organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­methyl­thieno[2,3-b]thio­phene-2,5-dicarbo­nitrile

aDepartment of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, Alexandria University, PO Box 426, Ibrahimia- 21321 Alexandria, Egypt, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 24 June 2013; accepted 29 June 2013; online 17 July 2013)

The asymmetric unit of the title compound, C10H6N2S2, contains two crystallographically independent but conformationally similar mol­ecules. The fused thio­phene ring cores are almost planar [maximum deviation = 0.027 (3) Å] with the thio­phene rings forming dihedral angles of 0.5 (4)° in one mol­ecule and 1.91 (4)° in the other. The crystal packing is stabilized only by van der Waals inter­actions.

Related literature

For the biological activity of thio­phene derivatives, see: Mabkhot et al. (2013[Mabkhot, Y. N., Barakat, A., Al-Majid, A. & Choudhary, M. I. (2013). Int. J. Mol. Sci. 14, 5712-5722.]); Mishra et al. (2011[Mishra, R., Jha, K. K., Kumar, S. & Tomer, S. (2011). Pharma Chem. 3, 38-54.]). For the synthesis of fused heterocyclic compounds, see: Cornel & Kirsch (2001[Cornel, A. & Kirsch, G. (2001). J. Heterocycl. Chem. 38, 1167-1171.]); Mashraqui et al. (1999[Mashraqui, S. H., Hariharasubrahmanian, H. & Kumar, S. (1999). Synthesis, pp. 2030-2033.]). For crystal data for related thio­phene compounds, see: Gunasekaran et al. (2009[Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2455.]); Mashraqui et al. (2004[Mashraqui, S. H., Asharf, M., Hariharasubrahmanian, H., Kellogg, R. K. & Meetsma, A. (2004). J. Mol. Struct. 689, 107-113.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6N2S2

  • Mr = 218.31

  • Triclinic, [P \overline 1]

  • a = 7.2573 (11) Å

  • b = 10.1538 (15) Å

  • c = 13.665 (2) Å

  • α = 94.467 (3)°

  • β = 99.120 (4)°

  • γ = 95.850 (4)°

  • V = 984.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 273 K

  • 0.37 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.838, Tmax = 0.947

  • 13821 measured reflections

  • 4912 independent reflections

  • 3074 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.132

  • S = 0.99

  • 4912 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiophene moieties containing heterocyclic compounds are known to have a number of biological activities, including anti-inflammatory, anti-oxidant and anti-glycation properties etc. (Mabkhot et al., 2013; Mishra et al. 2011). The title compound is a thiophene derivative, composed of two fused thiophene rings. It was synthesized as part of our ongoing research towards the synthesis of novel chemical entities with diverse biological activities.

The title, compound C10H6N2S2, contains two independent (S1–S2/C1–C6 and S3–S4/C11–C16) in the asymmetric unit (Fig. 1). Structurally it is similar to the previous reported compound diethyl 3,4-bis(acetoxymethyl)thieno-[2,3-b]thiophene-2,5-dicarboxylate (Gunasekaran et al., 2009) with the difference that four acetoxy methyl substituents has been replaced by two nitrile and two methyl substituents. The fused thiophene ring cores are almost planar [maximum deviation 0.027 (3) Å for atom C16] as indicated by the dihedral angles formed by the thiophene rings of 0.5 (4)° in one molecule and 1.91 (4)° in the other. The crystal packing (Fig. 2) is stabilized only by van der Waals interactions.

Related literature top

For the biological activity of thiophene derivatives, see: Mabkhot et al. (2013); Mishra et al. (2011). For the synthesis of fused heterocyclic compounds, see: Cornel et al. (2001); Mashraqui et al. (1999). For crystal data for related thiophene compounds, see: Gunasekaran et al. (2009); Mashraqui et al. (2004).

Experimental top

The title compound was synthesized by following the procedure described in the literature (Mashraqui et al., 1999; Cornel et al., 2001). The compound was crystallized by using a mixture of dimethyl formamide (DMF) and dichloromethane (CH2Cl2) (1:1 v/v) at room temperature to obtain light brown crystals. M. p. 498 K. Anal. calcd. for C10H6N2S2: C, 55.04; H, 2.75; N, 12.84. Found: C, 54.82; H, 2.92; N, 12.97.

Spectral Data: IR (KBr, cm-1): 2964, 2213 cm-1; 1H-NMR (400 MHz, CDCl3): δ 2.69 (s, 6H, CH3); 13C-NMR (100 MHz, CDCl3): δ 14.8 (2 CH3), 108.5 (2 CAr), 113.3 (2 CN), 134.1 (CAr), 143.1 (2 CAr), 150.8 p.p.m. (CAr).

Refinement top

H Atoms were positioned geometrically and refined as riding, with C—H = 0.96 Å and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial packing diagram of the title compound. Hydrogen atoms are omitted for clarity.
3,4-Dimethylthieno[2,3-b]thiophene-2,5-dicarbonitrile top
Crystal data top
C10H6N2S2Z = 4
Mr = 218.31F(000) = 448
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2573 (11) ÅCell parameters from 1631 reflections
b = 10.1538 (15) Åθ = 1.5–28.4°
c = 13.665 (2) ŵ = 0.50 mm1
α = 94.467 (3)°T = 273 K
β = 99.120 (4)°Block, brown
γ = 95.850 (4)°0.37 × 0.15 × 0.11 mm
V = 984.5 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4912 independent reflections
Radiation source: fine-focus sealed tube3074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scanθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.838, Tmax = 0.947k = 1313
13821 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0565P)2]
where P = (Fo2 + 2Fc2)/3
4912 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H6N2S2γ = 95.850 (4)°
Mr = 218.31V = 984.5 (3) Å3
Triclinic, P1Z = 4
a = 7.2573 (11) ÅMo Kα radiation
b = 10.1538 (15) ŵ = 0.50 mm1
c = 13.665 (2) ÅT = 273 K
α = 94.467 (3)°0.37 × 0.15 × 0.11 mm
β = 99.120 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4912 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3074 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.947Rint = 0.053
13821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.99Δρmax = 0.37 e Å3
4912 reflectionsΔρmin = 0.24 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18703 (11)0.32325 (7)0.83846 (5)0.0460 (2)
S20.24419 (10)0.62763 (7)0.91346 (5)0.0435 (2)
S30.38935 (11)1.16617 (7)0.61752 (6)0.0477 (2)
S40.37946 (11)0.89010 (8)0.70279 (5)0.0473 (2)
N10.1667 (4)0.0317 (3)0.8989 (2)0.0718 (9)
N20.3550 (4)0.8848 (3)1.1405 (2)0.0706 (9)
N30.2705 (5)1.3690 (3)0.4034 (3)0.0902 (11)
N40.2415 (4)0.5277 (3)0.6753 (2)0.0827 (10)
C10.1990 (4)0.2211 (3)0.9361 (2)0.0424 (7)
C20.2290 (4)0.2874 (3)1.0280 (2)0.0381 (6)
C30.2441 (3)0.4276 (2)1.02172 (19)0.0336 (6)
C40.2755 (4)0.5432 (3)1.0910 (2)0.0384 (6)
C50.2804 (4)0.6552 (3)1.0431 (2)0.0396 (7)
C60.2251 (4)0.4597 (3)0.9243 (2)0.0371 (6)
C70.1799 (4)0.0807 (3)0.9144 (2)0.0520 (8)
C80.2489 (4)0.2224 (3)1.1236 (2)0.0471 (7)
H8A0.25820.12941.10970.071*
H8B0.14100.23321.15470.071*
H8C0.36010.26321.16740.071*
C90.3013 (4)0.5424 (3)1.20166 (19)0.0447 (7)
H9A0.31110.63201.23190.067*
H9B0.41380.50391.22460.067*
H9C0.19540.49091.21960.067*
C100.3195 (4)0.7857 (3)1.0941 (2)0.0474 (7)
C110.2885 (4)1.1564 (3)0.4924 (2)0.0457 (7)
C120.2220 (4)1.0317 (3)0.4497 (2)0.0410 (7)
C130.2546 (3)0.9366 (3)0.52151 (18)0.0341 (6)
C140.2139 (4)0.7963 (3)0.5223 (2)0.0389 (6)
C150.2732 (4)0.7597 (3)0.6151 (2)0.0441 (7)
C160.3434 (4)0.9965 (3)0.6131 (2)0.0378 (6)
C170.2795 (5)1.2748 (3)0.4434 (3)0.0590 (9)
C180.1286 (4)0.9979 (3)0.34337 (19)0.0452 (7)
H18A0.10821.07830.31280.068*
H18B0.01020.94510.34120.068*
H18C0.20770.94860.30810.068*
C190.1235 (4)0.6996 (3)0.4357 (2)0.0453 (7)
H19A0.12130.61080.45540.068*
H19B0.19380.70760.38220.068*
H19C0.00280.71840.41400.068*
C200.2548 (4)0.6297 (3)0.6466 (2)0.0546 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0602 (5)0.0394 (4)0.0360 (4)0.0018 (3)0.0067 (3)0.0035 (3)
S20.0552 (5)0.0359 (4)0.0397 (4)0.0042 (3)0.0079 (3)0.0063 (3)
S30.0538 (5)0.0395 (4)0.0488 (5)0.0045 (3)0.0102 (4)0.0032 (3)
S40.0534 (5)0.0508 (5)0.0343 (4)0.0019 (4)0.0001 (3)0.0040 (3)
N10.100 (2)0.0396 (16)0.075 (2)0.0008 (16)0.0267 (18)0.0085 (15)
N20.096 (2)0.0385 (16)0.074 (2)0.0009 (15)0.0168 (18)0.0122 (15)
N30.126 (3)0.067 (2)0.096 (3)0.034 (2)0.044 (2)0.036 (2)
N40.094 (2)0.059 (2)0.083 (2)0.0117 (17)0.0187 (18)0.0285 (18)
C10.0446 (16)0.0374 (16)0.0437 (17)0.0029 (13)0.0064 (13)0.0007 (13)
C20.0362 (15)0.0378 (15)0.0390 (16)0.0041 (12)0.0023 (12)0.0039 (13)
C30.0340 (14)0.0327 (14)0.0331 (15)0.0031 (11)0.0038 (11)0.0025 (12)
C40.0351 (15)0.0411 (16)0.0375 (16)0.0034 (12)0.0030 (12)0.0016 (13)
C50.0426 (16)0.0355 (15)0.0387 (16)0.0024 (12)0.0038 (13)0.0002 (13)
C60.0396 (15)0.0341 (15)0.0364 (16)0.0044 (12)0.0046 (12)0.0001 (12)
C70.063 (2)0.0372 (17)0.055 (2)0.0003 (15)0.0145 (16)0.0051 (15)
C80.0604 (19)0.0353 (16)0.0450 (18)0.0048 (14)0.0022 (14)0.0143 (14)
C90.0579 (18)0.0425 (16)0.0303 (15)0.0027 (14)0.0015 (13)0.0020 (13)
C100.0543 (18)0.0351 (16)0.0538 (19)0.0085 (14)0.0114 (15)0.0007 (15)
C110.0480 (17)0.0458 (18)0.0489 (18)0.0131 (14)0.0175 (14)0.0102 (15)
C120.0351 (15)0.0507 (18)0.0424 (17)0.0122 (13)0.0152 (13)0.0097 (14)
C130.0290 (13)0.0421 (16)0.0314 (15)0.0047 (12)0.0072 (11)0.0005 (12)
C140.0345 (14)0.0447 (17)0.0368 (16)0.0044 (12)0.0060 (12)0.0004 (13)
C150.0454 (16)0.0437 (17)0.0422 (17)0.0028 (13)0.0050 (13)0.0048 (14)
C160.0367 (15)0.0398 (15)0.0370 (16)0.0055 (12)0.0077 (12)0.0003 (12)
C170.070 (2)0.050 (2)0.067 (2)0.0178 (17)0.0297 (19)0.0122 (18)
C180.0427 (16)0.063 (2)0.0307 (15)0.0129 (14)0.0007 (13)0.0102 (14)
C190.0459 (17)0.0402 (16)0.0440 (17)0.0025 (13)0.0009 (13)0.0084 (13)
C200.057 (2)0.050 (2)0.052 (2)0.0026 (16)0.0051 (15)0.0129 (16)
Geometric parameters (Å, º) top
S1—C61.714 (3)C8—H8A0.9600
S1—C11.750 (3)C8—H8B0.9600
S2—C61.716 (3)C8—H8C0.9600
S2—C51.745 (3)C9—H9A0.9600
S3—C161.716 (3)C9—H9B0.9600
S3—C111.741 (3)C9—H9C0.9600
S4—C161.703 (3)C11—C121.360 (4)
S4—C151.742 (3)C11—C171.423 (4)
N1—C71.136 (4)C12—C131.439 (3)
N2—C101.130 (4)C12—C181.501 (4)
N3—C171.140 (4)C13—C161.377 (3)
N4—C201.137 (4)C13—C141.427 (4)
C1—C21.351 (4)C14—C151.365 (4)
C1—C71.421 (4)C14—C191.495 (4)
C2—C31.428 (3)C15—C201.420 (4)
C2—C81.502 (4)C18—H18A0.9600
C3—C61.384 (3)C18—H18B0.9600
C3—C41.425 (4)C18—H18C0.9600
C4—C51.356 (4)C19—H19A0.9600
C4—C91.495 (4)C19—H19B0.9600
C5—C101.428 (4)C19—H19C0.9600
C6—S1—C189.13 (13)H9B—C9—H9C109.5
C6—S2—C588.80 (13)N2—C10—C5175.0 (4)
C16—S3—C1188.88 (14)C12—C11—C17125.3 (3)
C16—S4—C1588.73 (13)C12—C11—S3115.1 (2)
C2—C1—C7126.0 (3)C17—C11—S3119.6 (2)
C2—C1—S1114.5 (2)C11—C12—C13110.0 (3)
C7—C1—S1119.5 (2)C11—C12—C18125.1 (3)
C1—C2—C3110.7 (2)C13—C12—C18124.9 (3)
C1—C2—C8124.6 (3)C16—C13—C14111.9 (2)
C3—C2—C8124.6 (2)C16—C13—C12112.0 (2)
C6—C3—C4111.9 (2)C14—C13—C12136.0 (3)
C6—C3—C2112.3 (2)C15—C14—C13110.0 (2)
C4—C3—C2135.9 (2)C15—C14—C19123.4 (3)
C5—C4—C3110.8 (2)C13—C14—C19126.5 (3)
C5—C4—C9124.2 (3)C14—C15—C20127.2 (3)
C3—C4—C9125.0 (2)C14—C15—S4114.8 (2)
C4—C5—C10123.0 (3)C20—C15—S4118.0 (2)
C4—C5—S2114.7 (2)C13—C16—S4114.5 (2)
C10—C5—S2122.2 (2)C13—C16—S3114.0 (2)
C3—C6—S1113.3 (2)S4—C16—S3131.48 (17)
C3—C6—S2113.8 (2)N3—C17—C11179.2 (4)
S1—C6—S2132.84 (17)C12—C18—H18A109.5
N1—C7—C1178.6 (4)C12—C18—H18B109.5
C2—C8—H8A109.5H18A—C18—H18B109.5
C2—C8—H8B109.5C12—C18—H18C109.5
H8A—C8—H8B109.5H18A—C18—H18C109.5
C2—C8—H8C109.5H18B—C18—H18C109.5
H8A—C8—H8C109.5C14—C19—H19A109.5
H8B—C8—H8C109.5C14—C19—H19B109.5
C4—C9—H9A109.5H19A—C19—H19B109.5
C4—C9—H9B109.5C14—C19—H19C109.5
H9A—C9—H9B109.5H19A—C19—H19C109.5
C4—C9—H9C109.5H19B—C19—H19C109.5
H9A—C9—H9C109.5N4—C20—C15177.4 (4)
C6—S1—C1—C20.4 (2)C16—S3—C11—C120.6 (2)
C6—S1—C1—C7178.9 (2)C16—S3—C11—C17180.0 (2)
C7—C1—C2—C3179.1 (3)C17—C11—C12—C13179.8 (3)
S1—C1—C2—C30.1 (3)S3—C11—C12—C130.4 (3)
C7—C1—C2—C80.5 (5)C17—C11—C12—C180.3 (5)
S1—C1—C2—C8178.6 (2)S3—C11—C12—C18179.7 (2)
C1—C2—C3—C60.3 (3)C11—C12—C13—C160.0 (3)
C8—C2—C3—C6178.3 (2)C18—C12—C13—C16179.8 (2)
C1—C2—C3—C4179.5 (3)C11—C12—C13—C14178.1 (3)
C8—C2—C3—C41.0 (5)C18—C12—C13—C142.0 (5)
C6—C3—C4—C50.6 (3)C16—C13—C14—C150.6 (3)
C2—C3—C4—C5178.7 (3)C12—C13—C14—C15177.5 (3)
C6—C3—C4—C9179.9 (2)C16—C13—C14—C19178.2 (2)
C2—C3—C4—C90.9 (5)C12—C13—C14—C193.7 (5)
C3—C4—C5—C10176.6 (3)C13—C14—C15—C20178.6 (3)
C9—C4—C5—C103.0 (4)C19—C14—C15—C202.5 (5)
C3—C4—C5—S20.9 (3)C13—C14—C15—S40.4 (3)
C9—C4—C5—S2179.5 (2)C19—C14—C15—S4178.5 (2)
C6—S2—C5—C40.8 (2)C16—S4—C15—C140.1 (2)
C6—S2—C5—C10176.8 (3)C16—S4—C15—C20179.0 (2)
C4—C3—C6—S1180.00 (18)C14—C13—C16—S40.6 (3)
C2—C3—C6—S10.5 (3)C12—C13—C16—S4177.97 (17)
C4—C3—C6—S20.0 (3)C14—C13—C16—S3178.12 (18)
C2—C3—C6—S2179.51 (18)C12—C13—C16—S30.5 (3)
C1—S1—C6—C30.5 (2)C15—S4—C16—C130.3 (2)
C1—S1—C6—S2179.6 (2)C15—S4—C16—S3177.3 (2)
C5—S2—C6—C30.5 (2)C11—S3—C16—C130.6 (2)
C5—S2—C6—S1179.6 (2)C11—S3—C16—S4177.5 (2)

Experimental details

Crystal data
Chemical formulaC10H6N2S2
Mr218.31
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.2573 (11), 10.1538 (15), 13.665 (2)
α, β, γ (°)94.467 (3), 99.120 (4), 95.850 (4)
V3)984.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.37 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.838, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
13821, 4912, 3074
Rint0.053
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.132, 0.99
No. of reflections4912
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

 

Footnotes

Additional correspondence author, e-mail: yahia@ksu.edu.sa.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at the King Saud University (Riyadh) for funding this study through the research grant No. RGP-VPP-007.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCornel, A. & Kirsch, G. (2001). J. Heterocycl. Chem. 38, 1167–1171.  CrossRef Google Scholar
First citationGunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMabkhot, Y. N., Barakat, A., Al-Majid, A. & Choudhary, M. I. (2013). Int. J. Mol. Sci. 14, 5712–5722.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMashraqui, S. H., Asharf, M., Hariharasubrahmanian, H., Kellogg, R. K. & Meetsma, A. (2004). J. Mol. Struct. 689, 107–113.  Web of Science CSD CrossRef CAS Google Scholar
First citationMashraqui, S. H., Hariharasubrahmanian, H. & Kumar, S. (1999). Synthesis, pp. 2030–2033.  CrossRef Google Scholar
First citationMishra, R., Jha, K. K., Kumar, S. & Tomer, S. (2011). Pharma Chem. 3, 38–54.  CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds