metal-organic compounds
Tetrakis(pyridine-κN)bis(tetrafluoridoborato-κF)copper(II)
aInstitute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
*Correspondence e-mail: P.G.Plieger@massey.ac.nz
In the title complex, [Cu(BF4)2(C5H5N)2], the CuII ion is in an octahedral coordination environment and is surrounded by four pyridine and two tetrafluoridoborate molecules. The four pyridine molecules are coordinated to the copper ion through their N atoms in the equatorial plane and display a right-handed screw arrangement around the CuII ion. The remaining two trans positions in the octahedron are occupied by the BF4− anions, each coordinating weakly through an F atom. The crystal packing shows a two-dimensional sheet structure parallel to the ab plane that is formed by C—H⋯F hydrogen-bonding interactions.
Related literature
For related [Cu(C5H5N)4Y2] complexes (where Y = ClO4−, NO3−, BF4−, PF6−, SO3CF3−) see: Ibers (1953); Brown et al. (1966); Alleyne & Thompson (1974); Pradilla Sorzano et al. (1979); Barker & Stobart (1980); Haynes et al. (1988); Agnus et al. (1994); Beurskens et al. (1995); Li & Zhang (2004); Bowmaker et al. (2011). For CuII complexes containing an N4F2 donor set, see: Su & Li (1994); Heier et al. (1998); Conner et al. (2006); Noro et al. (2009, 2011).
Experimental
Crystal data
|
Data collection: CrystalClear-SM Expert (Rigaku, 2005); cell CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813018643/sj5342sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813018643/sj5342Isup2.hkl
Crystals of [Cu(C5H5N)4(BF4)2] were obtained by the slow evaporation of a mixed solvent solution (MeOH: H2O: pyridine, 15: 10: 5 ml respectively) containing copper(II) tetrafluoridoborate hexahydrate (0.345 g, 1.0 mmol). Blue crystals of [Cu(C5H5N)2(BF4)2] were obtained after 2–3 weeks from the filtrate.
All non-hydrogen atoms were refined anisotropically. All H atoms were positioned geometrically with C–H = 0.93 and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The crystal studied was an
with a 0.78 (7):0.22 (7) domain ratio.Data collection: CrystalClear-SM Expert (Rigaku, 2005); cell
CrystalClear-SM Expert (Rigaku, 2005); data reduction: CrystalClear-SM Expert (Rigaku, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. An ORTEP diagram showing the molecular structure of the title complex. The ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. | |
Fig. 2. Showing the similarity in orientation and right handed screw arrangement of all the four coordinated pyridine rings with respect to the central metal ion. | |
Fig. 3. A two-dimensional sheet structure parallel to ab plane is formed by C—H···F hydrogen bonding interactions. The hydrogen atoms other than those involved in H-bonding have been omitted for clarity. Hydrogen bonds are shown in dashed lines. |
[Cu(BF4)2(C5H5N)4] | F(000) = 1116 |
Mr = 553.56 | Dx = 1.6 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2453 reflections |
a = 10.162 (3) Å | θ = 7–71.4° |
b = 13.831 (5) Å | µ = 2.10 mm−1 |
c = 16.350 (4) Å | T = 295 K |
V = 2298.0 (12) Å3 | Block, blue |
Z = 4 | 0.2 × 0.14 × 0.14 mm |
Rigaku Spider X-ray diffractometer | 4378 independent reflections |
Radiation source: Rotating Anode | 3186 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.065 |
Detector resolution: 10 pixels mm-1 | θmax = 71.8°, θmin = 7.0° |
profile data from ω–scans | h = −10→12 |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2005) | k = −16→16 |
Tmin = 0.769, Tmax = 1 | l = −19→20 |
17937 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.030P)2 + 2.2291P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
4378 reflections | Δρmax = 0.39 e Å−3 |
317 parameters | Δρmin = −0.68 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1868 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.22 (5) |
[Cu(BF4)2(C5H5N)4] | V = 2298.0 (12) Å3 |
Mr = 553.56 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 10.162 (3) Å | µ = 2.10 mm−1 |
b = 13.831 (5) Å | T = 295 K |
c = 16.350 (4) Å | 0.2 × 0.14 × 0.14 mm |
Rigaku Spider X-ray diffractometer | 4378 independent reflections |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2005) | 3186 reflections with I > 2σ(I) |
Tmin = 0.769, Tmax = 1 | Rint = 0.065 |
17937 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.117 | Δρmax = 0.39 e Å−3 |
S = 1.01 | Δρmin = −0.68 e Å−3 |
4378 reflections | Absolute structure: Flack (1983), 1868 Friedel pairs |
317 parameters | Absolute structure parameter: 0.22 (5) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8793 (5) | 0.0901 (4) | 0.1770 (3) | 0.0447 (12) | |
H1 | 0.9558 | 0.1139 | 0.2008 | 0.054* | |
C2 | 0.8868 (5) | 0.0101 (3) | 0.1268 (3) | 0.0484 (13) | |
H2 | 0.9676 | −0.0192 | 0.1168 | 0.058* | |
C3 | 0.7746 (5) | −0.0259 (3) | 0.0918 (3) | 0.0473 (12) | |
H3 | 0.7787 | −0.0789 | 0.0568 | 0.057* | |
C4 | 0.6545 (5) | 0.0176 (4) | 0.1092 (3) | 0.0474 (13) | |
H4 | 0.5764 | −0.0068 | 0.088 | 0.057* | |
C5 | 0.6548 (5) | 0.0982 (4) | 0.1591 (3) | 0.0424 (12) | |
H5 | 0.575 | 0.1285 | 0.17 | 0.051* | |
C6 | 0.6032 (5) | 0.1434 (3) | 0.3647 (3) | 0.0449 (12) | |
H6 | 0.6802 | 0.1072 | 0.368 | 0.054* | |
C7 | 0.4944 (5) | 0.1140 (4) | 0.4088 (3) | 0.0454 (12) | |
H7 | 0.4982 | 0.0594 | 0.4418 | 0.054* | |
C8 | 0.3803 (5) | 0.1671 (4) | 0.4029 (3) | 0.0465 (12) | |
H8 | 0.3057 | 0.1489 | 0.4322 | 0.056* | |
C9 | 0.3779 (4) | 0.2478 (3) | 0.3530 (3) | 0.0428 (11) | |
H9 | 0.3012 | 0.2838 | 0.3473 | 0.051* | |
C10 | 0.4888 (4) | 0.2738 (3) | 0.3124 (3) | 0.0422 (11) | |
H10 | 0.4871 | 0.3291 | 0.28 | 0.051* | |
C20 | 0.9163 (5) | 0.3097 (4) | 0.1054 (3) | 0.0471 (13) | |
H20 | 0.8419 | 0.2878 | 0.078 | 0.057* | |
C19 | 1.0217 (5) | 0.3422 (4) | 0.0604 (3) | 0.0523 (14) | |
H19 | 1.0172 | 0.3436 | 0.0036 | 0.063* | |
C18 | 1.1332 (5) | 0.3726 (4) | 0.0996 (3) | 0.0500 (13) | |
H18 | 1.2053 | 0.3945 | 0.0698 | 0.06* | |
C17 | 1.1373 (5) | 0.3703 (4) | 0.1849 (3) | 0.0500 (13) | |
H17 | 1.2121 | 0.3897 | 0.2132 | 0.06* | |
C16 | 1.0275 (5) | 0.3384 (3) | 0.2257 (3) | 0.0456 (12) | |
H16 | 1.0294 | 0.3375 | 0.2826 | 0.055* | |
C15 | 0.7589 (4) | 0.4783 (3) | 0.2670 (3) | 0.0424 (10) | |
H15 | 0.7678 | 0.4753 | 0.2104 | 0.051* | |
C14 | 0.7524 (5) | 0.5676 (3) | 0.3032 (3) | 0.0470 (11) | |
H14 | 0.7554 | 0.6236 | 0.2718 | 0.056* | |
C13 | 0.7415 (5) | 0.5726 (3) | 0.3870 (3) | 0.0503 (12) | |
H13 | 0.7395 | 0.6324 | 0.413 | 0.06* | |
C12 | 0.7335 (5) | 0.4887 (3) | 0.4318 (3) | 0.0487 (12) | |
H12 | 0.7245 | 0.4908 | 0.4884 | 0.058* | |
C11 | 0.7390 (5) | 0.4010 (3) | 0.3908 (3) | 0.0431 (11) | |
H11 | 0.7329 | 0.3442 | 0.421 | 0.052* | |
B1 | 1.0010 (6) | 0.1685 (5) | 0.4073 (4) | 0.0490 (15) | |
B2 | 0.4990 (6) | 0.3467 (4) | 0.1079 (4) | 0.0454 (14) | |
N2 | 0.6013 (4) | 0.2225 (3) | 0.3173 (2) | 0.0385 (9) | |
N1 | 0.7637 (4) | 0.1349 (3) | 0.1924 (2) | 0.0381 (8) | |
N4 | 0.9169 (4) | 0.3084 (3) | 0.1878 (2) | 0.0397 (9) | |
N3 | 0.7529 (4) | 0.3950 (2) | 0.30907 (19) | 0.0341 (8) | |
F1 | 0.8975 (3) | 0.1997 (3) | 0.3593 (2) | 0.0807 (11) | |
F2 | 0.9527 (5) | 0.1251 (3) | 0.4732 (2) | 0.1131 (15) | |
F3 | 1.0755 (3) | 0.1081 (3) | 0.3611 (3) | 0.1038 (14) | |
F4 | 1.0738 (3) | 0.2493 (3) | 0.4275 (2) | 0.0841 (11) | |
F5 | 0.4395 (3) | 0.41614 (19) | 0.15695 (18) | 0.0565 (8) | |
F6 | 0.4263 (3) | 0.2628 (2) | 0.1097 (2) | 0.0658 (9) | |
F7 | 0.6239 (3) | 0.3276 (2) | 0.13865 (18) | 0.0545 (7) | |
F8 | 0.5108 (4) | 0.3811 (2) | 0.02866 (18) | 0.0716 (10) | |
Cu1 | 0.75983 (6) | 0.26389 (4) | 0.25232 (4) | 0.03806 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.037 (3) | 0.040 (3) | 0.056 (3) | 0.001 (2) | 0.005 (2) | 0.009 (2) |
C2 | 0.043 (3) | 0.041 (3) | 0.062 (3) | 0.006 (2) | 0.010 (3) | 0.009 (3) |
C3 | 0.055 (3) | 0.040 (3) | 0.047 (3) | −0.001 (3) | 0.004 (2) | −0.002 (2) |
C4 | 0.049 (3) | 0.042 (3) | 0.052 (3) | −0.003 (3) | −0.003 (2) | −0.004 (2) |
C5 | 0.034 (3) | 0.042 (3) | 0.051 (3) | 0.001 (2) | −0.002 (2) | 0.002 (2) |
C6 | 0.041 (3) | 0.039 (3) | 0.054 (3) | 0.002 (2) | 0.000 (2) | −0.001 (2) |
C7 | 0.049 (3) | 0.040 (3) | 0.048 (3) | −0.005 (3) | 0.003 (2) | 0.003 (2) |
C8 | 0.043 (3) | 0.052 (3) | 0.045 (3) | −0.006 (3) | 0.008 (2) | −0.006 (2) |
C9 | 0.034 (2) | 0.047 (3) | 0.048 (2) | 0.005 (2) | 0.004 (2) | −0.002 (2) |
C10 | 0.040 (3) | 0.039 (3) | 0.047 (2) | 0.003 (2) | −0.003 (2) | 0.003 (2) |
C20 | 0.033 (3) | 0.052 (3) | 0.057 (3) | −0.006 (2) | −0.003 (2) | −0.002 (3) |
C19 | 0.042 (3) | 0.066 (4) | 0.048 (3) | −0.006 (3) | 0.002 (2) | 0.007 (3) |
C18 | 0.038 (3) | 0.064 (4) | 0.048 (3) | −0.003 (3) | 0.007 (2) | 0.007 (3) |
C17 | 0.034 (3) | 0.063 (3) | 0.053 (3) | −0.008 (3) | 0.001 (2) | 0.003 (3) |
C16 | 0.037 (3) | 0.050 (3) | 0.050 (3) | −0.005 (2) | −0.001 (2) | 0.001 (2) |
C15 | 0.035 (3) | 0.042 (2) | 0.051 (3) | 0.000 (2) | 0.003 (2) | 0.004 (2) |
C14 | 0.045 (3) | 0.041 (3) | 0.054 (3) | 0.005 (3) | 0.001 (3) | 0.009 (2) |
C13 | 0.044 (3) | 0.039 (3) | 0.068 (3) | 0.005 (3) | 0.000 (3) | −0.002 (2) |
C12 | 0.047 (3) | 0.051 (3) | 0.049 (3) | 0.004 (3) | −0.001 (3) | −0.007 (2) |
C11 | 0.038 (3) | 0.043 (2) | 0.048 (2) | 0.001 (3) | 0.000 (2) | 0.009 (2) |
B1 | 0.037 (4) | 0.056 (4) | 0.055 (3) | 0.003 (3) | 0.006 (3) | 0.000 (3) |
B2 | 0.035 (3) | 0.044 (3) | 0.057 (3) | −0.001 (3) | 0.000 (3) | 0.005 (3) |
N2 | 0.035 (2) | 0.036 (2) | 0.0443 (19) | −0.0009 (18) | 0.0007 (17) | −0.0012 (17) |
N1 | 0.030 (2) | 0.038 (2) | 0.0459 (19) | 0.003 (2) | −0.0002 (18) | 0.0019 (16) |
N4 | 0.037 (2) | 0.041 (2) | 0.041 (2) | −0.0015 (19) | 0.0015 (18) | −0.0003 (18) |
N3 | 0.034 (2) | 0.0341 (18) | 0.0344 (16) | −0.0019 (19) | 0.0024 (18) | 0.0004 (14) |
F1 | 0.055 (2) | 0.092 (3) | 0.095 (2) | 0.0015 (19) | −0.0267 (19) | 0.030 (2) |
F2 | 0.164 (4) | 0.104 (3) | 0.071 (2) | −0.012 (3) | 0.017 (3) | 0.035 (2) |
F3 | 0.054 (2) | 0.107 (3) | 0.149 (4) | 0.014 (2) | 0.011 (2) | −0.063 (3) |
F4 | 0.060 (2) | 0.094 (3) | 0.098 (2) | −0.024 (2) | 0.0140 (18) | −0.044 (2) |
F5 | 0.0586 (19) | 0.0407 (16) | 0.0703 (19) | 0.0070 (14) | 0.0111 (16) | 0.0029 (15) |
F6 | 0.0495 (18) | 0.0472 (18) | 0.101 (2) | −0.0135 (15) | 0.0000 (16) | −0.0033 (18) |
F7 | 0.0362 (16) | 0.0633 (19) | 0.0641 (18) | 0.0026 (14) | −0.0068 (14) | 0.0026 (15) |
F8 | 0.103 (3) | 0.064 (2) | 0.0479 (16) | 0.007 (2) | −0.0089 (18) | 0.0095 (15) |
Cu1 | 0.0327 (3) | 0.0364 (3) | 0.0450 (3) | −0.0019 (3) | 0.0014 (3) | 0.0001 (3) |
C1—N1 | 1.352 (6) | C17—C16 | 1.373 (6) |
C1—C2 | 1.380 (7) | C17—H17 | 0.93 |
C1—H1 | 0.93 | C16—N4 | 1.349 (5) |
C2—C3 | 1.370 (7) | C16—H16 | 0.93 |
C2—H2 | 0.93 | C15—N3 | 1.344 (5) |
C3—C4 | 1.391 (7) | C15—C14 | 1.371 (6) |
C3—H3 | 0.93 | C15—H15 | 0.93 |
C4—C5 | 1.381 (7) | C14—C13 | 1.376 (6) |
C4—H4 | 0.93 | C14—H14 | 0.93 |
C5—N1 | 1.333 (6) | C13—C12 | 1.375 (6) |
C5—H5 | 0.93 | C13—H13 | 0.93 |
C6—N2 | 1.341 (6) | C12—C11 | 1.387 (6) |
C6—C7 | 1.381 (6) | C12—H12 | 0.93 |
C6—H6 | 0.93 | C11—N3 | 1.346 (5) |
C7—C8 | 1.376 (7) | C11—H11 | 0.93 |
C7—H7 | 0.93 | B1—F2 | 1.328 (7) |
C8—C9 | 1.383 (7) | B1—F3 | 1.357 (7) |
C8—H8 | 0.93 | B1—F4 | 1.381 (7) |
C9—C10 | 1.356 (6) | B1—F1 | 1.382 (6) |
C9—H9 | 0.93 | B2—F6 | 1.375 (6) |
C10—N2 | 1.348 (5) | B2—F5 | 1.390 (6) |
C10—H10 | 0.93 | B2—F7 | 1.390 (6) |
C20—N4 | 1.347 (6) | B2—F8 | 1.386 (6) |
C20—C19 | 1.375 (7) | N2—Cu1 | 2.013 (4) |
C20—H20 | 0.93 | N1—Cu1 | 2.036 (4) |
C19—C18 | 1.368 (7) | N4—Cu1 | 2.010 (4) |
C19—H19 | 0.93 | N3—Cu1 | 2.038 (3) |
C18—C17 | 1.396 (6) | F1—Cu1 | 2.409 (3) |
C18—H18 | 0.93 | ||
N1—C1—C2 | 121.7 (5) | C13—C14—C15 | 118.7 (4) |
N1—C1—H1 | 119.1 | C13—C14—H14 | 120.7 |
C2—C1—H1 | 119.1 | C15—C14—H14 | 120.7 |
C3—C2—C1 | 119.6 (5) | C14—C13—C12 | 119.5 (4) |
C3—C2—H2 | 120.2 | C14—C13—H13 | 120.2 |
C1—C2—H2 | 120.2 | C12—C13—H13 | 120.2 |
C2—C3—C4 | 119.2 (4) | C13—C12—C11 | 118.5 (4) |
C2—C3—H3 | 120.4 | C13—C12—H12 | 120.7 |
C4—C3—H3 | 120.4 | C11—C12—H12 | 120.7 |
C5—C4—C3 | 118.0 (5) | N3—C11—C12 | 122.6 (4) |
C5—C4—H4 | 121 | N3—C11—H11 | 118.7 |
C3—C4—H4 | 121 | C12—C11—H11 | 118.7 |
N1—C5—C4 | 123.4 (5) | F2—B1—F3 | 112.3 (6) |
N1—C5—H5 | 118.3 | F2—B1—F4 | 111.7 (5) |
C4—C5—H5 | 118.3 | F3—B1—F4 | 109.5 (5) |
N2—C6—C7 | 122.0 (5) | F2—B1—F1 | 108.7 (5) |
N2—C6—H6 | 119 | F3—B1—F1 | 107.5 (5) |
C7—C6—H6 | 119 | F4—B1—F1 | 107.0 (5) |
C8—C7—C6 | 118.8 (5) | F6—B2—F5 | 109.7 (4) |
C8—C7—H7 | 120.6 | F6—B2—F7 | 108.8 (4) |
C6—C7—H7 | 120.6 | F5—B2—F7 | 108.7 (4) |
C9—C8—C7 | 119.1 (5) | F6—B2—F8 | 110.9 (5) |
C9—C8—H8 | 120.5 | F5—B2—F8 | 109.8 (4) |
C7—C8—H8 | 120.5 | F7—B2—F8 | 108.9 (5) |
C10—C9—C8 | 119.3 (4) | C6—N2—C10 | 118.4 (4) |
C10—C9—H9 | 120.4 | C6—N2—Cu1 | 121.7 (3) |
C8—C9—H9 | 120.4 | C10—N2—Cu1 | 119.9 (3) |
N2—C10—C9 | 122.4 (4) | C5—N1—C1 | 118.1 (4) |
N2—C10—H10 | 118.8 | C5—N1—Cu1 | 120.9 (3) |
C9—C10—H10 | 118.8 | C1—N1—Cu1 | 120.5 (3) |
N4—C20—C19 | 122.4 (5) | C20—N4—C16 | 117.3 (4) |
N4—C20—H20 | 118.8 | C20—N4—Cu1 | 121.7 (3) |
C19—C20—H20 | 118.8 | C16—N4—Cu1 | 121.0 (3) |
C18—C19—C20 | 119.6 (5) | C15—N3—C11 | 117.3 (4) |
C18—C19—H19 | 120.2 | C15—N3—Cu1 | 121.9 (3) |
C20—C19—H19 | 120.2 | C11—N3—Cu1 | 120.7 (3) |
C19—C18—C17 | 119.1 (5) | B1—F1—Cu1 | 165.8 (3) |
C19—C18—H18 | 120.5 | N4—Cu1—N2 | 178.68 (15) |
C17—C18—H18 | 120.5 | N4—Cu1—N3 | 89.65 (15) |
C16—C17—C18 | 117.9 (5) | N2—Cu1—N3 | 89.15 (14) |
C16—C17—H17 | 121 | N4—Cu1—N1 | 90.04 (15) |
C18—C17—H17 | 121 | N2—Cu1—N1 | 91.15 (15) |
N4—C16—C17 | 123.6 (4) | N3—Cu1—N1 | 178.11 (14) |
N4—C16—H16 | 118.2 | N4—Cu1—F1 | 91.87 (14) |
C17—C16—H16 | 118.2 | N2—Cu1—F1 | 88.69 (14) |
N3—C15—C14 | 123.3 (4) | N3—Cu1—F1 | 91.01 (13) |
N3—C15—H15 | 118.3 | N1—Cu1—F1 | 90.87 (14) |
C14—C15—H15 | 118.3 | ||
N1—C1—C2—C3 | −0.4 (7) | F2—B1—F1—Cu1 | −173.6 (12) |
C1—C2—C3—C4 | −1.6 (7) | F3—B1—F1—Cu1 | −51.8 (17) |
C2—C3—C4—C5 | 2.4 (7) | F4—B1—F1—Cu1 | 65.6 (16) |
C3—C4—C5—N1 | −1.4 (7) | C20—N4—Cu1—N3 | −121.7 (4) |
N2—C6—C7—C8 | 0.8 (7) | C16—N4—Cu1—N3 | 58.2 (4) |
C6—C7—C8—C9 | 0.2 (7) | C20—N4—Cu1—N1 | 56.5 (4) |
C7—C8—C9—C10 | −1.4 (7) | C16—N4—Cu1—N1 | −123.6 (4) |
C8—C9—C10—N2 | 1.6 (7) | C20—N4—Cu1—F1 | 147.3 (4) |
N4—C20—C19—C18 | 1.6 (8) | C16—N4—Cu1—F1 | −32.8 (4) |
C20—C19—C18—C17 | −0.3 (8) | C6—N2—Cu1—N3 | −123.6 (4) |
C19—C18—C17—C16 | −0.8 (8) | C10—N2—Cu1—N3 | 57.7 (3) |
C18—C17—C16—N4 | 0.7 (8) | C6—N2—Cu1—N1 | 58.3 (4) |
N3—C15—C14—C13 | 1.1 (8) | C10—N2—Cu1—N1 | −120.4 (3) |
C15—C14—C13—C12 | −1.9 (9) | C6—N2—Cu1—F1 | −32.6 (4) |
C14—C13—C12—C11 | 1.1 (8) | C10—N2—Cu1—F1 | 148.7 (3) |
C13—C12—C11—N3 | 0.5 (8) | C15—N3—Cu1—N4 | 48.4 (4) |
C7—C6—N2—C10 | −0.6 (7) | C11—N3—Cu1—N4 | −133.2 (4) |
C7—C6—N2—Cu1 | −179.3 (4) | C15—N3—Cu1—N2 | −131.1 (4) |
C9—C10—N2—C6 | −0.6 (7) | C11—N3—Cu1—N2 | 47.4 (4) |
C9—C10—N2—Cu1 | 178.1 (3) | C15—N3—Cu1—F1 | 140.2 (4) |
C4—C5—N1—C1 | −0.6 (7) | C11—N3—Cu1—F1 | −41.3 (4) |
C4—C5—N1—Cu1 | 171.6 (4) | C5—N1—Cu1—N4 | −130.8 (4) |
C2—C1—N1—C5 | 1.5 (7) | C1—N1—Cu1—N4 | 41.2 (4) |
C2—C1—N1—Cu1 | −170.7 (3) | C5—N1—Cu1—N2 | 48.6 (4) |
C19—C20—N4—C16 | −1.6 (8) | C1—N1—Cu1—N2 | −139.4 (3) |
C19—C20—N4—Cu1 | 178.3 (4) | C5—N1—Cu1—F1 | 137.3 (3) |
C17—C16—N4—C20 | 0.4 (7) | C1—N1—Cu1—F1 | −50.7 (3) |
C17—C16—N4—Cu1 | −179.5 (4) | B1—F1—Cu1—N4 | −6.8 (15) |
C14—C15—N3—C11 | 0.5 (7) | B1—F1—Cu1—N2 | 174.4 (15) |
C14—C15—N3—Cu1 | 179.0 (4) | B1—F1—Cu1—N3 | −96.5 (15) |
C12—C11—N3—C15 | −1.3 (8) | B1—F1—Cu1—N1 | 83.2 (15) |
C12—C11—N3—Cu1 | −179.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···F5i | 0.93 | 2.63 | 3.016 (6) | 105 |
C7—H7···F8i | 0.93 | 2.51 | 3.380 (6) | 155 |
C13—H13···F6ii | 0.93 | 2.5 | 3.135 (6) | 126 |
C17—H17···F5iii | 0.93 | 2.51 | 3.169 (6) | 128 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(BF4)2(C5H5N)4] |
Mr | 553.56 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 295 |
a, b, c (Å) | 10.162 (3), 13.831 (5), 16.350 (4) |
V (Å3) | 2298.0 (12) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.10 |
Crystal size (mm) | 0.2 × 0.14 × 0.14 |
Data collection | |
Diffractometer | Rigaku Spider X-ray diffractometer |
Absorption correction | Multi-scan (CrystalClear-SM Expert; Rigaku, 2005) |
Tmin, Tmax | 0.769, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17937, 4378, 3186 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.117, 1.01 |
No. of reflections | 4378 |
No. of parameters | 317 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.68 |
Absolute structure | Flack (1983), 1868 Friedel pairs |
Absolute structure parameter | 0.22 (5) |
Computer programs: CrystalClear-SM Expert (Rigaku, 2005), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···F5i | 0.93 | 2.63 | 3.016 (6) | 105.4 |
C7—H7···F8i | 0.93 | 2.51 | 3.380 (6) | 155.1 |
C13—H13···F6ii | 0.93 | 2.5 | 3.135 (6) | 126 |
C17—H17···F5iii | 0.93 | 2.51 | 3.169 (6) | 127.7 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x+1, y, z. |
Acknowledgements
APSP would like to acknowledge Massey University for the Post-Doctoral fellowship. PGP would like to acknowledge financial assistance from the Massey University Research Fund.
References
Agnus, Y., Labarelle, M., Louis, R. & Metz, B. (1994). Acta Cryst. C50, 536–538. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Alleyne, C. S. & Thompson, R. C. (1974). Can. J. Chem. 52, 3218–3228. CrossRef CAS Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Barker, P. J. & Stobart, S. R. (1980). Inorg. Chim. Acta, 45, L197–L198. CrossRef CAS Web of Science Google Scholar
Beurskens, G., Martens, C. F., Nolte, R. J. M., Beurskens, P. T. & Smits, J. M. M. (1995). J. Chem. Crystallogr. 25, 425–427. CSD CrossRef CAS Web of Science Google Scholar
Bowmaker, G. A., Di Nicola, C., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2011). Dalton Trans. 40, 5102–5115. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brown, D. H., Nuttall, R. H., McAvoy, J. & Sharp, D. W. A. (1966). J. Chem. Soc. A, pp. 892–896. CrossRef Google Scholar
Conner, M., McConnell, A., Schlueter, J. A. & Manson, J. L. (2006). J. Low Temp. Phys. 142, 273–278. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Haynes, J. S., Rettig, S. J., Sams, J. R., Trotter, J. & Thompson, R. C. (1988). Inorg. Chem. 27, 1237–1241. CSD CrossRef CAS Web of Science Google Scholar
Heier, K. R., Norquist, A. J., Wilson, C. G., Stern, C. L. & Poeppelmeier, K. R. (1998). Inorg. Chem. 37, 76–80. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ibers, J. A. (1953). Acta Cryst. 6, 367. CSD CrossRef IUCr Journals Web of Science Google Scholar
Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1597–m1598. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Noro, S., Ohba, T., Fukuhara, K., Takahashi, Y., Akutagawa, T. & Nakamura, T. (2011). Dalton Trans. 40, 2268–2274. Web of Science CSD CrossRef CAS PubMed Google Scholar
Noro, S., Tanaka, D., Sakamoto, H., Shimomura, S., Kitagawa, S., Takeda, S., Uemura, K., Kita, H., Akutagawa, T. & Nakamura, T. (2009). Chem. Mater. 21, 3346–3355. Web of Science CSD CrossRef CAS Google Scholar
Pradilla Sorzano, J., Chen, H. W., Koknat, F. W. & Fackler, J. P. Jr (1979). Inorg. Chem. 18, 3519–3522. Google Scholar
Rigaku, (2005). CrystalClear-SM Expert. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, C. & Li, C. (1994). Polyhedron 13, 825–834. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
X-ray data on complexes of the type [Cu(C5H5N)4Y2] (Y = ClO4-, NO3-, BF4-, PF6-, NCS-, I3-, SO3CF3-, CF3CO2-) started appearing from the 1950's onwards (Ibers, 1953; Brown et al., 1966; Alleyne et al., 1974; Pradilla et al., 1979; Barker et al., 1980; Haynes et al., 1988; Agnus et al., 1994; Beurskens et al., 1995; Li et al., 2004; Bowmaker et al., 2011). Among these complexes, preliminary structural investigations on [Cu(C5H5N)2(BF4)2] were carried out by Ibers (Ibers, 1953) but were limited to the unit cell and space group determination. At that time because of the size and complexity of the unit cell no further work was completed. Based on Ibers' analysis, Agnus and co-workers in their paper on the structural determination of the related complex [Cu(C5H5N)4(ClO4)2], predicted that the tetrafluoridoborate analogue would also crystalize as a structural enantiomer. A CCDC search reveals that although there have been many reports on CuII complexes with the [Cu(C5H5N)4Y2] structural motif there are no single-crystal X-ray reports with BF4 as the counter ion (Y = BF4). Therefore, in the present work we report the single-crystal X-ray analysis of this complex, [Cu(C5H5N)2(BF4)2].
The molecular structure of present complex is shown in Fig. 1 along with the atom labelling scheme. In this complex, the four pyridine ligand molecules are coordinating through their nitrogen atoms forming a square plane around the CuII center while the remaining two trans positions in the distorted octahedron are occupied by the BF4 molecules, each coordinating through an F atom. The Cu—N distance varies from 2.009 (4) Å to 2.037 (4) Å while the two long Cu—F trans distances of 2.406 (4) Å and 2.476 (3) Å are consistent with other hexacoordinate CuII complexes containing an N4F2 donor set (2.394 (3) Å, Su et al., 1994; 2.452 (3) Å, Heier et al., 1998; 2.376 (2) Å, Conner et al., 2006; 2.501 (3) – 2.503 (3) Å, Noro et al., 2011; 2.528 (3) – 2.587 (2) Å, Noro et al., 2009). The dihedral angle values of 47.6 (3)° (N1—Cu1—N4—C25), 58.4 (3)° (N2—Cu1—N1—C6), 40.7 (2)° (N3—Cu1—N2—C1) and 58.3 (3)° (N4—Cu1—N3—C20) indicate a similar orientation for each pyridine ring with respect to the equatorial plane (plane containing the CuII and the four coordinated nitrogen atoms). Fig. 2. gives a pictorial view of this similarity in orientation along with confirming the right handed screw arrangement of all the four coordinated pyridine rings. This as predicted by Agnus and co-workers is very similar to the isomorphous perchlorate complex [Cu(C5H5N)4(ClO4)2] (Agnus et al., 1994) which also crystalizes in orthorhombic crystal system with P212121 space group and similar unit-cell parameters. The crystal packing investigations in present complex show a two-dimensional sheet structure parallel to the ab plane is formed by C—H···F hydrogen bonding interactions (Fig. 3, Table 1).