organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1227-o1228

3-(4-Amino­phen­yl)-5-(4-meth­­oxy­phen­yl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 19 June 2013; accepted 1 July 2013; online 10 July 2013)

In the mol­ecule of title pyrazoline derivative, C17H18N4OS, the pyrazole ring adopts an envelope conformation with the flap atom, which bears the meth­oxy­phenyl substituent, displaced by 0.0750 (12) Å from the plane through the other ring atoms. The two substituted benzene rings make a dihedral angle of 70.59 (6)°. The meth­oxy group is twisted slightly with respect to the attached benzene ring [Cmeth­yl—O—C—C torsion angle = −8.84 (15)°]. An intra­molecular N—H⋯N hydrogen bond occurs. In the crystal, the pyrazoline mol­ecules are linked by N—H⋯O and N—H⋯S hydrogen bonds into zigzag layers parallel to the bc plane and stacked along the a axis by ππ inter­actions with centroid–centroid distances of 3.4690 (7) and 3.5792 (7) Å. C—H⋯π inter­actions are also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o701-o702.]); Quah et al. (2013[Quah, C. K., Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2013). Acta Cryst. E69, o464-o465.]). For background to and applications of pyrazoline derivatives, see: Gong et al. (2010[Gong, Z.-L., Zheng, L.-W., Zhao, B.-X., Yang, D.-Z., Lv, H.-S., Liu, W.-Y. & Lian, S. (2010). J. Photochem. Photobiol. A Chem. 209, 49-55.]); Husain et al. (2008[Husain, K., Abid, M. & Azam, A. (2008). Eur. J. Med. Chem. 43, 393-403.]); Khode et al. (2009[Khode, S., Maddi, V., Aragade, P., Palkar, M., Ronad, P. K., Mamledesai, S., Thippeswamy, A. H. M. & Satyanarayana, D. (2009). Eur J. Med. Chem. 44, 1682-1688.]); Lv et al. (2011[Lv, P.-C., Li, D.-D., Li, Q.-S., Lu, X., Xiao, Z.-P. & Zhu, H.-L. (2011). Bioorg. Med. Chem. Lett. 21, 5374-5377.]); Sakthinathan et al. (2012[Sakthinathan, S. P., Vanangamudi, G. & Thirunarayanan, G. (2012). Spectrochim. Acta A. 95, 693-700.]); Shaharyar et al. (2010[Shaharyar, M., Abdullah, M. M., Bakht, M. A. & Majeed, J. (2010). Eur J. Med. Chem. 45, 114-119.]); Shoman et al. (2009[Shoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur J. Med. Chem. 44, 3068-3076.]). For the stability of the temperature controller, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N4OS

  • Mr = 326.42

  • Monoclinic, P 21 /c

  • a = 8.0052 (2) Å

  • b = 17.3439 (5) Å

  • c = 12.4588 (3) Å

  • β = 114.789 (1)°

  • V = 1570.41 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.57 × 0.39 × 0.29 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.940

  • 23819 measured reflections

  • 4571 independent reflections

  • 4045 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.05

  • 4571 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯S1i 0.866 (17) 2.664 (17) 3.4559 (12) 152.5 (15)
N3—H2N3⋯S1ii 0.84 (2) 2.60 (2) 3.4142 (12) 164.2 (18)
N4—H2N4⋯N1 0.881 (17) 2.209 (16) 2.6093 (15) 107.2 (13)
N4—H2N4⋯O1ii 0.881 (17) 2.567 (17) 3.3022 (14) 141.5 (13)
C8—H8ACg2i 0.99 2.66 3.4159 (13) 133
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazolines are five-membered heterocyclic compounds having three carbon atoms and two adjacent nitrogen atoms within the pyrazoline ring. Numerous pyrazolines have been found to possess considerable biological activities with several prominent effects, such as antimicrobial (Sakthinathan et al., 2012), antiamoebic (Husain et al., 2008), anti-inflammatory (Shoman et al., 2009), analgesic (Khode et al., 2009) and anticancer (Lv et al., 2011; Shaharyar et al., 2010) activities, as well as optical properties (Gong et al., 2010). Owing to these interesting properties of pyrazolines and our on-going research on fluorescence and biologically active compounds, the title pyrazoline derivative (I) was synthesized by cyclization of the chalcone derivative with thiosemicarbazide. Herein the crystal structure of (I) is reported.

In the molecule of (I), C17H18N4OS, the pyrazole ring is in an envelope conformation (pucker atom at C9 with deviation of 0.0750 (12) Å) with puckering parameter Q = 0.1186 (12) Å and ϕ = 71.2 (5)° (Cremer & Pople, 1975). The mean plane through pyrazole ring makes the dihedral angles of 5.75 (6) and 73.76 (6)° with 4-aminophenyl and 4-methoxyphenyl rings, respectively, whereas the dihedral angle between the two substituted phenyl rings is 70.59 (6)°. The methoxy group is slightly twisted from its attached benzene ring with the torsion angle C17–O1–C13–C14 = -8.84 (15)°. The carbothioamide unit is also twisted from pyrazole ring as indicated by the torsion angles N21—N2–C16–N4 = 9.07 (15)° and N1–N2–C16–S2 = -171.50 (8)°. An intramolecular N4—H2N4···N1 hydrogen bond generates an S(5) ring motif (Fig. 1; Bernstein et al., 1995). Bond distances in (I) are in normal ranges (Allen et al., 1987) and comparable with those observed in related structures (Fun et al., 2011; Quah et al., 2013).

In the crystal packing (Fig. 2), the molecules are linked in a zigzag fashion by Namino—H···S and Nthioamide—H···O intermolcular interactions (Table 1) into a two dimensional network parallel to the bc plane which further stacks along the a-axis by π···π interactions with centroid..centroid distances of Cg1···Cg2ii = 3.5792 (7) Å and Cg2···Cg2v = 3.4690 (7) Å [symmetry code (v) = -x, 2 - y, -z and Cg1 is the centroid of N1/N2/C7–C9 ring]. C—H···π interactions (Table 1) are also present.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2011); Quah et al. (2013). For background to and applications of pyrazoline derivatives, see: Gong et al. (2010); Husain et al. (2008); Khode et al. (2009); Lv et al. (2011); Sakthinathan et al. (2012); Shaharyar et al. (2010); Shoman et al. (2009). For the stability of the temperature controller, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by dissolving (E)-1-(4-aminophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (0.25 g, 1.0 mmol) in a solution of KOH (0.11 g, 2.0 mmol) in ethanol (20 ml). An excess thiosemicarbazide (0.18 g, 2.0 mmol) in ethanol (20 ml) was then added, and the reaction mixture was vigorously stirred and refluxed for 4 h. The brown solid of the title compound obtained after cooling was filtered off under vacuum. Brown block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from C2H5OH by slow evaporation of the solvent at room temperature after several days. M. p. 479–480 K.

Refinement top

Amino and thioamide H atoms were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.95 Å for aromatic, 1.00 Å for CH, 0.99 Å for CH2 and 0.98 for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular N—H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis. Hydrogen bonds are shown as dashed lines.
3-(4-Aminophenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide top
Crystal data top
C17H18N4OSF(000) = 688
Mr = 326.42Dx = 1.381 Mg m3
Monoclinic, P21/cMelting point = 479–480 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.0052 (2) ÅCell parameters from 4571 reflections
b = 17.3439 (5) Åθ = 2.2–30.0°
c = 12.4588 (3) ŵ = 0.22 mm1
β = 114.789 (1)°T = 100 K
V = 1570.41 (7) Å3Block, brown
Z = 40.57 × 0.39 × 0.29 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
4571 independent reflections
Radiation source: sealed tube4045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.886, Tmax = 0.940k = 2422
23819 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.5572P]
where P = (Fo2 + 2Fc2)/3
4571 reflections(Δ/σ)max = 0.002
225 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H18N4OSV = 1570.41 (7) Å3
Mr = 326.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0052 (2) ŵ = 0.22 mm1
b = 17.3439 (5) ÅT = 100 K
c = 12.4588 (3) Å0.57 × 0.39 × 0.29 mm
β = 114.789 (1)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
4571 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4045 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.940Rint = 0.034
23819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.43 e Å3
4571 reflectionsΔρmin = 0.26 e Å3
225 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.96189 (4)0.737361 (16)0.23440 (3)0.02103 (9)
O10.20880 (12)0.50083 (5)0.02032 (7)0.02307 (18)
N10.56007 (13)0.88586 (5)0.17966 (8)0.01819 (18)
N20.65454 (13)0.82048 (5)0.16720 (8)0.01788 (18)
N30.00793 (15)1.16984 (6)0.00281 (10)0.0223 (2)
N40.88104 (15)0.85193 (6)0.34723 (9)0.0236 (2)
C10.20776 (14)0.99640 (6)0.05879 (10)0.0176 (2)
H1A0.20200.96660.12420.021*
C20.10060 (15)1.06212 (6)0.07863 (10)0.0183 (2)
H2A0.02371.07720.15730.022*
C30.10467 (15)1.10666 (6)0.01667 (10)0.0181 (2)
C40.22393 (15)1.08391 (6)0.13240 (10)0.0191 (2)
H4A0.23041.11380.19790.023*
C50.33141 (15)1.01856 (6)0.15128 (10)0.0182 (2)
H5A0.41121.00420.22980.022*
C60.32452 (14)0.97303 (6)0.05611 (10)0.0168 (2)
C70.43893 (14)0.90464 (6)0.07541 (9)0.0165 (2)
C80.43688 (14)0.85248 (6)0.02203 (9)0.0169 (2)
H8A0.48060.87990.07510.020*
H8B0.31190.83190.06930.020*
C90.57125 (14)0.78746 (6)0.04662 (9)0.0167 (2)
H9A0.66760.78100.01600.020*
C100.47626 (14)0.71095 (6)0.04153 (9)0.0163 (2)
C110.41276 (16)0.68894 (7)0.12532 (10)0.0202 (2)
H11A0.43100.72220.18980.024*
C120.32283 (16)0.61881 (7)0.11590 (10)0.0211 (2)
H12A0.28050.60450.17390.025*
C130.29479 (14)0.56940 (6)0.02121 (10)0.0180 (2)
C140.35358 (16)0.59149 (6)0.06472 (10)0.0202 (2)
H14A0.33210.55900.13060.024*
C150.44439 (16)0.66176 (6)0.05325 (10)0.0199 (2)
H15A0.48550.67640.11160.024*
C160.82554 (15)0.80698 (6)0.25017 (10)0.0185 (2)
C170.15491 (17)0.45460 (7)0.08438 (11)0.0252 (2)
H17A0.09450.40750.07510.038*
H17B0.26410.44080.09700.038*
H17C0.06940.48390.15260.038*
H1N30.039 (2)1.1943 (10)0.0690 (15)0.030 (4)*
H2N30.007 (3)1.1952 (11)0.0576 (17)0.038 (5)*
H1N40.992 (3)0.8465 (11)0.3959 (17)0.041 (5)*
H2N40.810 (2)0.8906 (10)0.3477 (14)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01945 (14)0.01830 (14)0.02342 (15)0.00144 (9)0.00711 (11)0.00405 (10)
O10.0271 (4)0.0168 (4)0.0234 (4)0.0078 (3)0.0088 (3)0.0032 (3)
N10.0184 (4)0.0153 (4)0.0204 (4)0.0008 (3)0.0076 (3)0.0010 (3)
N20.0175 (4)0.0147 (4)0.0187 (4)0.0008 (3)0.0049 (3)0.0012 (3)
N30.0288 (5)0.0160 (4)0.0255 (5)0.0033 (4)0.0146 (4)0.0015 (4)
N40.0210 (5)0.0219 (5)0.0208 (5)0.0010 (4)0.0017 (4)0.0021 (4)
C10.0182 (5)0.0154 (5)0.0195 (5)0.0025 (4)0.0083 (4)0.0013 (4)
C20.0189 (5)0.0164 (5)0.0197 (5)0.0019 (4)0.0082 (4)0.0008 (4)
C30.0185 (5)0.0146 (4)0.0241 (5)0.0023 (4)0.0116 (4)0.0004 (4)
C40.0211 (5)0.0180 (5)0.0210 (5)0.0026 (4)0.0115 (4)0.0019 (4)
C50.0194 (5)0.0178 (5)0.0183 (5)0.0027 (4)0.0087 (4)0.0002 (4)
C60.0172 (4)0.0143 (4)0.0196 (5)0.0024 (4)0.0086 (4)0.0006 (4)
C70.0164 (4)0.0149 (4)0.0192 (5)0.0031 (3)0.0086 (4)0.0000 (4)
C80.0177 (4)0.0142 (4)0.0181 (5)0.0009 (3)0.0068 (4)0.0001 (4)
C90.0163 (4)0.0156 (4)0.0173 (5)0.0016 (3)0.0060 (4)0.0007 (4)
C100.0155 (4)0.0139 (4)0.0179 (5)0.0002 (3)0.0053 (4)0.0003 (4)
C110.0228 (5)0.0188 (5)0.0190 (5)0.0045 (4)0.0089 (4)0.0039 (4)
C120.0228 (5)0.0223 (5)0.0188 (5)0.0054 (4)0.0094 (4)0.0014 (4)
C130.0161 (4)0.0143 (4)0.0204 (5)0.0009 (3)0.0044 (4)0.0004 (4)
C140.0239 (5)0.0164 (5)0.0205 (5)0.0010 (4)0.0096 (4)0.0039 (4)
C150.0236 (5)0.0171 (5)0.0205 (5)0.0012 (4)0.0108 (4)0.0009 (4)
C160.0184 (5)0.0156 (5)0.0192 (5)0.0031 (4)0.0057 (4)0.0028 (4)
C170.0284 (6)0.0175 (5)0.0245 (6)0.0053 (4)0.0061 (5)0.0047 (4)
Geometric parameters (Å, º) top
S1—C161.6935 (12)C5—H5A0.9500
O1—C131.3719 (13)C6—C71.4557 (15)
O1—C171.4349 (14)C7—C81.5086 (15)
N1—C71.2951 (14)C8—C91.5457 (15)
N1—N21.4072 (13)C8—H8A0.9900
N2—C161.3456 (14)C8—H8B0.9900
N2—C91.4798 (14)C9—C101.5173 (14)
N3—C31.3744 (14)C9—H9A1.0000
N3—H1N30.866 (18)C10—C151.3910 (15)
N3—H2N30.836 (19)C10—C111.3924 (15)
N4—C161.3479 (15)C11—C121.3931 (15)
N4—H1N40.85 (2)C11—H11A0.9500
N4—H2N40.882 (18)C12—C131.3980 (16)
C1—C21.3851 (15)C12—H12A0.9500
C1—C61.4018 (15)C13—C141.3918 (16)
C1—H1A0.9500C14—C151.3953 (15)
C2—C31.4053 (15)C14—H14A0.9500
C2—H2A0.9500C15—H15A0.9500
C3—C41.4113 (16)C17—H17A0.9800
C4—C51.3822 (15)C17—H17B0.9800
C4—H4A0.9500C17—H17C0.9800
C5—C61.4063 (15)
C13—O1—C17116.77 (9)C9—C8—H8B111.2
C7—N1—N2107.65 (9)H8A—C8—H8B109.1
C16—N2—N1118.43 (9)N2—C9—C10112.67 (9)
C16—N2—C9126.36 (10)N2—C9—C8101.08 (8)
N1—N2—C9112.93 (8)C10—C9—C8113.24 (8)
C3—N3—H1N3117.7 (11)N2—C9—H9A109.8
C3—N3—H2N3115.2 (13)C10—C9—H9A109.8
H1N3—N3—H2N3118.3 (17)C8—C9—H9A109.8
C16—N4—H1N4115.4 (13)C15—C10—C11118.26 (10)
C16—N4—H2N4118.4 (11)C15—C10—C9118.83 (10)
H1N4—N4—H2N4124.6 (16)C11—C10—C9122.86 (10)
C2—C1—C6121.20 (10)C10—C11—C12120.97 (10)
C2—C1—H1A119.4C10—C11—H11A119.5
C6—C1—H1A119.4C12—C11—H11A119.5
C1—C2—C3120.55 (10)C11—C12—C13120.05 (11)
C1—C2—H2A119.7C11—C12—H12A120.0
C3—C2—H2A119.7C13—C12—H12A120.0
N3—C3—C2120.53 (10)O1—C13—C14124.25 (10)
N3—C3—C4121.06 (10)O1—C13—C12116.15 (10)
C2—C3—C4118.40 (10)C14—C13—C12119.60 (10)
C5—C4—C3120.62 (10)C13—C14—C15119.43 (10)
C5—C4—H4A119.7C13—C14—H14A120.3
C3—C4—H4A119.7C15—C14—H14A120.3
C4—C5—C6121.02 (10)C10—C15—C14121.67 (10)
C4—C5—H5A119.5C10—C15—H15A119.2
C6—C5—H5A119.5C14—C15—H15A119.2
C1—C6—C5118.19 (10)N2—C16—N4115.79 (10)
C1—C6—C7120.55 (10)N2—C16—S1122.17 (9)
C5—C6—C7121.24 (10)N4—C16—S1122.03 (9)
N1—C7—C6121.70 (10)O1—C17—H17A109.5
N1—C7—C8114.02 (9)O1—C17—H17B109.5
C6—C7—C8124.19 (9)H17A—C17—H17B109.5
C7—C8—C9102.83 (8)O1—C17—H17C109.5
C7—C8—H8A111.2H17A—C17—H17C109.5
C9—C8—H8A111.2H17B—C17—H17C109.5
C7—C8—H8B111.2
C7—N1—N2—C16155.52 (10)N1—N2—C9—C812.22 (11)
C7—N1—N2—C98.44 (12)C7—C8—C9—N210.76 (10)
C6—C1—C2—C30.83 (16)C7—C8—C9—C10110.01 (9)
C1—C2—C3—N3176.99 (10)N2—C9—C10—C15159.59 (10)
C1—C2—C3—C41.66 (16)C8—C9—C10—C1586.46 (12)
N3—C3—C4—C5177.48 (10)N2—C9—C10—C1123.02 (14)
C2—C3—C4—C51.17 (16)C8—C9—C10—C1190.94 (12)
C3—C4—C5—C60.18 (16)C15—C10—C11—C121.24 (17)
C2—C1—C6—C50.52 (16)C9—C10—C11—C12178.65 (10)
C2—C1—C6—C7178.81 (10)C10—C11—C12—C130.13 (17)
C4—C5—C6—C11.02 (16)C17—O1—C13—C148.84 (15)
C4—C5—C6—C7179.30 (10)C17—O1—C13—C12171.16 (10)
N2—N1—C7—C6176.28 (9)C11—C12—C13—O1178.59 (10)
N2—N1—C7—C80.30 (12)C11—C12—C13—C141.41 (17)
C1—C6—C7—N1173.53 (10)O1—C13—C14—C15178.19 (10)
C5—C6—C7—N14.71 (16)C12—C13—C14—C151.81 (16)
C1—C6—C7—C82.69 (16)C11—C10—C15—C140.84 (16)
C5—C6—C7—C8179.07 (10)C9—C10—C15—C14178.35 (10)
N1—C7—C8—C97.16 (12)C13—C14—C15—C100.69 (17)
C6—C7—C8—C9176.35 (9)N1—N2—C16—N49.07 (15)
C16—N2—C9—C1088.62 (13)C9—N2—C16—N4170.65 (10)
N1—N2—C9—C10108.95 (10)N1—N2—C16—S1171.50 (8)
C16—N2—C9—C8150.21 (10)C9—N2—C16—S19.92 (16)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···S1i0.866 (17)2.664 (17)3.4559 (12)152.5 (15)
N3—H2N3···S1ii0.84 (2)2.60 (2)3.4142 (12)164.2 (18)
N4—H2N4···N10.881 (17)2.209 (16)2.6093 (15)107.2 (13)
N4—H2N4···O1ii0.881 (17)2.567 (17)3.3022 (14)141.5 (13)
C8—H8A···Cg2i0.992.663.4159 (13)133
C17—H17B···Cg3iii0.982.943.8351 (15)152
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H18N4OS
Mr326.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.0052 (2), 17.3439 (5), 12.4588 (3)
β (°) 114.789 (1)
V3)1570.41 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.57 × 0.39 × 0.29
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.886, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
23819, 4571, 4045
Rint0.034
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.05
No. of reflections4571
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···S1i0.866 (17)2.664 (17)3.4559 (12)152.5 (15)
N3—H2N3···S1ii0.84 (2)2.60 (2)3.4142 (12)164.2 (18)
N4—H2N4···N10.881 (17)2.209 (16)2.6093 (15)107.2 (13)
N4—H2N4···O1ii0.881 (17)2.567 (17)3.3022 (14)141.5 (13)
C8—H8A···Cg2i0.992.663.4159 (13)133
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

Financial support from the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0257/2553) is gratefully acknowledge. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. The authors extend their appreciation to Prince of Songkla University and Universiti Sains Malaysia for the APEX DE2012 grant No.1002/PFIZIK/910323.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o701–o702.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGong, Z.-L., Zheng, L.-W., Zhao, B.-X., Yang, D.-Z., Lv, H.-S., Liu, W.-Y. & Lian, S. (2010). J. Photochem. Photobiol. A Chem. 209, 49–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationHusain, K., Abid, M. & Azam, A. (2008). Eur. J. Med. Chem. 43, 393–403.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhode, S., Maddi, V., Aragade, P., Palkar, M., Ronad, P. K., Mamledesai, S., Thippeswamy, A. H. M. & Satyanarayana, D. (2009). Eur J. Med. Chem. 44, 1682–1688.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLv, P.-C., Li, D.-D., Li, Q.-S., Lu, X., Xiao, Z.-P. & Zhu, H.-L. (2011). Bioorg. Med. Chem. Lett. 21, 5374–5377.  Web of Science CrossRef CAS PubMed Google Scholar
First citationQuah, C. K., Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2013). Acta Cryst. E69, o464–o465.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSakthinathan, S. P., Vanangamudi, G. & Thirunarayanan, G. (2012). Spectrochim. Acta A. 95, 693–700.  CrossRef CAS Google Scholar
First citationShaharyar, M., Abdullah, M. M., Bakht, M. A. & Majeed, J. (2010). Eur J. Med. Chem. 45, 114–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur J. Med. Chem. 44, 3068–3076.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1227-o1228
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds