metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[heptyl­enedi­ammonium [[tetra­chloridobismuthate(III)]-μ-chlorido]]

aDépartement de Physique-Chimie, Laboratoire de Chimie, Centre Régional des Métiers de l'Education et de la Formation, Souissi Rabat, Morocco, bEquipe de Physico-Chimie des Matériaux Inorganiques, Université Ibn Tofail, Faculté des Sciences, BP 133, 14000 Kénitra, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: a_ouasri@yahoo.fr

(Received 19 June 2013; accepted 1 July 2013; online 6 July 2013)

The title organic-inorganic hybrid compound, {(C7H20N2)[BiCl5]}n, consists of distorted corner-joined [BiCl6] octa­hedra forming zigzag polymeric anionic chains parallel to [001], separated by columns of heptyl­enedi­ammonium cations. The asymmetric unit contains two crystallographically independent bis­muth metal atoms, one of which lies on an inversion centre and the other on a twofold axis. In the crystal, the polymeric chains and cations are linked by N—H⋯Cl hydrogen bonds, forming undulating layers parallel to (110).

Related literature

For potential applications of alkyl­ammonium halogenido­antim­onates and -bismuthates, see: Ciapala et al. (1997[Ciapala, P., Jakubas, R., Bator, G., Zaleski, J., Pietraszko, A., Drozd, M. & Baran, J. (1997). J. Phys. Condens. Matter 9, 627-645.]); Bednarska-Bolek et al. (2000[Bednarska-Bolek, B., Zaleski, J., Bator, G. & Jakubas, R. (2000). J. Phys. Chem. Solids 61, 1249-1261.]); Bator et al. (1998[Bator, G., Baran, J., Jakubas, R. & Sobczyk, L. (1998). J. Mol. Struct. 450, 89-100.]). For the structures of related compounds see: Ouasri et al. (2001[Ouasri, A., Elyoubi, M. S. D., Guedira, T., Rhandour, A., Mhiri, T. & Daoud, A. (2001). Spectrochim. Acta Part A 57, 2593-2598.], 2012[Ouasri, A., Jeghnou, H., Rhandour, A., Mazzah, A. & Rousseau, P. (2012). J. Mol. Struct. 1028, 79-87.]); Jeghnou et al. (2005[Jeghnou, H., Ouasri, A., Rhandour, A., Dhamelincourt, M. C., Dhamelincourt, P., Mazzah, A. & Roussel, P. (2005). J. Raman Spectrosc. 36, 1023-1028.]); Rhandour et al. (2011[Rhandour, A., Ouasri, A., Mazzah, A. & Rousseau, P. (2011). J. Mol. Struct. 990, 95-101.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H20N2)[BiCl5]

  • Mr = 518.48

  • Orthorhombic, P b c n

  • a = 12.2451 (5) Å

  • b = 16.5509 (6) Å

  • c = 15.8934 (6) Å

  • V = 3221.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 11.75 mm−1

  • T = 296 K

  • 0.36 × 0.31 × 0.27 mm

Data collection
  • Bruker X8 APEX Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.512, Tmax = 0.640

  • 26890 measured reflections

  • 3559 independent reflections

  • 2700 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.051

  • S = 1.05

  • 3559 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H13⋯Cl2i 0.89 2.45 3.257 (4) 151
N2—H22⋯Cl4ii 0.89 2.37 3.222 (3) 159
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Alkylammonium halogenoantimonates and bismuthates of general formula R2MX5, R3M2X9 and R5M2X11 (R: organic cations, M: Sb or Bi, X: Cl, Br or I) have recently attracted considerable attention since some of these compounds have revealed interesting properties (ferroelectric and non-linear optical) which make them promising materials from the viewpoint of applications (Ciapala et al., 1997; Bednarska-Bolek et al., 2000; Bator et al., 1998). The crystal lattices of the halogenometallates compounds are built of distorted MX63- octahedra which are either isolated or linked to each other by corners, edges and faces. The anionic sublattices of the halogenoantimonates and bismuthates compounds of formula R3M2X9 (Ouasri et al., 2001; Jeghnou et al., 2005; Ouasri et al., 2012; Rhandour et al., 2011) are built of distorted MX63- octahedra connected with each other, by corners, edges and faces, in such a way that three halogen atoms of the coordination sphere of Sb or Bi atoms are bridging and three are terminal. The aim of the present work was to study the recently synthesized title compound by X-ray diffraction to obtain informations about its crystal structure at ambient temperature.

The structure of the organic-inorganic hybrid title compound is built up from inorganic polymeric anions and organic cations (Fig. 1). In this structure, each bismuth cation is surrounded by six chlorine anions building a distorted BiCl63- octahedron, with Bi—Cl distances varying from 2.5520 (8) to 2.9732 (10) Å. The octahedra are corner-joined to form one-dimensional zig-zag chains propagating along the c axis. The periodic length of this string is three octahedra. In the crystal structure, the chains and organic cations are linked together by N—H···Cl hydrogen bonds(Table 1) to build undulated sheets parallel to the (1 1 0) plane (Fig. 2).

Related literature top

For potential applications of alkylammonium halogenoantimonates and bismuthates, see: Ciapala et al. (1997); Bednarska-Bolek et al. (2000); Bator et al. (1998). For the structures of related compounds see: Ouasri et al. (2001, 2012); Jeghnou et al. (2005); Rhandour et al. (2011).

Experimental top

Single crystals of the title compound were obtained by slow evaporation, at room temperature, of an aqueous solution containing stoichiometric amounts of 1,7-diaminoheptane NH2(CH2)7NH2 (acidified with HCl in a large excess) and bismuth(III) oxide Bi2O3.

Refinement top

All H atoms were located in a difference Fourier map and treated as riding, with C—H = 0.97 Å, N—H = 0.89 Å, and with Uiso(H) = 1.2 Ueq(C, N). One outlier (1 1 1) was omitted in the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles. Symmetry codes: (a) 1-x, y, 1/2-z; (b) 1-x, 1-y, -z; (c) x, 1-y, -1/2+z.
[Figure 2] Fig. 2. Partial plot of the title compound, showing undulated inorganic layers linked through N–H···Cl hydrogen bonds (dashed lines).
catena-Poly[heptylenediammonium [[tetrachloridobismuthate(III)]-µ-chlorido]] top
Crystal data top
(C7H20N2)[BiCl5]F(000) = 1952
Mr = 518.48Dx = 2.138 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3559 reflections
a = 12.2451 (5) Åθ = 2.5–27.1°
b = 16.5509 (6) ŵ = 11.75 mm1
c = 15.8934 (6) ÅT = 296 K
V = 3221.1 (2) Å3Block, colourless
Z = 80.36 × 0.31 × 0.27 mm
Data collection top
Bruker X8 APEX Diffractometer3559 independent reflections
Radiation source: fine-focus sealed tube2700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.512, Tmax = 0.640k = 1921
26890 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0185P)2 + 4.1437P]
where P = (Fo2 + 2Fc2)/3
3559 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
(C7H20N2)[BiCl5]V = 3221.1 (2) Å3
Mr = 518.48Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 12.2451 (5) ŵ = 11.75 mm1
b = 16.5509 (6) ÅT = 296 K
c = 15.8934 (6) Å0.36 × 0.31 × 0.27 mm
Data collection top
Bruker X8 APEX Diffractometer3559 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2700 reflections with I > 2σ(I)
Tmin = 0.512, Tmax = 0.640Rint = 0.034
26890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.05Δρmax = 0.70 e Å3
3559 reflectionsΔρmin = 0.96 e Å3
138 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6871 (4)0.7642 (3)0.0475 (3)0.0677 (14)
H1A0.70500.75090.10530.081*
H1B0.63230.72590.02860.081*
C20.6390 (3)0.8465 (2)0.0455 (2)0.0451 (9)
H2A0.62140.86110.01210.054*
H2B0.69160.88530.06680.054*
C30.5365 (3)0.8490 (2)0.0987 (3)0.0463 (9)
H3A0.48410.81140.07500.056*
H3B0.55470.82980.15470.056*
C40.4816 (3)0.9305 (2)0.1073 (3)0.0441 (9)
H4A0.45840.94890.05220.053*
H4B0.53390.96930.12900.053*
C50.3835 (3)0.9273 (2)0.1654 (2)0.0415 (9)
H5A0.32730.89470.13890.050*
H5B0.40480.90020.21690.050*
C60.3346 (3)1.0084 (2)0.1881 (2)0.0401 (9)
H6A0.39041.04210.21340.048*
H6B0.30941.03500.13730.048*
C70.2416 (4)0.9995 (2)0.2478 (2)0.0475 (11)
H7A0.18340.96980.22040.057*
H7B0.26550.96830.29600.057*
N10.7835 (4)0.7542 (3)0.0032 (2)0.0658 (11)
H110.80140.70210.00520.079*
H120.83820.78220.01920.079*
H130.77040.77200.05510.079*
N20.1985 (3)1.0779 (2)0.27729 (18)0.0453 (8)
H210.15461.06990.32110.054*
H220.16121.10150.23590.054*
H230.25371.10970.29260.054*
Cl10.55628 (8)0.15799 (5)0.13916 (5)0.0390 (2)
Cl20.29126 (8)0.25115 (6)0.19982 (6)0.0504 (2)
Cl30.54355 (11)0.38672 (7)0.12014 (7)0.0637 (3)
Cl40.54647 (9)0.38534 (6)0.11631 (6)0.0493 (2)
Cl50.29132 (8)0.45097 (6)0.01712 (6)0.0465 (2)
Bi10.50000.261494 (10)0.25000.02717 (6)
Bi20.50000.50000.00000.02820 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.073 (3)0.062 (3)0.068 (3)0.024 (3)0.022 (3)0.008 (2)
C20.047 (2)0.043 (2)0.045 (2)0.0008 (18)0.0039 (18)0.0019 (17)
C30.052 (2)0.040 (2)0.046 (2)0.0019 (19)0.0013 (19)0.0077 (18)
C40.052 (2)0.035 (2)0.046 (2)0.0019 (17)0.0019 (18)0.0005 (17)
C50.045 (2)0.038 (2)0.041 (2)0.0006 (17)0.0000 (17)0.0060 (16)
C60.041 (2)0.041 (2)0.038 (2)0.0072 (16)0.0024 (18)0.0011 (16)
C70.043 (2)0.046 (3)0.054 (3)0.0006 (17)0.007 (2)0.0091 (19)
N10.065 (3)0.076 (3)0.057 (2)0.012 (2)0.002 (2)0.0057 (19)
N20.0392 (17)0.061 (2)0.0356 (15)0.0007 (16)0.0033 (14)0.0017 (15)
Cl10.0461 (5)0.0372 (5)0.0336 (4)0.0012 (4)0.0044 (4)0.0097 (4)
Cl20.0391 (5)0.0545 (6)0.0575 (6)0.0042 (4)0.0104 (5)0.0104 (5)
Cl30.0720 (7)0.0646 (8)0.0546 (6)0.0119 (6)0.0077 (6)0.0313 (6)
Cl40.0520 (6)0.0497 (6)0.0463 (5)0.0004 (5)0.0114 (5)0.0126 (5)
Cl50.0408 (5)0.0531 (6)0.0457 (5)0.0049 (4)0.0064 (4)0.0023 (4)
Bi10.03136 (10)0.02362 (10)0.02653 (9)0.0000.00112 (8)0.000
Bi20.03338 (10)0.02704 (11)0.02418 (9)0.00266 (8)0.00014 (8)0.00424 (6)
Geometric parameters (Å, º) top
C1—N11.439 (6)C7—H7A0.9700
C1—C21.485 (6)C7—H7B0.9700
C1—H1A0.9700N1—H110.8900
C1—H1B0.9700N1—H120.8900
C2—C31.515 (5)N1—H130.8900
C2—H2A0.9700N2—H210.8900
C2—H2B0.9700N2—H220.8900
C3—C41.513 (6)N2—H230.8900
C3—H3A0.9700Cl1—Bi12.5520 (8)
C3—H3B0.9700Cl2—Bi12.6830 (10)
C4—C51.517 (5)Cl3—Bi22.7287 (10)
C4—H4A0.9700Cl3—Bi12.9732 (10)
C4—H4B0.9700Cl4—Bi22.7097 (9)
C5—C61.512 (5)Cl5—Bi22.6948 (9)
C5—H5A0.9700Bi1—Cl1i2.5520 (8)
C5—H5B0.9700Bi1—Cl2i2.6830 (10)
C6—C71.490 (5)Bi1—Cl3i2.9732 (10)
C6—H6A0.9700Bi2—Cl5ii2.6948 (9)
C6—H6B0.9700Bi2—Cl4ii2.7097 (9)
C7—N21.477 (5)Bi2—Cl3ii2.7287 (10)
N1—C1—C2114.8 (4)C1—N1—H12109.5
N1—C1—H1A108.6H11—N1—H12109.5
C2—C1—H1A108.6C1—N1—H13109.5
N1—C1—H1B108.6H11—N1—H13109.5
C2—C1—H1B108.6H12—N1—H13109.5
H1A—C1—H1B107.6C7—N2—H21109.5
C1—C2—C3109.9 (3)C7—N2—H22109.5
C1—C2—H2A109.7H21—N2—H22109.5
C3—C2—H2A109.7C7—N2—H23109.5
C1—C2—H2B109.7H21—N2—H23109.5
C3—C2—H2B109.7H22—N2—H23109.5
H2A—C2—H2B108.2Bi2—Cl3—Bi1158.39 (5)
C4—C3—C2116.2 (3)Cl1—Bi1—Cl1i95.67 (4)
C4—C3—H3A108.2Cl1—Bi1—Cl2i84.55 (3)
C2—C3—H3A108.2Cl1i—Bi1—Cl2i90.53 (3)
C4—C3—H3B108.2Cl1—Bi1—Cl290.53 (3)
C2—C3—H3B108.2Cl1i—Bi1—Cl284.55 (3)
H3A—C3—H3B107.4Cl2i—Bi1—Cl2172.69 (4)
C3—C4—C5112.0 (3)Cl1—Bi1—Cl3i174.59 (3)
C3—C4—H4A109.2Cl1i—Bi1—Cl3i86.58 (3)
C5—C4—H4A109.2Cl2i—Bi1—Cl3i90.52 (3)
C3—C4—H4B109.2Cl2—Bi1—Cl3i94.58 (4)
C5—C4—H4B109.2Cl1—Bi1—Cl386.58 (3)
H4A—C4—H4B107.9Cl1i—Bi1—Cl3174.59 (3)
C6—C5—C4115.3 (3)Cl2i—Bi1—Cl394.58 (4)
C6—C5—H5A108.4Cl2—Bi1—Cl390.52 (3)
C4—C5—H5A108.4Cl3i—Bi1—Cl391.61 (5)
C6—C5—H5B108.4Cl5ii—Bi2—Cl5180.0
C4—C5—H5B108.4Cl5ii—Bi2—Cl4ii85.37 (3)
H5A—C5—H5B107.5Cl5—Bi2—Cl4ii94.63 (3)
C7—C6—C5111.6 (3)Cl5ii—Bi2—Cl494.63 (3)
C7—C6—H6A109.3Cl5—Bi2—Cl485.37 (3)
C5—C6—H6A109.3Cl4ii—Bi2—Cl4180.00 (4)
C7—C6—H6B109.3Cl5ii—Bi2—Cl3ii92.81 (3)
C5—C6—H6B109.3Cl5—Bi2—Cl3ii87.19 (3)
H6A—C6—H6B108.0Cl4ii—Bi2—Cl3ii87.43 (3)
N2—C7—C6112.9 (3)Cl4—Bi2—Cl3ii92.57 (3)
N2—C7—H7A109.0Cl5ii—Bi2—Cl387.19 (3)
C6—C7—H7A109.0Cl5—Bi2—Cl392.81 (3)
N2—C7—H7B109.0Cl4ii—Bi2—Cl392.57 (3)
C6—C7—H7B109.0Cl4—Bi2—Cl387.43 (3)
H7A—C7—H7B107.8Cl3ii—Bi2—Cl3180.00 (4)
C1—N1—H11109.5
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H13···Cl2ii0.892.453.257 (4)151
N2—H22···Cl4iii0.892.373.222 (3)159
Symmetry codes: (ii) x+1, y+1, z; (iii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula(C7H20N2)[BiCl5]
Mr518.48
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)12.2451 (5), 16.5509 (6), 15.8934 (6)
V3)3221.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)11.75
Crystal size (mm)0.36 × 0.31 × 0.27
Data collection
DiffractometerBruker X8 APEX Diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.512, 0.640
No. of measured, independent and
observed [I > 2σ(I)] reflections
26890, 3559, 2700
Rint0.034
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.05
No. of reflections3559
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.96

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H13···Cl2i0.892.453.257 (4)150.8
N2—H22···Cl4ii0.892.373.222 (3)159.3
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+3/2, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBator, G., Baran, J., Jakubas, R. & Sobczyk, L. (1998). J. Mol. Struct. 450, 89–100.  Web of Science CrossRef CAS Google Scholar
First citationBednarska-Bolek, B., Zaleski, J., Bator, G. & Jakubas, R. (2000). J. Phys. Chem. Solids 61, 1249–1261.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiapala, P., Jakubas, R., Bator, G., Zaleski, J., Pietraszko, A., Drozd, M. & Baran, J. (1997). J. Phys. Condens. Matter 9, 627–645.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJeghnou, H., Ouasri, A., Rhandour, A., Dhamelincourt, M. C., Dhamelincourt, P., Mazzah, A. & Roussel, P. (2005). J. Raman Spectrosc. 36, 1023–1028.  Web of Science CrossRef CAS Google Scholar
First citationOuasri, A., Elyoubi, M. S. D., Guedira, T., Rhandour, A., Mhiri, T. & Daoud, A. (2001). Spectrochim. Acta Part A 57, 2593–2598.  CrossRef CAS Google Scholar
First citationOuasri, A., Jeghnou, H., Rhandour, A., Mazzah, A. & Rousseau, P. (2012). J. Mol. Struct. 1028, 79–87.  Web of Science CrossRef CAS Google Scholar
First citationRhandour, A., Ouasri, A., Mazzah, A. & Rousseau, P. (2011). J. Mol. Struct. 990, 95–101.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds