organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-1H-1,2,4-triazol-4-ium hydrogen oxalate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bChemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: essidmanel@voila.fr

(Received 9 July 2013; accepted 13 July 2013; online 20 July 2013)

In the title salt, C2H5N4+·C2HO4, the hydrogen oxalate anions form corrugated chains parallel to the c axis, linked by inter­molecular O—H⋯O hydrogen bonds. The 5-amino-1H-1,2,4-triazol-4-ium cations are connected into centrosymmetric clusters via weak C—H⋯N hydrogen bonds forming nine-membered rings with an R33(9) motif. These clusters are inter­connected via anions through N—H⋯O hydrogen bonds, building a three-dimensional network.

Related literature

For the properties of triazoles, see: Li et al. (2004[Li, W., Wu, Q., Yu, Y., Luo, M., Hu, L., Gu, Y., Niu, F. & Hu, J. (2004). Spectrochim. Acta Part A, 60, 2343-2354.]); Mernari et al. (1998[Mernari, B., Elattari, H., Traisnel, M., Bentiss, F. & Langrenée, M. (1998). Corros. Sci. 40, 391-399.]); Bentiss et al. (1999[Bentiss, F., Langrenée, M., Traisnel, M. & Hornez, J. C. (1999). Corros. Sci. 41, 789-803.]). For graph-set notation of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Matulková et al. (2007[Matulková, I., Císařová, I., Němec, P. & Mička, Z. (2007). J. Mol. Struct. 834-836, 328-335.], 2008[Matulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 873, 46-60.]).

[Scheme 1]

Experimental

Crystal data
  • C2H5N4+·C2HO4

  • Mr = 174.13

  • Trigonal, [R \overline 3]

  • a = 23.093 (4) Å

  • c = 6.603 (3) Å

  • V = 3049.3 (16) Å3

  • Z = 18

  • Ag Kα radiation

  • λ = 0.56080 Å

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.3 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3909 measured reflections

  • 3313 independent reflections

  • 1929 reflections with I > 2σ(I)

  • Rint = 0.023

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.194

  • S = 1.04

  • 3313 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.87 (3) 1.72 (3) 2.5845 (17) 174 (3)
N1—H2⋯O1ii 0.86 (3) 2.29 (3) 3.087 (2) 155 (2)
N1—H3⋯O4iii 0.88 (3) 2.06 (3) 2.925 (2) 171 (3)
N2—H4⋯O4iv 0.86 2.09 2.892 (2) 154
N2—H4⋯O2iv 0.86 2.28 2.878 (2) 127
N3—H5⋯O3iii 0.86 1.94 2.7652 (18) 161
C4—H6⋯N4v 0.93 2.41 3.313 (3) 165
Symmetry codes: (i) [-x+y+{\script{2\over 3}}, -x+{\script{1\over 3}}, z+{\script{1\over 3}}]; (ii) [-x+y+{\script{2\over 3}}, -x+{\script{1\over 3}}, z-{\script{2\over 3}}]; (iii) -x+1, -y, -z; (iv) [x-y-{\script{1\over 3}}, x-{\script{2\over 3}}, -z+{\script{1\over 3}}]; (v) -y, x-y-1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Triazole derivatives are used in the synthesis of antibiotics, fungicides, herbicides, plant growth hormone regulators (Li et al., 2004), and potentially good corrosion inhibitors (Mernari et al., 1998; Bentiss et al., 1999). Materials based on triazole compounds with dicarboxylic acids (4-amino-1,2,4-triazol-1-ium oxalate, adducts of 4-amino-1,2,4-triazole with succinic acid and adipic acid and 3-amino-1,2,4-triazolinium hydrogen L-tartrate) were also prepared and characterized as promising compounds in the field of non linear optics (Matulková et al., 2008; Matulková et al., 2007).

The asymmetric unit of the title salt (Fig. 1) contains a 5-amino-1,2,4-triazol-4-ium cation and an oxalate anion. The cation is monoprotonated at atom N2 and oxalic acid is mono-deprotonated. Geometrical parameters of the cation are found to be in agreement with those of other similar structures of 3-amino-1,2,4-triazolinium(1+) hydrogen L-tartrate (Matulková et al., 2007).

The crystal structure is based on a three dimensional network of hydrogen oxalic acid anions interconnected by O—H···O hydrogen bonds with lengths of 2.585 Å.

Planar 5-amino-1,2,4-triazolinium cations are located in the cavities of the hydrogen oxalic acid network and connected with anions via linear and bifurcated N—H···O hydrogen bonds. The donor-acceptor distances in these hydrogen bonds attain values from 2.765 to 3.087 Å (Tab. 1 and Fig. 2).

The oxalate ion is maintained by moderate hydrogen bonds that link the oxygen atoms of oxalate ion and the hydrogen of the other oxalate into corrugated chains parallel to the c axis. In addition, there are weak C—H···N hydrogen bonds in the crystal structure between 5-amino-1,2,4-triazilium cations forming an R33(9) motif (Fig. 2) (Bernstein et al., 1995). These cations are interconnected via anions through N—H···O hydrogen bonds, building a three dimensional network.

Related literature top

For the properties of triazoles, see: Li et al. (2004); Mernari et al. (1998); Bentiss et al. (1999). For graph-set notation of hydrogen bonding, see: Bernstein et al. (1995). For related structures, see: Matulková et al. (2007, 2008).

Experimental top

An aqueous solution of H2C2O4 (2 mmol in 10 ml water) was added to an aqueous solution of 5-amino-1H-1,2,4-triazole (2 mmol in 10 ml of water). The obtained solution was stirred at 333 K for 30 min and then left to stand at room temperature. Colorless single crystals of the title compound were obtained after some days.

Refinement top

The hydrogen atoms bonded to O1 and N1 were located from a difference map and were allowed to refine. The rest of the H atoms were treated as riding, with C—H = 0.93 Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title salt with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the hydrogen bonds (dotted lines) in the crystal structure of the title salt. H atoms non-participating in hydrogen- bonding were omitted for clarity.
(I) top
Crystal data top
C2H5N4+·C2HO4Dx = 1.707 Mg m3
Mr = 174.13Ag Kα radiation, λ = 0.56080 Å
Trigonal, R3Cell parameters from 25 reflections
Hall symbol: -R 3θ = 9–11°
a = 23.093 (4) ŵ = 0.09 mm1
c = 6.603 (3) ÅT = 293 K
V = 3049.3 (16) Å3Prism, colorless
Z = 180.35 × 0.3 × 0.25 mm
F(000) = 1620
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.4°
Graphite monochromatorh = 133
non–profiled ω scansk = 133
3909 measured reflectionsl = 1111
3313 independent reflections2 standard reflections every 120 min
1929 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0979P)2 + 1.6007P]
where P = (Fo2 + 2Fc2)/3
3313 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C2H5N4+·C2HO4Z = 18
Mr = 174.13Ag Kα radiation, λ = 0.56080 Å
Trigonal, R3µ = 0.09 mm1
a = 23.093 (4) ÅT = 293 K
c = 6.603 (3) Å0.35 × 0.3 × 0.25 mm
V = 3049.3 (16) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.023
3909 measured reflections2 standard reflections every 120 min
3313 independent reflections intensity decay: 1%
1929 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.50 e Å3
3313 reflectionsΔρmin = 0.42 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35441 (6)0.03841 (6)0.4263 (2)0.0279 (3)
O40.50310 (6)0.02945 (6)0.2759 (2)0.0304 (3)
O30.46709 (6)0.04345 (6)0.2350 (2)0.0268 (3)
O20.37748 (7)0.12148 (6)0.4035 (3)0.0384 (4)
N30.40979 (7)0.14645 (7)0.1112 (2)0.0282 (3)
H50.45150.11830.12950.034*
N10.36951 (8)0.06980 (8)0.0972 (3)0.0310 (3)
N20.30499 (7)0.18848 (8)0.0659 (3)0.0308 (3)
H40.26610.19270.05010.037*
C30.36142 (7)0.13134 (8)0.0947 (2)0.0228 (3)
C20.46067 (7)0.01195 (7)0.2875 (2)0.0205 (3)
C40.31868 (9)0.23999 (9)0.0656 (3)0.0338 (4)
H60.28770.28510.04800.041*
C10.39246 (8)0.06374 (7)0.3785 (2)0.0217 (3)
N40.38176 (9)0.21484 (9)0.0939 (3)0.0429 (4)
H10.3155 (15)0.0699 (15)0.467 (4)0.054 (8)*
H30.4074 (14)0.0368 (14)0.142 (4)0.049 (7)*
H20.3342 (14)0.0667 (12)0.113 (4)0.039 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0205 (5)0.0209 (5)0.0446 (7)0.0121 (4)0.0104 (5)0.0068 (5)
O40.0229 (5)0.0301 (6)0.0442 (7)0.0179 (5)0.0058 (5)0.0057 (5)
O30.0183 (5)0.0208 (5)0.0405 (7)0.0091 (4)0.0014 (5)0.0076 (5)
O20.0334 (7)0.0216 (6)0.0648 (10)0.0172 (5)0.0158 (6)0.0122 (6)
N30.0185 (6)0.0235 (6)0.0423 (8)0.0103 (5)0.0040 (5)0.0025 (6)
N10.0276 (7)0.0244 (7)0.0437 (9)0.0149 (6)0.0001 (6)0.0016 (6)
N20.0159 (5)0.0274 (7)0.0448 (9)0.0076 (5)0.0030 (5)0.0023 (6)
C30.0170 (6)0.0235 (7)0.0270 (7)0.0093 (5)0.0004 (5)0.0004 (5)
C20.0177 (6)0.0206 (6)0.0237 (7)0.0101 (5)0.0000 (5)0.0008 (5)
C40.0219 (7)0.0183 (7)0.0541 (12)0.0047 (6)0.0015 (7)0.0026 (7)
C10.0203 (6)0.0195 (6)0.0279 (7)0.0120 (5)0.0022 (5)0.0037 (5)
N40.0336 (9)0.0314 (8)0.0665 (12)0.0184 (7)0.0035 (8)0.0027 (8)
Geometric parameters (Å, º) top
O1—C11.3143 (19)N1—H30.88 (3)
O1—H10.87 (3)N1—H20.86 (3)
O4—C21.2351 (19)N2—C31.325 (2)
O3—C21.2607 (18)N2—C41.375 (2)
O2—C11.2099 (19)N2—H40.8600
N3—C31.331 (2)C2—C11.546 (2)
N3—N41.380 (2)C4—N41.284 (3)
N3—H50.8600C4—H60.9300
N1—C31.338 (2)
C1—O1—H1110.1 (19)N3—C3—N1126.00 (15)
C3—N3—N4108.56 (14)O4—C2—O3127.23 (15)
C3—N3—H5125.7O4—C2—C1116.06 (13)
N4—N3—H5125.7O3—C2—C1116.71 (13)
C3—N1—H3118.4 (19)N4—C4—N2107.94 (15)
C3—N1—H2117.1 (17)N4—C4—H6126.0
H3—N1—H2118 (2)N2—C4—H6126.0
C3—N2—C4108.94 (14)O2—C1—O1124.85 (15)
C3—N2—H4125.5O2—C1—C2121.67 (14)
C4—N2—H4125.5O1—C1—C2113.47 (12)
N2—C3—N3106.69 (14)C4—N4—N3107.86 (15)
N2—C3—N1127.24 (15)
C4—N2—C3—N30.3 (2)O3—C2—C1—O2168.06 (17)
C4—N2—C3—N1177.35 (19)O4—C2—C1—O1166.66 (15)
N4—N3—C3—N20.6 (2)O3—C2—C1—O112.8 (2)
N4—N3—C3—N1177.71 (18)N2—C4—N4—N30.5 (2)
C3—N2—C4—N40.1 (2)C3—N3—N4—C40.7 (2)
O4—C2—C1—O212.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.87 (3)1.72 (3)2.5845 (17)174 (3)
N1—H2···O1ii0.86 (3)2.29 (3)3.087 (2)155 (2)
N1—H3···O4iii0.88 (3)2.06 (3)2.925 (2)171 (3)
N2—H4···O4iv0.862.092.892 (2)154
N2—H4···O2iv0.862.282.878 (2)127
N3—H5···O3iii0.861.942.7652 (18)161
C4—H6···N4v0.932.413.313 (3)165
Symmetry codes: (i) x+y+2/3, x+1/3, z+1/3; (ii) x+y+2/3, x+1/3, z2/3; (iii) x+1, y, z; (iv) xy1/3, x2/3, z+1/3; (v) y, xy1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.87 (3)1.72 (3)2.5845 (17)174 (3)
N1—H2···O1ii0.86 (3)2.29 (3)3.087 (2)155 (2)
N1—H3···O4iii0.88 (3)2.06 (3)2.925 (2)171 (3)
N2—H4···O4iv0.862.092.892 (2)154.4
N2—H4···O2iv0.862.282.878 (2)126.7
N3—H5···O3iii0.861.942.7652 (18)161.0
C4—H6···N4v0.932.413.313 (3)164.9
Symmetry codes: (i) x+y+2/3, x+1/3, z+1/3; (ii) x+y+2/3, x+1/3, z2/3; (iii) x+1, y, z; (iv) xy1/3, x2/3, z+1/3; (v) y, xy1, z.
 

Acknowledgements

This work was supported by the Tunisian Ministry of HEScR. The authors are grateful to the Deanship of Scientific Research at King Saud University for funding the paper through the Research Group Project No. RGP-VPP-089.

References

First citationBentiss, F., Langrenée, M., Traisnel, M. & Hornez, J. C. (1999). Corros. Sci. 41, 789–803.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, W., Wu, Q., Yu, Y., Luo, M., Hu, L., Gu, Y., Niu, F. & Hu, J. (2004). Spectrochim. Acta Part A, 60, 2343–2354.  CrossRef Google Scholar
First citationMatulková, I., Císařová, I., Němec, P. & Mička, Z. (2007). J. Mol. Struct. 834–836, 328–335.  Google Scholar
First citationMatulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 873, 46–60.  Google Scholar
First citationMernari, B., Elattari, H., Traisnel, M., Bentiss, F. & Langrenée, M. (1998). Corros. Sci. 40, 391–399.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds