.0339 (10)0.0001 (10)0.0194 (10)0.0016 (9)
N10.0534 (11)0.0387 (11)0.0342 (9)0.0053 (9)0.0188 (8)0.0067 (9)
C60.0458 (12)0.0372 (12)0.0390 (11)0.0009 (10)0.0226 (10)0.0023 (10)
C50.0395 (12)0.0386 (13)0.0498 (13)0.0002 (10)0.0166 (10)0.0039 (10)
O50.0877 (13)0.0382 (10)0.0690 (12)0.0093 (9)0.0431 (11)0.0063 (9)
C70.0399 (11)0.0404 (13)0.0378 (11)0.0004 (10)0.0152 (9)0.0037 (10)
O40.0883 (14)0.0697 (13)0.0383 (9)0.0014 (11)0.0090 (9)0.0087 (10)
O20.0695 (12)0.1000 (16)0.0573 (11)0.0166 (11)0.0342 (10)0.0137 (11)
O10.0465 (10)0.1019 (16)0.0551 (11)0.0231 (10)0.0138 (9)0.0105 (11)
C80.0548 (14)0.0557 (16)0.0397 (12)0.0029 (12)0.0188 (11)0.0065 (11)
O30.0496 (10)0.0774 (14)0.0732 (13)0.0013 (11)0.0025 (9)0.0012 (11)
Geometric parameters (Å, º) top
OW—H1W0.856 (10)N4—O31.223 (3)
OW—H2W0.841 (9)N4—O41.224 (3)
C1—N21.351 (3)C3—H30.9300
C1—C21.418 (3)N1—C71.338 (3)
C1—C61.419 (3)N1—H1N0.88 (3)
N2—N11.386 (2)C6—C51.364 (3)
N2—H2N0.90 (3)C6—H60.9300
C2—C31.384 (3)C5—H50.9300
C2—N31.442 (3)O5—C71.225 (3)
C4—C31.358 (3)C7—C81.498 (3)
C4—C51.400 (3)C8—H8A0.9600
C4—N41.453 (3)C8—H8B0.9600
N3—O11.222 (2)C8—H8C0.9600
N3—O21.227 (2)
H1W—OW—H2W114 (2)C4—C3—H3120.1
N2—C1—C2123.22 (18)C2—C3—H3120.1
N2—C1—C6120.24 (18)C7—N1—N2120.3 (2)
C2—C1—C6116.53 (18)C7—N1—H1N124.5 (16)
C1—N2—N1120.55 (18)N2—N1—H1N113.5 (16)
C1—N2—H2N119.4 (18)C5—C6—C1121.78 (19)
N1—N2—H2N120.0 (18)C5—C6—H6119.1
C3—C2—C1121.36 (18)C1—C6—H6119.1
C3—C2—N3116.61 (18)C6—C5—C4119.25 (19)
C1—C2—N3122.03 (18)C6—C5—H5120.4
C3—C4—C5121.3 (2)C4—C5—H5120.4
C3—C4—N4118.6 (2)O5—C7—N1121.5 (2)
C5—C4—N4120.1 (2)O5—C7—C8122.7 (2)
O1—N3—O2122.08 (19)N1—C7—C8115.7 (2)
O1—N3—C2119.13 (17)C7—C8—H8A109.5
O2—N3—C2118.79 (19)C7—C8—H8B109.5
O3—N4—O4123.4 (2)H8A—C8—H8B109.5
O3—N4—C4118.5 (2)C7—C8—H8C109.5
O4—N4—C4118.1 (2)H8A—C8—H8C109.5
C4—C3—C2119.74 (19)H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—H1W···O50.86 (1)1.91 (1)2.759 (3)175 (3)
OW—H2W···O4i0.84 (1)2.05 (1)2.868 (3)165 (3)
N1—H1N···OWii0.88 (3)2.04 (3)2.883 (3)160 (2)
N2—H2N···O10.90 (3)1.96 (3)2.607 (2)128 (2)
N2—H2N···OWiii0.90 (3)2.15 (3)2.910 (3)142 (2)
C6—H6···O5iv0.932.403.310 (3)165
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x+2, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H8N4O5·H2O
Mr258.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.702 (2), 7.057 (3), 21.550 (4)
β (°) 109.044 (19)
V3)1107.3 (6)
Z4
Radiation typeAg Kα, λ = 0.56083 Å
µ (mm1)0.08
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7469, 5411, 2771
Rint0.064
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.195, 0.98
No. of reflections5411
No. of parameters181
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—H1W···O50.856 (10)1.905 (11)2.759 (3)175 (3)
OW—H2W···O4i0.841 (9)2.047 (13)2.868 (3)165 (3)
N1—H1N···OWii0.88 (3)2.04 (3)2.883 (3)160 (2)
N2—H2N···O10.90 (3)1.96 (3)2.607 (2)128 (2)
N2—H2N···OWiii0.90 (3)2.15 (3)2.910 (3)142 (2)
C6—H6···O5iv0.932.403.310 (3)164.8
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x+2, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Tunisian Ministry of HEScR, and the Deanship of Scientific Research at King Saud University is also thanked for funding the paper through the Research Group Project No. RGP-VPP-089.

References

First citationBernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMonfared, H. H., Pouralimardan, O. & Janiak, C. (2007). Z. Naturforsch. Teil B, 62, 717–720.  Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZahid, H. C. & Sherazi, S. K. A. (1997). Met. Based Drugs, 4, 327–332.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds