metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-aqua-μ-(N,4-di­chloro-2-methyl­benzene­sulfonamidato)-potassium]

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cJnanabharathi Campus, Bangalore University, Bangalore 560 056, India
*Correspondence e-mail: gowdabt@yahoo.com

(Received 27 May 2013; accepted 6 June 2013; online 3 July 2013)

In the title compound, [K(C7H6Cl2NO2S)(H2O)]n, the K+ cation is hepta­coordinated by two water O atoms, a sulfonyl O atom from each of four different N,4-dichloro-2-methyl­benzene­sulfonamidate anions and a Cl atom of one of the anions. Further, K—O—K bridges form extensive polymeric chains along the b axis. In the crystal structure, the anions are linked into layers parallel to (100) by O—H⋯Cl and O—H⋯N hydrogen bonds.

Related literature

For preparation of N-halo­aryl­sulfonamides, see: Gowda & Mahadevappa (1983[Gowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359-362.]). For studies of the effect of substituents on the structures of N-halo­aryl­sulfonamidates, see: George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Gowda et al. (2007[Gowda, B. T., Foro, S., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, m1688.], 2011a[Gowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m914.],b[Gowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m918.],c[Gowda, B. T., Foro, S. & Shakuntala, K. (2011c). Acta Cryst. E67, m961.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]). For restrained geometry, see: Nardelli (1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C7H6Cl2NO2S)(H2O)]

  • Mr = 296.20

  • Monoclinic, P 21 /c

  • a = 15.190 (1) Å

  • b = 11.3138 (9) Å

  • c = 6.7200 (5) Å

  • β = 100.627 (7)°

  • V = 1135.07 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 293 K

  • 0.44 × 0.28 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.642, Tmax = 0.937

  • 4588 measured reflections

  • 2297 independent reflections

  • 2043 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.193

  • S = 1.28

  • 2297 reflections

  • 144 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯N1i 0.85 (2) 2.06 (2) 2.901 (9) 173 (9)
O3—H32⋯Cl1ii 0.85 (2) 2.86 (5) 3.603 (6) 148 (9)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The present work was undertaken in order to explore the effect of replacing sodium ion by potassium ion on the solid state structures of metal salts of N-haloarylsulfonamidates(Gowda et al., 2007, 2011a,b,c), the structure of potassium N-chloro-2-methyl-4-chlorobenzene- sulfonamidate monohydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of potassium N-chloro-benzenesulfonamidate monohydrate (II) (Gowda et al., 2007), potassium N-chloro-4-chlorobenzenesulfonamidate monohydrate (III) (Gowda et al., 2011b), potassium N-chloro-2-methyl-benzenesulfonamidate monohydrate (IV) (Gowda et al., 2011c) and other sodium N-chloroarylsulfonamidates (George et al., 2000; Olmstead & Power, 1986).

In the title compound, K+ ion is hepta coordinated by two O atoms from two different water molecules, sulfonyl O atoms of four different N-chloro-2-methyl-4-chlorobenzenesulfonamide anions and the Cl atom of the N—Cl bond in one of the N-chloro-2-methyl-4-chlorobenzene- sulfonamidate anions, similar to the coordination observed in II, III and IV. However, this is in contrast to the situation for potassium N-chloro-2-chlorobenzenesulfonamidate sesquihydrate (Gowda et al., 2011a) where the K+ cation acheives hepta coordination by binding three O atoms from three different water molecules and four sulfonyl O atoms of three different N-chloro-2-chlorobenzenesulfonamidate anions.

The S—N distance of 1.580 (6) Å is consistent with a S—N double bond and is in agreement with the observed values of 1.581 (4) Å in (II), 1.588 (2) Å in (III) and 1.584 (3) Å in (IV).

In the crystal structure the anions are linked by intermolecular O3—H32···Cl1 and O3—H31···N1 hydrogen bonding into layers (Fig. 2 and Table 1). Further, K– O –K bridges form extensive polymer chains along the b axis, generating a coordination polymer (Fig. 3).

Related literature top

For preparation of N-haloarylsulfonamides, see: Gowda & Mahadevappa (1983). For studies of the effect of substituents on the structures of N-haloarylsulfonamidates, see: George et al. (2000); Gowda et al. (2007, 2011a,b,c); Olmstead & Power (1986). For restrained geometry, see: Nardelli (1999)

Experimental top

The title compound was prepared by a method similar to the one described by Gowda & Mahadevappa (Gowda & Mahadevappa, 1983). 2 g of 2-methyl-4-chlorobenzenesulfonamide was dissolved with stirring in 40 ml of 5M KOH at 70° C. Pure chlorine gas was bubbled through clear aqueous solution for about 1 hr. The precipitated potassium salt of N-chloro-2-methyl-4-chlorobenzenesulfonamidate was filtered under suction, washed quickly with a minimum quantity of ice cold water. The purity of the compound was checked by determining its melting point (170 ° C) and estimating, iodometrically, the amount of active chlorine present in it. It was further characterized from its infrared spectrum.

Plate like colourless single crystals of the title compound used in the X-ray diffraction studies were obtained from its aqueous solution at room temperature.

Refinement top

The O-bound H atoms were located in difference map and were refined with restrained geometry (Nardelli, 1999), viz. O—H distances were restrained to 0.85 (2) Å and H—H distance was restrained to 1.365 Å, thus leading to the angle of 107°.

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N, O) and 1.5 Ueq(C-methyl) of the parent atom.

The (6 1 1, -1 0 6, -10 1 1) reflections had a poor disagreement with their calculated values and were omitted from the refinement.

The crystal was refined with the twin law (1 0 0.835/0 - 1 0/0 0 - 1).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme for the asymmetric unit and extended to show the coordination geometry about K+. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
[Figure 3] Fig. 3. Coordination polymer generated by K–O–K bridges which form extensive polymer chains along the b axis,
Poly[µ-aqua-µ-(N,4-dichloro-2-methylbenzenesulfonamidato)-potassium] top
Crystal data top
[K(C7H6Cl2NO2S)(H2O)]F(000) = 600
Mr = 296.20Dx = 1.733 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2383 reflections
a = 15.190 (1) Åθ = 3.1–27.8°
b = 11.3138 (9) ŵ = 1.11 mm1
c = 6.7200 (5) ÅT = 293 K
β = 100.627 (7)°Plate, colourless
V = 1135.07 (14) Å30.44 × 0.28 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2297 independent reflections
Radiation source: fine-focus sealed tube2043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1816
Tmin = 0.642, Tmax = 0.937k = 146
4588 measured reflectionsl = 38
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 1.28 w = 1/[σ2(Fo2) + (0.0345P)2 + 9.1024P]
where P = (Fo2 + 2Fc2)/3
2297 reflections(Δ/σ)max = 0.002
144 parametersΔρmax = 0.96 e Å3
3 restraintsΔρmin = 0.45 e Å3
Crystal data top
[K(C7H6Cl2NO2S)(H2O)]V = 1135.07 (14) Å3
Mr = 296.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.190 (1) ŵ = 1.11 mm1
b = 11.3138 (9) ÅT = 293 K
c = 6.7200 (5) Å0.44 × 0.28 × 0.06 mm
β = 100.627 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2297 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2043 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.937Rint = 0.022
4588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0763 restraints
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 1.28Δρmax = 0.96 e Å3
2297 reflectionsΔρmin = 0.45 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2356 (4)0.4297 (6)0.1358 (9)0.0268 (13)
C20.1902 (4)0.5272 (6)0.1947 (9)0.0303 (13)
C30.1045 (5)0.5082 (8)0.2363 (10)0.0404 (17)
H30.07200.57110.27490.049*
C40.0680 (5)0.3960 (8)0.2203 (11)0.0441 (18)
C50.1126 (5)0.3003 (8)0.1652 (12)0.0482 (19)
H50.08700.22540.15700.058*
C60.1975 (5)0.3183 (7)0.1216 (10)0.0378 (15)
H60.22910.25470.08240.045*
C70.2269 (5)0.6544 (6)0.2104 (11)0.0364 (15)
H7A0.22400.68630.07690.055*
H7B0.28800.65390.28030.055*
H7C0.19160.70240.28370.055*
N10.3485 (4)0.5488 (5)0.0738 (9)0.0372 (13)
O10.4057 (3)0.4798 (5)0.2621 (7)0.0413 (12)
O20.3645 (3)0.3298 (4)0.0029 (7)0.0388 (11)
O30.5671 (4)0.2308 (6)0.0773 (10)0.0545 (15)
H310.595 (5)0.292 (5)0.027 (13)0.065*
H320.598 (5)0.197 (7)0.153 (12)0.065*
K10.44984 (10)0.36919 (13)0.3505 (2)0.0356 (4)
Cl10.27213 (14)0.52161 (18)0.3006 (3)0.0476 (5)
Cl20.03915 (14)0.3782 (3)0.2755 (4)0.0797 (9)
S10.34542 (10)0.44325 (14)0.0788 (2)0.0283 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (3)0.033 (3)0.023 (3)0.000 (2)0.002 (2)0.002 (2)
C20.029 (3)0.038 (4)0.024 (3)0.005 (3)0.005 (2)0.000 (3)
C30.029 (3)0.064 (5)0.030 (3)0.006 (3)0.009 (3)0.002 (3)
C40.027 (3)0.074 (6)0.032 (4)0.005 (4)0.007 (3)0.009 (4)
C50.048 (4)0.051 (5)0.047 (4)0.023 (4)0.013 (3)0.001 (4)
C60.041 (4)0.042 (4)0.032 (3)0.006 (3)0.011 (3)0.003 (3)
C70.034 (3)0.037 (4)0.041 (4)0.008 (3)0.012 (3)0.008 (3)
N10.036 (3)0.038 (3)0.039 (3)0.001 (2)0.011 (2)0.004 (3)
O10.028 (2)0.056 (3)0.038 (3)0.006 (2)0.001 (2)0.002 (2)
O20.042 (3)0.033 (3)0.043 (3)0.007 (2)0.014 (2)0.003 (2)
O30.040 (3)0.056 (4)0.071 (4)0.001 (3)0.018 (3)0.013 (3)
K10.0345 (8)0.0377 (8)0.0359 (8)0.0039 (6)0.0101 (6)0.0011 (6)
Cl10.0538 (11)0.0549 (12)0.0336 (9)0.0095 (9)0.0067 (8)0.0111 (8)
Cl20.0338 (10)0.143 (3)0.0643 (15)0.0190 (13)0.0154 (10)0.0122 (16)
S10.0245 (7)0.0323 (8)0.0287 (8)0.0019 (6)0.0061 (6)0.0014 (6)
Geometric parameters (Å, º) top
C1—C61.383 (9)O1—S11.452 (5)
C1—C21.397 (9)O1—K1i2.758 (5)
C1—S11.786 (6)O1—K1ii2.855 (5)
C2—C31.397 (9)O2—S11.446 (5)
C2—C71.540 (10)O2—K1iii2.703 (5)
C3—C41.381 (12)O2—K12.907 (5)
C3—H30.9300O3—K1iii2.789 (6)
C4—C51.364 (12)O3—K12.790 (6)
C4—Cl21.747 (7)O3—H310.85 (2)
C5—C61.389 (10)O3—H320.85 (2)
C5—H50.9300K1—O2iv2.703 (5)
C6—H60.9300K1—O1i2.758 (5)
C7—H7A0.9600K1—O3iv2.789 (6)
C7—H7B0.9600K1—O1v2.855 (5)
C7—H7C0.9600K1—Cl13.272 (2)
N1—S11.580 (6)K1—H312.93 (9)
N1—Cl11.763 (6)K1—H323.09 (9)
N1—K13.319 (6)
C6—C1—C2121.2 (6)O1i—K1—O1v88.21 (14)
C6—C1—S1117.4 (5)O3iv—K1—O1v75.28 (18)
C2—C1—S1121.5 (5)O3—K1—O1v149.33 (17)
C1—C2—C3117.5 (6)O2iv—K1—O285.58 (13)
C1—C2—C7124.5 (6)O1i—K1—O2112.15 (15)
C3—C2—C7118.0 (6)O3iv—K1—O2143.26 (18)
C4—C3—C2120.1 (7)O3—K1—O273.18 (16)
C4—C3—H3120.0O1v—K1—O2137.32 (15)
C2—C3—H3120.0O2iv—K1—Cl197.50 (12)
C5—C4—C3122.6 (6)O1i—K1—Cl1106.88 (13)
C5—C4—Cl2119.6 (6)O3iv—K1—Cl1153.12 (15)
C3—C4—Cl2117.8 (6)O3—K1—Cl1131.81 (14)
C4—C5—C6117.8 (7)O1v—K1—Cl178.62 (11)
C4—C5—H5121.1O2—K1—Cl159.99 (10)
C6—C5—H5121.1O2iv—K1—N1118.84 (15)
C1—C6—C5120.8 (7)O1i—K1—N186.17 (15)
C1—C6—H6119.6O3iv—K1—N1164.53 (17)
C5—C6—H6119.6O3—K1—N1106.30 (18)
C2—C7—H7A109.5O1v—K1—N1100.78 (15)
C2—C7—H7B109.5O2—K1—N147.31 (14)
H7A—C7—H7B109.5Cl1—K1—N131.03 (11)
C2—C7—H7C109.5O2iv—K1—H31105.9 (7)
H7A—C7—H7C109.5O1i—K1—H3164.2 (10)
H7B—C7—H7C109.5O3iv—K1—H3179.3 (15)
S1—N1—Cl1109.6 (3)O3—K1—H3116.8 (7)
S1—N1—K188.5 (2)O1v—K1—H31145.6 (15)
Cl1—N1—K173.0 (2)O2—K1—H3175.3 (15)
S1—O1—K1i135.3 (3)Cl1—K1—H31127.2 (14)
S1—O1—K1ii130.8 (3)N1—K1—H3197.6 (13)
K1i—O1—K1ii91.79 (14)O2iv—K1—H3284.2 (14)
S1—O2—K1iii135.3 (3)O1i—K1—H3279.0 (14)
S1—O2—K1108.6 (2)O3iv—K1—H3259.3 (10)
K1iii—O2—K1100.27 (15)O3—K1—H3215.5 (9)
K1iii—O3—K1101.11 (18)O1v—K1—H32134.3 (10)
K1iii—O3—H31116 (6)O2—K1—H3287.5 (11)
K1—O3—H3191 (7)Cl1—K1—H32147.0 (10)
K1iii—O3—H32129 (6)N1—K1—H32121.5 (9)
K1—O3—H32103 (7)H31—K1—H3226.1 (7)
H31—O3—H32108 (3)N1—Cl1—K175.9 (2)
O2iv—K1—O1i154.73 (16)O2—S1—O1115.8 (3)
O2iv—K1—O3iv76.41 (16)O2—S1—N1113.1 (3)
O1i—K1—O3iv78.81 (17)O1—S1—N1104.2 (3)
O2iv—K1—O389.17 (18)O2—S1—C1105.4 (3)
O1i—K1—O379.62 (17)O1—S1—C1108.1 (3)
O3iv—K1—O374.78 (11)N1—S1—C1110.1 (3)
O2iv—K1—O1v90.22 (15)
C6—C1—C2—C30.7 (9)Cl1—N1—K1—O3iv118.7 (7)
S1—C1—C2—C3180.0 (5)S1—N1—K1—O338.4 (3)
C6—C1—C2—C7178.8 (6)Cl1—N1—K1—O3149.5 (2)
S1—C1—C2—C72.0 (9)S1—N1—K1—O1v156.1 (2)
C1—C2—C3—C40.5 (10)Cl1—N1—K1—O1v45.1 (2)
C7—C2—C3—C4178.7 (6)S1—N1—K1—O28.75 (19)
C2—C3—C4—C50.3 (11)Cl1—N1—K1—O2102.3 (3)
C2—C3—C4—Cl2179.7 (5)S1—N1—K1—Cl1111.1 (3)
C3—C4—C5—C60.8 (12)S1—N1—Cl1—K182.0 (3)
Cl2—C4—C5—C6179.7 (6)O2iv—K1—Cl1—N1136.5 (2)
C2—C1—C6—C50.1 (10)O1i—K1—Cl1—N150.2 (2)
S1—C1—C6—C5179.5 (6)O3iv—K1—Cl1—N1148.9 (4)
C4—C5—C6—C10.6 (11)O3—K1—Cl1—N140.8 (3)
K1iii—O3—K1—O2iv63.5 (2)O1v—K1—Cl1—N1134.8 (2)
K1iii—O3—K1—O1i139.3 (2)O2—K1—Cl1—N156.0 (2)
K1iii—O3—K1—O3iv139.6 (3)K1iii—O2—S1—O124.3 (5)
K1iii—O3—K1—O1v152.5 (3)K1—O2—S1—O1103.1 (3)
K1iii—O3—K1—O222.15 (17)K1iii—O2—S1—N1144.5 (4)
K1iii—O3—K1—Cl135.9 (3)K1—O2—S1—N117.1 (4)
K1iii—O3—K1—N156.4 (2)K1iii—O2—S1—C195.1 (4)
S1—O2—K1—O2iv146.95 (18)K1—O2—S1—C1137.5 (2)
K1iii—O2—K1—O2iv67.6 (2)K1i—O1—S1—O2100.4 (4)
S1—O2—K1—O1i51.6 (3)K1ii—O1—S1—O258.3 (4)
K1iii—O2—K1—O1i93.77 (18)K1i—O1—S1—N124.5 (5)
S1—O2—K1—O3iv152.9 (3)K1ii—O1—S1—N1176.8 (3)
K1iii—O2—K1—O3iv7.5 (4)K1i—O1—S1—C1141.7 (4)
S1—O2—K1—O3122.6 (3)K1ii—O1—S1—C159.6 (4)
K1iii—O2—K1—O322.82 (18)Cl1—N1—S1—O257.2 (4)
S1—O2—K1—O1v61.4 (4)K1—N1—S1—O214.1 (3)
K1iii—O2—K1—O1v153.17 (18)Cl1—N1—S1—O1176.1 (3)
S1—O2—K1—Cl145.7 (2)K1—N1—S1—O1112.5 (2)
K1iii—O2—K1—Cl1168.94 (19)Cl1—N1—S1—C160.4 (4)
S1—O2—K1—N110.1 (2)K1—N1—S1—C1131.8 (2)
K1iii—O2—K1—N1155.5 (3)C6—C1—S1—O28.7 (6)
S1—N1—K1—O2iv59.9 (3)C2—C1—S1—O2172.0 (5)
Cl1—N1—K1—O2iv51.2 (3)C6—C1—S1—O1115.7 (5)
S1—N1—K1—O1i116.4 (2)C2—C1—S1—O163.6 (6)
Cl1—N1—K1—O1i132.5 (2)C6—C1—S1—N1131.0 (5)
S1—N1—K1—O3iv130.2 (6)C2—C1—S1—N149.7 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1i0.85 (2)2.06 (2)2.901 (9)173 (9)
O3—H32···Cl1vi0.85 (2)2.86 (5)3.603 (6)148 (9)
Symmetry codes: (i) x+1, y+1, z; (vi) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[K(C7H6Cl2NO2S)(H2O)]
Mr296.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.190 (1), 11.3138 (9), 6.7200 (5)
β (°) 100.627 (7)
V3)1135.07 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.44 × 0.28 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.642, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
4588, 2297, 2043
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.193, 1.28
No. of reflections2297
No. of parameters144
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.45

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1i0.85 (2)2.06 (2)2.901 (9)173 (9)
O3—H32···Cl1ii0.85 (2)2.86 (5)3.603 (6)148 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z1/2.
 

Acknowledgements

HSS thanks the Department of Science and Technology, Government of India, New Delhi, for a Research Fellowship through PURSE Grants and BTG thanks the University Grants Commission, Government of India, New Delhi, for a grant under the UGC–BSR one-time grant to Faculty/Professors.

References

First citationGeorge, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, m1688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m918.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011c). Acta Cryst. E67, m961.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Mahadevappa, D. S. (1983). Talanta, 30, 359–362.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOlmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds