metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m460-m461

(Methanol-κO)-cis-dioxido{(4Z,NE)-N′-[(Z)-4-oxido-4-phenyl­but-3-en-2-yl­­idene]iso­nicotino­hydrazidato}molybdenum(VI)

aSchool of Chemistry, University of Hyderabad, Gachibowli, Hyderabad, Andhra Pradesh 500 046, India
*Correspondence e-mail: ch10ph07@uohyd.ernet.in

(Received 5 July 2013; accepted 10 July 2013; online 17 July 2013)

In the title complex, [Mo(C16H13N3O2)O2(CH3OH)], the deprotonated Schiff base (E)-N′-[(Z)-4-oxido-4-phenyl­but-3-en-2-yl­idene]isonicotinohydrazide coordinates in a meridional fashion through the enolate O-, imine N- and amidate O-atom donors to the Mo atom of a cis-[MoO2]2+ core. The sixth coordination site of molybdenum is occupied by the O atom of a methanol mol­ecule. In this complex, the NO5 coordination sphere adopts a distorted octa­hedral coordination geometry. The metal atom is shifted by 0.335 (1) Å from the square plane defined by the three donor atoms of the Schiff base ligand and one oxide group towards the second oxide group in the cis position. In the crystal, the complex forms inversion dimers through a pair of O—H⋯N hydrogen bonds involving the methanol –OH group and the pyridine N atom. Additional C—H⋯O contacts stack the mol­ecules along the b axis.

Related literature

For the coordination chemistry of molybdenum, see: Arzoumanian (1998[Arzoumanian, H. (1998). Coord. Chem. Rev. 191, 178-180.]). For ligand-exchange reactions of molybdenum complexes, see: Chakravarthy & Chand (2011[Chakravarthy, R. D. & Chand, D. K. (2011). J. Chem. Sci. 123, 187-199.]). For the preparation of the Schiff base, see: El-Bahnasawy & El-Meleigy (1993[El-Bahnasawy, R. & El-Meleigy, S. (1993). Transition Met. Chem. 18, 505-509.]). For a similar type of complex, see: Jin & Li (2012[Jin, N. Y. & Li, W.-H. (2012). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 42, 1167-1171.]). For related structures and hydrogen bonding, see: Kurapati et al. (2012[Kurapati, S. K., Ugandhar, U., Maloth, S. & Pal, S. (2012). Polyhedron, 42, 161-167.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C16H13N3O2)O2(CH4O)]

  • Mr = 439.28

  • Monoclinic, P 21 /n

  • a = 14.3222 (9) Å

  • b = 8.4083 (5) Å

  • c = 16.0102 (10) Å

  • β = 113.507 (1)°

  • V = 1768.03 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 298 K

  • 0.24 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.836, Tmax = 0.927

  • 17656 measured reflections

  • 3474 independent reflections

  • 3249 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.070

  • S = 1.07

  • 3474 reflections

  • 239 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N3i 0.88 (2) 1.84 (2) 2.695 (2) 167 (4)
C1—H1C⋯O2ii 0.96 2.63 3.554 (3) 162
C3—H3⋯O2ii 0.93 2.60 3.492 (2) 160
C14—H14⋯O1iii 0.93 2.57 3.134 (3) 119
C8—H8⋯O1iv 0.93 2.69 3.574 (3) 159
C7—H7⋯O5v 0.93 2.60 3.473 (3) 157
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+2, -y+2, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of cis-dioxomolybdenum complexes has acquired significant interest due to their catalytic ability in various organic oxidation reactions (Arzoumanian, 1998). The title complex described here was synthesized as part of our investigation into ligand exchange reactions of [MoO2(acac)2] with various Schiff-bases derived from acid hydrazides (Chakravarthy & Chand, 2011). In the present work we have used the Schiff base (E)-N'-((Z)-4-hydroxy-4-phenylphenylbut-3-en-2-ylidene)isonicotinohydrazide. In the title complex, the doubly deprotonated Schiff-base is coordinated to the molybdenum atom of a cis-[MoO2]+2 core, in a meridional fashion. The distorted octahedral NO5 coordination sphere around the molybdenum atom comprises two cis oxo groups, the ONO donor atoms of the pincer like Schiff base ligand and the O-atom of a neutral methanol molecule. The shortening of the Mo1—O1, 1.6923 (17)Å, bond distance compared to Mo1—O2, 1.7010 (14)Å, is perhaps due to the shift of the molybdenum atom from the (ONO)O square plane made up of the donor atoms of the deprotonated Schiff-base (O3,N1&O4) and O2. The Mo1 atom is displaced by 0.335 (1) Å towards O1. The Mo1–O5, 2.3649 (17) Å, and Mo1—N1, 2.2421 (16) Å, bonds are significantly longer than Mo1—O3, 1.9470 (13) Å, and Mo1—O4, 1.9951 (13) Å, which may be associated with the trans effect imposed by the two oxo groups. In the complex the Schiff-base is planar apart from the phenyl ring of benzoylacetone fragment which makes a dihedral angle of 36.93 (6)° with the best fit plane through the remaining non-hydrogen atoms of the Schiff base ligand.

In solid state, charge assisted intermolecular hydrogen bonding involving of methanol-OH (O5) and the pyridine-N (N3) (O—H···N) leads to formation of discrete dimeric units of the title complex (Fig.2). As a result of our investigation for other short contacts in the crystal lattice, we found five types of C—H···O contacts. In the C—H···O interactions, the H···A distances lie in the range 2.57–2.63 Å, Table 1 and together with the O—H···N hydrogen bond stack the molecules along the b axis.

Related literature top

For the coordination chemistry of molybdenum, see: Arzoumanian (1998). For ligand-exchange reactions of molybdenum complexes, see: Chakravarthy & Chand (2011). For the preparation of the Schiff base, see: El-Bahnasawy & El-Meleigy (1993). For a similar type of complex, see: Jin & Li (2012). For related structures and hydrogen bonding, see: Kurapati et al., (2012).

Experimental top

The Schiff-base was prepared according to a literature method (El-Bahnasawy & El-Meleigy, 1993). The title complex was prepared following our previously reported method (Kurapati et al., 2012). Solid [MoO2(acac)2] (0.1 mmol) was added to a hot methanol solution of the Schiff-base (0.1 mmol in 25 mL), and the mixture was heated on water bath for 30 minutes. The resulting bright red solution was slowly cooled to room temperature. After one day, red colored block shaped crystals were collected by filtration (Yield: 82%). One of the these crystals was used for the X-ray structural analysis.

Refinement top

All non-hydrogen atoms were refined using anisotropic thermal parameters. All hydrogen atoms bound to carbon were positioned geometrically and refined using a riding model. The H5 bound of the methanol OH group was located in a difference Fourier map and its coordinates were refined with Ueq = 1.5Ueq (O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title complex with 30% probability ellipsoids and atom-labelling scheme.
[Figure 2] Fig. 2. A hydrogen-bonded dimer formed through O–H···N hydrogen bonds.
[Figure 3] Fig. 3. Crystal packing in the title compound viewed along the b axis.
(Methanol-κO)-cis-dioxido{(4Z,N'E)-N'-[(Z)-4-oxido-4-phenylbut-3-en-2-ylidene]isonicotinohydrazidato}molybdenum(VI) top
Crystal data top
[Mo(C16H13N3O2)O2(CH4O)]F(000) = 888
Mr = 439.28Dx = 1.650 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6758 reflections
a = 14.3222 (9) Åθ = 2.4–26.0°
b = 8.4083 (5) ŵ = 0.78 mm1
c = 16.0102 (10) ÅT = 298 K
β = 113.507 (1)°Block, red
V = 1768.03 (19) Å30.24 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3474 independent reflections
Radiation source: fine-focus sealed tube3249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.836, Tmax = 0.927k = 1010
17656 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.6642P]
where P = (Fo2 + 2Fc2)/3
3474 reflections(Δ/σ)max = 0.002
239 parametersΔρmax = 0.31 e Å3
13 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Mo(C16H13N3O2)O2(CH4O)]V = 1768.03 (19) Å3
Mr = 439.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.3222 (9) ŵ = 0.78 mm1
b = 8.4083 (5) ÅT = 298 K
c = 16.0102 (10) Å0.24 × 0.14 × 0.10 mm
β = 113.507 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3474 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3249 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.927Rint = 0.026
17656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02613 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.31 e Å3
3474 reflectionsΔρmin = 0.60 e Å3
239 parameters
Special details top

Experimental. Selected IR data (cm-1): 3443 (νC—H), 1610 (νC=N), 935 and 906 (νcis-MoO2). UV-Vis data (λmax (nm) (103 x E (M-1 cm-1))): 445(5.019), 322(7.519), 272 (9.431). 1H NMR data (δ (p.p.m.) (J (Hz))): 2.507(s, 3H, H1), 6.114 (s, 1H, H3),7.737 (1.6)(d, 2H, H6&H10), 7.390(m, 3H, H7, H8&H9), 3.307 (s, 3H, H17), 7.856 (5.6) (d, 2H, H13&H16), 8.636(s, 2H, H15&H14) and 3.130 (sb, 1H, H5(Mo—OH—Me)).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.897513 (11)0.554260 (18)0.172801 (12)0.03495 (8)
O20.93687 (11)0.37519 (17)0.14943 (11)0.0500 (4)
O40.75394 (10)0.49574 (17)0.14826 (10)0.0395 (3)
O30.99506 (10)0.69615 (15)0.15438 (11)0.0437 (3)
O10.94126 (13)0.56206 (17)0.28773 (11)0.0506 (4)
N30.38179 (14)0.4684 (2)0.07876 (13)0.0473 (4)
C120.58263 (15)0.5609 (2)0.12426 (13)0.0362 (4)
C30.93455 (16)0.9600 (2)0.14600 (15)0.0390 (4)
H30.95171.06670.14620.047*
N10.80704 (11)0.78010 (18)0.14665 (11)0.0353 (3)
C41.00685 (14)0.8525 (2)0.15157 (13)0.0354 (4)
N20.70566 (12)0.7596 (2)0.13494 (11)0.0394 (4)
C110.68677 (14)0.6106 (2)0.13778 (13)0.0354 (4)
C20.83391 (16)0.9256 (2)0.13986 (14)0.0364 (4)
C71.2115 (2)1.0610 (3)0.10059 (17)0.0514 (6)
H71.21771.14540.06560.062*
C10.76117 (19)1.0617 (2)0.12404 (18)0.0496 (6)
H1B0.71141.05850.06240.074*
H1C0.79791.16030.13440.074*
H1A0.72771.05360.16520.074*
C51.10730 (14)0.8979 (2)0.15241 (13)0.0363 (4)
C150.40852 (16)0.6216 (3)0.08732 (17)0.0536 (6)
H150.35790.69760.07700.064*
C130.55630 (15)0.4022 (3)0.11850 (14)0.0414 (4)
H130.60550.32350.12960.050*
C61.11753 (17)1.0265 (3)0.10187 (15)0.0454 (5)
H61.06131.08920.06900.054*
C140.45571 (15)0.3623 (3)0.09603 (15)0.0473 (5)
H140.43880.25500.09280.057*
C101.19297 (16)0.8094 (3)0.20242 (14)0.0440 (5)
H101.18720.72310.23640.053*
C81.29577 (18)0.9716 (3)0.15064 (16)0.0495 (5)
H81.35860.99510.14930.059*
C91.28662 (16)0.8474 (3)0.20263 (16)0.0506 (5)
H91.34380.78880.23810.061*
C160.50678 (16)0.6730 (3)0.11063 (16)0.0509 (5)
H160.52220.78100.11720.061*
O50.81999 (11)0.57741 (18)0.01232 (11)0.0444 (3)
C170.8607 (2)0.5129 (4)0.0480 (2)0.0728 (8)
H17B0.81600.53700.10970.109*
H17A0.86700.39970.04020.109*
H17C0.92650.55850.03500.109*
H50.7536 (14)0.568 (4)0.010 (3)0.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02528 (11)0.02513 (11)0.05026 (13)0.00067 (5)0.01066 (8)0.00289 (6)
O20.0398 (8)0.0297 (7)0.0768 (11)0.0036 (6)0.0193 (7)0.0016 (7)
O40.0278 (7)0.0312 (7)0.0575 (9)0.0013 (6)0.0150 (6)0.0030 (6)
O30.0312 (7)0.0285 (7)0.0707 (10)0.0037 (5)0.0197 (7)0.0010 (6)
O10.0405 (9)0.0504 (10)0.0525 (9)0.0017 (6)0.0096 (7)0.0038 (6)
N30.0310 (9)0.0614 (12)0.0498 (10)0.0027 (8)0.0164 (8)0.0002 (8)
C120.0290 (10)0.0439 (11)0.0356 (10)0.0022 (7)0.0126 (8)0.0015 (7)
C30.0393 (11)0.0275 (10)0.0500 (12)0.0047 (7)0.0175 (9)0.0000 (8)
N10.0290 (7)0.0305 (8)0.0452 (9)0.0007 (6)0.0136 (7)0.0005 (7)
C40.0342 (10)0.0306 (9)0.0378 (9)0.0063 (7)0.0104 (8)0.0001 (7)
N20.0298 (8)0.0363 (9)0.0519 (9)0.0001 (7)0.0163 (7)0.0013 (7)
C110.0293 (9)0.0371 (10)0.0387 (10)0.0006 (8)0.0121 (8)0.0001 (8)
C20.0381 (11)0.0298 (9)0.0395 (10)0.0017 (7)0.0137 (8)0.0000 (7)
C70.0553 (15)0.0464 (13)0.0554 (14)0.0179 (10)0.0251 (12)0.0006 (9)
C10.0479 (13)0.0327 (11)0.0701 (15)0.0065 (8)0.0256 (12)0.0025 (9)
C50.0350 (10)0.0334 (9)0.0385 (10)0.0072 (8)0.0126 (8)0.0039 (8)
C150.0347 (11)0.0589 (15)0.0702 (15)0.0054 (10)0.0243 (11)0.0083 (12)
C130.0307 (10)0.0430 (11)0.0480 (11)0.0020 (8)0.0131 (8)0.0081 (9)
C60.0424 (11)0.0399 (11)0.0491 (12)0.0078 (9)0.0132 (9)0.0037 (9)
C140.0333 (10)0.0481 (12)0.0563 (12)0.0049 (9)0.0133 (9)0.0085 (10)
C100.0404 (11)0.0413 (11)0.0501 (11)0.0013 (9)0.0179 (9)0.0056 (9)
C80.0420 (12)0.0544 (13)0.0581 (14)0.0165 (10)0.0263 (11)0.0135 (10)
C90.0374 (11)0.0542 (13)0.0581 (13)0.0001 (9)0.0170 (10)0.0020 (10)
C160.0398 (11)0.0454 (12)0.0692 (14)0.0008 (9)0.0235 (10)0.0105 (11)
O50.0313 (7)0.0527 (9)0.0481 (8)0.0000 (6)0.0148 (7)0.0050 (6)
C170.0484 (15)0.110 (2)0.0628 (16)0.0138 (16)0.0250 (13)0.0120 (16)
Geometric parameters (Å, º) top
Mo1—O11.6920 (17)C7—H70.9300
Mo1—O21.7009 (14)C1—H1B0.9600
Mo1—O31.9471 (13)C1—H1C0.9600
Mo1—O41.9950 (13)C1—H1A0.9600
Mo1—N12.2422 (16)C5—C101.384 (3)
Mo1—O52.3656 (16)C5—C61.393 (3)
O4—C111.326 (2)C15—C161.374 (3)
O3—C41.328 (2)C15—H150.9300
N3—C141.327 (3)C13—C141.380 (3)
N3—C151.335 (3)C13—H130.9300
C12—C131.380 (3)C6—H60.9300
C12—C161.388 (3)C14—H140.9300
C12—C111.479 (3)C10—C91.377 (3)
C3—C41.350 (3)C10—H100.9300
C3—C21.435 (3)C8—C91.374 (3)
C3—H30.9300C8—H80.9300
N1—C21.300 (2)C9—H90.9300
N1—N21.399 (2)C16—H160.9300
C4—C51.483 (3)O5—C171.420 (3)
N2—C111.287 (3)O5—H50.875 (19)
C2—C11.500 (3)C17—H17B0.9600
C7—C81.376 (4)C17—H17A0.9600
C7—C61.385 (3)C17—H17C0.9600
O1—Mo1—O2105.20 (8)C2—C1—H1C109.5
O1—Mo1—O399.45 (7)H1B—C1—H1C109.5
O2—Mo1—O3100.85 (6)C2—C1—H1A109.5
O1—Mo1—O497.42 (7)H1B—C1—H1A109.5
O2—Mo1—O498.30 (6)H1C—C1—H1A109.5
O3—Mo1—O4150.09 (6)C10—C5—C6118.60 (18)
O1—Mo1—N196.08 (7)C10—C5—C4119.98 (18)
O2—Mo1—N1157.85 (7)C6—C5—C4121.40 (18)
O3—Mo1—N181.31 (5)N3—C15—C16123.5 (2)
O4—Mo1—N172.46 (6)N3—C15—H15118.2
O1—Mo1—O5171.01 (7)C16—C15—H15118.2
O2—Mo1—O583.52 (7)C12—C13—C14118.8 (2)
O3—Mo1—O580.76 (6)C12—C13—H13120.6
O4—Mo1—O578.81 (6)C14—C13—H13120.6
N1—Mo1—O575.02 (6)C7—C6—C5120.0 (2)
C11—O4—Mo1118.97 (12)C7—C6—H6120.0
C4—O3—Mo1136.06 (13)C5—C6—H6120.0
C14—N3—C15117.08 (19)N3—C14—C13123.6 (2)
C13—C12—C16118.05 (19)N3—C14—H14118.2
C13—C12—C11121.02 (18)C13—C14—H14118.2
C16—C12—C11120.77 (18)C9—C10—C5121.0 (2)
C4—C3—C2126.36 (17)C9—C10—H10119.5
C4—C3—H3116.8C5—C10—H10119.5
C2—C3—H3116.8C9—C8—C7119.6 (2)
C2—N1—N2115.50 (16)C9—C8—H8120.2
C2—N1—Mo1130.12 (13)C7—C8—H8120.2
N2—N1—Mo1114.37 (11)C8—C9—C10120.2 (2)
O3—C4—C3124.06 (18)C8—C9—H9119.9
O3—C4—C5112.98 (17)C10—C9—H9119.9
C3—C4—C5122.94 (17)C15—C16—C12118.8 (2)
C11—N2—N1109.67 (15)C15—C16—H16120.6
N2—C11—O4124.17 (17)C12—C16—H16120.6
N2—C11—C12118.91 (17)C17—O5—Mo1124.42 (15)
O4—C11—C12116.85 (17)C17—O5—H5111 (3)
N1—C2—C3120.44 (17)Mo1—O5—H5113 (3)
N1—C2—C1121.57 (19)O5—C17—H17B109.5
C3—C2—C1117.98 (17)O5—C17—H17A109.5
C8—C7—C6120.6 (2)H17B—C17—H17A109.5
C8—C7—H7119.7O5—C17—H17C109.5
C6—C7—H7119.7H17B—C17—H17C109.5
C2—C1—H1B109.5H17A—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N3i0.88 (2)1.84 (2)2.695 (2)167 (4)
C1—H1C···O2ii0.962.633.554 (3)162
C3—H3···O2ii0.932.603.492 (2)160
C14—H14···O1iii0.932.573.134 (3)119
C8—H8···O1iv0.932.693.574 (3)159
C7—H7···O5v0.932.603.473 (3)157
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+5/2, y+1/2, z+1/2; (v) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N3i0.875 (19)1.84 (2)2.695 (2)167 (4)
C1—H1C···O2ii0.962.633.554 (3)162
C3—H3···O2ii0.932.603.492 (2)160
C14—H14···O1iii0.932.573.134 (3)119
C8—H8···O1iv0.932.693.574 (3)159
C7—H7···O5v0.932.603.473 (3)157
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+5/2, y+1/2, z+1/2; (v) x+2, y+2, z.
 

Acknowledgements

I thank Professor Samudranil Pal, School of Chemistry, University of Hyderabad, for his guidance and encouragement throughout this work. The National X-ray Diffractometer facility set up at the University of Hyderabad by the Department of Science and Technology, Government of India, is gratefully acknowledged. I also thank the CSIR, New Delhi, India for providing a research fellowship.

References

First citationArzoumanian, H. (1998). Coord. Chem. Rev. 191, 178–180.  Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakravarthy, R. D. & Chand, D. K. (2011). J. Chem. Sci. 123, 187–199.  CrossRef CAS Google Scholar
First citationEl-Bahnasawy, R. & El-Meleigy, S. (1993). Transition Met. Chem. 18, 505–509.  CAS Google Scholar
First citationJin, N. Y. & Li, W.-H. (2012). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 42, 1167–1171.  Web of Science CrossRef CAS Google Scholar
First citationKurapati, S. K., Ugandhar, U., Maloth, S. & Pal, S. (2012). Polyhedron, 42, 161–167.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m460-m461
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds