organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Chloro­phen­yl)(hy­dr­oxy)meth­yl]phenol

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cSri Mahadeshwara Government First Grade College, (Affiliated to University of Mysore), Kollegal 571 440, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 4 July 2013; accepted 5 July 2013; online 13 July 2013)

In the title compound, C13H11ClO2, the dihedral angle between the mean planes of the 2-chloro­phenyl and phenol rings is 87.4 (9)°. The methyl hy­droxy group lies nearly perpendicular to the plane of its attached benzene ring [O—C—C—C torsion angle = 84.3 (3)°]. The two hy­droxy groups lie on the same side of the mol­ecule and are in a slightly twisted gauche conformation [O—C—C—O torsion angle = 77.1 (8)°] to each other. In the crystal, O—H⋯O hydrogen bonds between nearby methyl­hydroxy groups form dimers in alternating pairs aligned diagonally along the b axis. A view along the c axis reveals a hexa­meric aggregate mediated by a ring of six O—H⋯O hydrogen bonds generating an R66(12) motif loop.

Related literature

For general background to the use of benzhydrols, see: Ohkuma et al. (2000[Ohkuma, T., Koizumi, M., Ikehira, H., Yokozawa, T. & Noyori, R. (2000). Org. Lett. 2, 659-662.]). For the use of the title compound in the perfume and pharmaceutical industries, see: Meguro et al. (1985[Meguro, K., Aizawa, M., Sohda, T., Kawamatsu, Y. & Nagaoka, A. (1985). Chem. Pharm. Bull. 33, 3787-3797.]). For related di­phenyl­methanol structures, see: Betz et al. (2011[Betz, R., Gerber, T., Hosten, E., Siddaraju, B. P., Yathirajan, H. S. & Ramesha, A. R. (2011). Acta Cryst. E67, o3302.]); Ferguson et al. (1995[Ferguson, G., Carroll, C. D., Glidewell, C., Zakaria, C. M. & Lough, A. J. (1995). Acta Cryst. B51, 367-377.]); Siddaraju et al. (2010[Siddaraju, B. P., Yathirajan, H. S., Narayana, B., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2136.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11ClO2

  • Mr = 234.67

  • Trigonal, [R \overline 3]

  • a = 23.4627 (8) Å

  • c = 11.3722 (4) Å

  • V = 5421.6 (4) Å3

  • Z = 18

  • Cu Kα radiation

  • μ = 2.66 mm−1

  • T = 173 K

  • 0.46 × 0.38 × 0.24 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.517, Tmax = 1.000

  • 11532 measured reflections

  • 2364 independent reflections

  • 2055 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.213

  • S = 1.07

  • 2364 reflections

  • 151 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.84 1.84 2.656 (2) 163
Symmetry code: (i) [y+{\script{1\over 3}}, -x+y+{\script{2\over 3}}, -z+{\script{5\over 3}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Optically active diarylmethanols are crucial structural elements in many physiologically or/and biologically active molecules such as in the antihistamines (R)-orphenadrine and (S)-neobenodine. Benzhydrols are widely used as intermediates for the synthesis of pharmaceuticals (Ohkuma et al., 2000), including drugs such as diphenhydramine, orphenadrine, diphenidol and phenyltoloxamine. The crystal structures and hydrogen bonding in some diphenylmethanols have been reported (Ferguson et al., 1995). The title compound, 2-[(2-chlorophenyl) hydroxymethyl]phenol, (I), is a derivative of diphenylmethanol and it is used in the perfume and pharmaceutical industries (Meguro et al., 1985). Recently, the crystal structure of (2-methylphenyl) (phenyl)methanol (Siddaraju et al., 2010) and 2-(2-benzylphenyl) propan-2-ol (Betz et al., 2011) were reported. In view of the importance of diarylmethanols, this paper reports the crystal structure of the title compound, C13H11O2Cl, (I).

In (I), the dihedral angle between the mean planes of the 2-chlorophenyl and phenol rings is 87.4 (9)° (Fig. 1). The methyl hydroxy group lies nearly perpendicular to the plane of its attached benzene ring [O1/C1/C2/C3 torsion angle = 84.3 (3)°]. The two hydroxy groups lie on the same side of the molecule and are in a slightly twisted gauche conformation [O1/C1/C3/O2 angle = 77.1 (8)°] to each other. In the crystal O—H···O hydrogen bonds between nearby methylhydroxy groups form dimers in alternating pairs aligned diagonally along the b axis and conribute to packing stability (Fig. 2). A view along the c axis reveals a hexameric aggregate mediated by a ring of six O—H···O hydrogen bonds generating an R66(12) motif loop (Fig. 3).

Related literature top

For general background to the use of benzhydrols, see: Ohkuma et al. (2000). For the use of the title compound in the perfume and pharmaceutical industries, see: Meguro et al. (1985). For related diphenylmethanol structures, see: Betz et al. (2011); Ferguson et al. (1995); Siddaraju et al. (2010).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bengaluru, India. X-ray quality crystals were obtained from benzene solution by slow evaporation. (m.p.: 368–373 K).

Refinement top

H2 was located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å or 1.00 (CH), or 0.84° (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (OH) times Ueq of the parent atom. Idealised tetrahedral OH refined as rotating group: O1(H1).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate O1—H1···O1 hydrogen bonds between nearby methylhydroxy groups which form dimers in alternating pairs algned diagonally along the b axis. H atoms not involved in hydrogen bonding have been deleted for clarity.
[Figure 3] Fig. 3. Packing of the molecules along c axis displaying a hexameric aggregate mediated by a ring of six O—H···O hydrogen bonds generating an R66(12) motif loop.
2-[(2-Chlorophenyl)(hydroxy)methyl]phenol top
Crystal data top
C13H11ClO2Dx = 1.294 Mg m3
Mr = 234.67Cu Kα radiation, λ = 1.5418 Å
Trigonal, R3Cell parameters from 3836 reflections
a = 23.4627 (8) Åθ = 3.8–72.3°
c = 11.3722 (4) ŵ = 2.66 mm1
V = 5421.6 (4) Å3T = 173 K
Z = 18Irregular, colourless
F(000) = 21960.46 × 0.38 × 0.24 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2364 independent reflections
Radiation source: Enhance (Cu) X-ray Source2055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.0416 pixels mm-1θmax = 72.5°, θmin = 3.8°
ω scansh = 2825
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 2228
Tmin = 0.517, Tmax = 1.000l = 1213
11532 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.1357P)2 + 8.799P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.213(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.40 e Å3
2364 reflectionsΔρmin = 0.62 e Å3
151 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00038 (12)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H11ClO2Z = 18
Mr = 234.67Cu Kα radiation
Trigonal, R3µ = 2.66 mm1
a = 23.4627 (8) ÅT = 173 K
c = 11.3722 (4) Å0.46 × 0.38 × 0.24 mm
V = 5421.6 (4) Å3
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2364 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2055 reflections with I > 2σ(I)
Tmin = 0.517, Tmax = 1.000Rint = 0.047
11532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.213H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.40 e Å3
2364 reflectionsΔρmin = 0.62 e Å3
151 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66585 (5)0.59567 (4)0.59620 (10)0.0780 (4)
O10.64040 (8)0.41759 (8)0.77861 (16)0.0393 (5)
H10.67600.43350.81590.059*
O20.56637 (10)0.49236 (11)0.91391 (16)0.0436 (5)
H20.590 (2)0.532 (2)0.888 (4)0.068 (12)*
C10.63717 (10)0.46886 (11)0.71725 (19)0.0295 (5)
H1A0.65730.50900.76830.035*
C20.56447 (11)0.44658 (11)0.7019 (2)0.0310 (5)
C30.53051 (12)0.45681 (12)0.7923 (2)0.0370 (6)
C40.46358 (14)0.43543 (14)0.7772 (3)0.0480 (7)
H40.44000.44220.83840.058*
C50.43171 (13)0.40498 (16)0.6757 (3)0.0541 (8)
H50.38650.39180.66610.065*
C60.46467 (14)0.39338 (17)0.5873 (3)0.0558 (8)
H60.44210.37110.51770.067*
C70.53144 (13)0.41460 (14)0.6004 (2)0.0446 (7)
H70.55440.40700.53920.054*
C80.67533 (10)0.48591 (12)0.6030 (2)0.0329 (5)
C90.69119 (12)0.54381 (13)0.5431 (2)0.0437 (7)
C100.73000 (15)0.5615 (2)0.4418 (3)0.0679 (11)
H100.74090.60130.40210.081*
C110.75243 (16)0.5216 (3)0.3997 (3)0.0783 (14)
H110.77920.53390.33120.094*
C120.73624 (15)0.4639 (2)0.4566 (3)0.0695 (12)
H120.75130.43600.42640.083*
C130.69824 (13)0.44599 (15)0.5574 (2)0.0458 (7)
H130.68760.40600.59610.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0763 (7)0.0518 (5)0.1047 (9)0.0312 (4)0.0183 (5)0.0120 (4)
O10.0278 (8)0.0368 (9)0.0499 (11)0.0137 (7)0.0014 (7)0.0132 (7)
O20.0534 (11)0.0509 (12)0.0340 (9)0.0318 (10)0.0080 (8)0.0075 (8)
C10.0277 (11)0.0279 (10)0.0316 (11)0.0130 (8)0.0020 (8)0.0008 (8)
C20.0282 (11)0.0317 (11)0.0341 (11)0.0158 (9)0.0014 (8)0.0026 (9)
C30.0403 (13)0.0361 (12)0.0416 (13)0.0243 (10)0.0078 (10)0.0066 (10)
C40.0406 (14)0.0513 (16)0.0607 (17)0.0294 (12)0.0158 (12)0.0136 (13)
C50.0283 (12)0.0592 (18)0.073 (2)0.0208 (12)0.0050 (12)0.0138 (15)
C60.0332 (14)0.0679 (19)0.0545 (17)0.0164 (13)0.0109 (12)0.0024 (14)
C70.0318 (12)0.0575 (16)0.0386 (13)0.0179 (11)0.0008 (10)0.0053 (11)
C80.0229 (10)0.0350 (12)0.0339 (12)0.0093 (9)0.0032 (8)0.0030 (9)
C90.0319 (12)0.0434 (14)0.0393 (13)0.0065 (10)0.0076 (10)0.0084 (10)
C100.0386 (15)0.083 (2)0.0433 (16)0.0008 (16)0.0057 (13)0.0225 (16)
C110.0346 (15)0.135 (4)0.0338 (15)0.0182 (19)0.0038 (12)0.0009 (19)
C120.0385 (15)0.118 (3)0.0506 (18)0.0378 (18)0.0045 (13)0.032 (2)
C130.0336 (12)0.0563 (16)0.0476 (14)0.0226 (12)0.0031 (10)0.0144 (12)
Geometric parameters (Å, º) top
Cl1—C91.710 (3)C5—C61.376 (5)
O1—H10.8400C6—H60.9500
O1—C11.425 (3)C6—C71.394 (4)
O2—H20.87 (5)C7—H70.9500
O2—C31.617 (3)C8—C91.394 (4)
C1—H1A1.0000C8—C131.392 (4)
C1—C21.524 (3)C9—C101.396 (4)
C1—C81.514 (3)C10—H100.9500
C2—C31.393 (3)C10—C111.369 (6)
C2—C71.383 (4)C11—H110.9500
C3—C41.400 (4)C11—C121.372 (7)
C4—H40.9500C12—H120.9500
C4—C51.367 (5)C12—C131.382 (4)
C5—H50.9500C13—H130.9500
C1—O1—H1109.5C7—C6—H6120.2
C3—O2—H299 (3)C2—C7—C6120.5 (3)
O1—C1—H1A108.1C2—C7—H7119.7
O1—C1—C2106.83 (17)C6—C7—H7119.7
O1—C1—C8111.67 (19)C9—C8—C1120.8 (2)
C2—C1—H1A108.1C13—C8—C1121.2 (2)
C8—C1—H1A108.1C13—C8—C9118.0 (2)
C8—C1—C2113.87 (18)C8—C9—Cl1120.2 (2)
C3—C2—C1119.7 (2)C8—C9—C10120.6 (3)
C7—C2—C1120.6 (2)C10—C9—Cl1119.2 (3)
C7—C2—C3119.7 (2)C9—C10—H10119.9
C2—C3—O2121.7 (2)C11—C10—C9120.1 (3)
C2—C3—C4118.9 (2)C11—C10—H10119.9
C4—C3—O2119.4 (2)C10—C11—H11120.1
C3—C4—H4119.6C10—C11—C12119.9 (3)
C5—C4—C3120.9 (3)C12—C11—H11120.1
C5—C4—H4119.6C11—C12—H12119.7
C4—C5—H5119.8C11—C12—C13120.6 (4)
C4—C5—C6120.4 (2)C13—C12—H12119.7
C6—C5—H5119.8C8—C13—H13119.6
C5—C6—H6120.2C12—C13—C8120.7 (3)
C5—C6—C7119.6 (3)C12—C13—H13119.6
Cl1—C9—C10—C11178.1 (2)C3—C2—C7—C60.9 (4)
O1—C1—C2—C384.3 (3)C3—C4—C5—C61.6 (5)
O1—C1—C2—C793.8 (3)C4—C5—C6—C71.8 (5)
O1—C1—C8—C9165.2 (2)C5—C6—C7—C20.6 (5)
O1—C1—C8—C1311.7 (3)C7—C2—C3—O2178.5 (2)
O2—C3—C4—C5179.8 (2)C7—C2—C3—C41.2 (4)
C1—C2—C3—O20.4 (3)C8—C1—C2—C3151.9 (2)
C1—C2—C3—C4179.3 (2)C8—C1—C2—C729.9 (3)
C1—C2—C7—C6179.0 (3)C8—C9—C10—C110.6 (4)
C1—C8—C9—Cl11.7 (3)C9—C8—C13—C120.8 (4)
C1—C8—C9—C10175.8 (2)C9—C10—C11—C120.6 (5)
C1—C8—C13—C12176.3 (2)C10—C11—C12—C131.0 (5)
C2—C1—C8—C973.7 (3)C11—C12—C13—C80.3 (4)
C2—C1—C8—C13109.4 (2)C13—C8—C9—Cl1178.72 (19)
C2—C3—C4—C50.0 (4)C13—C8—C9—C101.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.841.842.656 (2)163
Symmetry code: (i) y+1/3, x+y+2/3, z+5/3.

Experimental details

Crystal data
Chemical formulaC13H11ClO2
Mr234.67
Crystal system, space groupTrigonal, R3
Temperature (K)173
a, c (Å)23.4627 (8), 11.3722 (4)
V3)5421.6 (4)
Z18
Radiation typeCu Kα
µ (mm1)2.66
Crystal size (mm)0.46 × 0.38 × 0.24
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.517, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11532, 2364, 2055
Rint0.047
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.213, 1.07
No. of reflections2364
No. of parameters151
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.62

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.841.842.656 (2)162.7
Symmetry code: (i) y+1/3, x+y+2/3, z+5/3.
 

Acknowledgements

GP thanks the UOM for research facilities to complete MSc dissertation work. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Siddaraju, B. P., Yathirajan, H. S. & Ramesha, A. R. (2011). Acta Cryst. E67, o3302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Carroll, C. D., Glidewell, C., Zakaria, C. M. & Lough, A. J. (1995). Acta Cryst. B51, 367–377.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeguro, K., Aizawa, M., Sohda, T., Kawamatsu, Y. & Nagaoka, A. (1985). Chem. Pharm. Bull. 33, 3787–3797.  CrossRef CAS PubMed Google Scholar
First citationOhkuma, T., Koizumi, M., Ikehira, H., Yokozawa, T. & Noyori, R. (2000). Org. Lett. 2, 659–662.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddaraju, B. P., Yathirajan, H. S., Narayana, B., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2136.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds