metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m469-m470

Di­ammonium tetra­kis­(iso­thio­cyanato)­zincate–1,4,10,13,16-hexa­oxa­cyclo­octa­deca­ne–water (1/2/1)

aResearch and Development Centre, Bharathiyar University, Coimbatore 641 046, India, bDepartment of Physics, Rajeswari Vedachalam Government Arts College, Chengalpet 603 001, India, and cDepartment of Physics, The New College (Autonomous), Chennai 600 014, India
*Correspondence e-mail: drkrr2007@gmail.com, mnizam_new@yahoo.in

(Received 24 June 2013; accepted 16 July 2013; online 24 July 2013)

The title compound, (NH4)2[Zn(NCS)4]·2C12H24O6·H2O, the result of the reaction of ammonium thio­cyanate, 18-crown-6 and zinc(II) chloride in aqueous solution, exhibits an unusual supra­molecular structure. The Zn atom, two of the thio­cyanate chains and a water mol­ecule, disordered over two positions, lie on a mirror plane. The macrocycle adopts a conformation with approximate D3d symmetry. The ammonium mol­ecules are contained within the bowl of the macrocycle via extensive N—H⋯O hydrogen bonds and the complex mol­ecules are linked via N—H⋯S hydrogen bonds, forming chains along the c-axis direction. The macrocycle is disordered over two positions [refined occupancy ratio = 0.666 (8):0.334 (8)]. The S atoms of two iso­thio­cyanate ligands are disordered within and about the mirror plane.

Related literature

For background to crown ether/ammonium ion complexes, see: Fender et al. (2002[Fender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286-293.]); Kryatova et al. (2004[Kryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579-4588.]); Akutagawa et al. (2002[Akutagawa, T., Hashimoto, A., Nishihara, S., Hasegawa, T. & Nakamura, T. (2002). J. Supramol. Chem. 2, 175-186.]); Ramesh et al. (2012[Ramesh, V., Rajarajan, K., Kumar, K. S., Subashini, A. & NizamMohideen, M. (2012). Acta Cryst. E68, m335-m336.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)2[Zn(NCS)4]·2C12H24O6·H2O

  • Mr = 880.41

  • Orthorhombic, P n m a

  • a = 22.7875 (12) Å

  • b = 23.6254 (12) Å

  • c = 8.5593 (5) Å

  • V = 4608.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.802, Tmax = 0.861

  • 24101 measured reflections

  • 4641 independent reflections

  • 2467 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.175

  • S = 1.00

  • 4641 reflections

  • 454 parameters

  • 276 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4H⋯O1 0.88 (1) 2.44 (4) 3.069 (8) 129 (4)
N4—H4E⋯O2 0.87 (1) 2.06 (1) 2.934 (8) 176 (5)
N4—H4G⋯O4 0.88 (1) 1.97 (2) 2.829 (7) 166 (4)
N4—H4G⋯O5 0.88 (1) 2.53 (4) 3.010 (8) 115 (3)
N4—H4H⋯O6 0.88 (1) 2.05 (3) 2.850 (8) 150 (5)
N4—H4F⋯S1i 0.87 (1) 2.63 (2) 3.441 (4) 156 (4)
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There is currently significant interest in crown ethers because of their ability to form non-covalent, hydrogen bonding complexes with ammonium cations both in the solid state and in solution (Fender et al., 2002; Kryatova et al., 2004; Akutagawa et al., 2002). Recently, the crystal structure of catena-Poly[ammonium(cadmium-tri-lthiocyanato κ4S:N; κ2N:S) -1,4,10,13,16- hexaoxacyclooctadecane (1/1)] (I), obtained in our laboratory, has been reported (Ramesh et al., 2012). In continuation of our studies of compounds containing 18-crown-6 macrocycles and ammonium cations NH4+, we describe herein the crystal structure of the title compound (II), which is isostructural with (I).

The reaction of ammonium thiocyanate, 18-crown-6 and Zinc (II) chloride in aqueous solution yields the title compound, Fig. 1. All bond lengths and angles are normal and correspond to those reported for (I) (Ramesh et al., 2012). The C—S [average value of 1.658 (2) Å] and C—N [average value of 1.116 (2) Å] bond lengths indicate the presence of double-bond character. The zinc atom, Zn1, two of the thiocyanate chains [N2—C2—S2 and N3—C3—S3; symmetry code: x, -y + 1/2, z] and the water molecule lie in a mirror plane, except one of the disordered component sulfur atoms, which is inclined at quite an angle to the ac plane. The thiocyanate (N1—C1—S1 = 178.2 (4) °) ligands are almost linear.

The macrocycle adopts a conformation with approximate D3d symmetry, with all O—C—C—O torsion angles being gauche and alternating in sign, and all C—O—C—C torsion angles being anti.

The sulfur atoms (S2 and S3) of the thiocyanate chains are disordered with large displacement parameters for the S atoms and short C—S bond lengths. The disorder over two positions was modelled and the site occupancies refined to 0.39 (9) and 0.61 (9) for atom S2 and 0.376 (9) and 0.248 (18) for atom S3. The entire crown either molecule is disordered, as detectable from the large displacement parameters for C and O atoms and short C—C and C—O bond lengths. The disorder over two positions was modelled and the site occupancies refined to 0.666 (9) and 0.334 (9) for carbon and oxygen atoms. The water molecule is disordered, as detectable from the large displacement parameters for the O atoms. The disorder over two positions was modelled and the site occupancies refined to 0.425 (15) and 0.575 (15). for carbon and oxygen atoms. The geometry was regularized by soft restraints.

The ammonium cations are contained within the bowl of the macrocycle via extensive N—H···O hydrogen bonding. The N—H···O [2.830 (7) to 3.074 (7) Å] and N—H···S [3.442 (4) Å] hydrogen bond lengths are within the usual range (Table 1 and Fig. 2).

In the crystal, the complex molecules are linked via N—H···S hydrogen bonds forming chains along the c axis (Table 1 and Fig. 2).

Related literature top

For background to crown ether/ammonium ion complexes, see: Fender et al. (2002); Kryatova et al. (2004); Akutagawa et al. (2002); Ramesh et al. (2012).

Experimental top

A mixture of 18-crown-6, ammonium thiocyanate and Zinc (II) chloride were dissolved in an aqueous solution in the molar ratio 2:4:1 and thoroughly mixed for two hours to obtain a homogeneous mixture. The solution was allowed to evaporate slowly at ambient temperature. Colourless single crystals suitable for single-crystal X-ray diffraction analysis were obtained in a week.

Refinement top

The sulfur atoms (S2 and S3) of the thiocyanate chain are disordered over two positions with refined occupancies of 0.39 (9) and 0.61 (9) for atom S2, and 0.376 (9) and 0.248 (18) for atom S3. The entire crown either molecule is disordered over two positions with refined occupancies of 0.666 (9) and 0.334 (9). The water molecule is disordered over two positions with refined occupancies of 0.425 (15) and 0.575 (15). The corresponding bond distances involving the disordered atoms were restrained to be equal.

The N-bound H (N—H = 0.87 Å) atoms was located in difference map and refined in the riding mode approximation. C-bound H-atoms were placed in calculated positions [C—H 0.97 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The water H-atom, whose O atom lies on a mirror plane, was similar treated [O—H 0.61–0.90 Å].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (a) x, -y+1/2, z; the disordered fraction is shown with dashed bonds and atom labels with prefix '].
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
Diammonium tetrakis(isothiocyanato)zincate–1,4,10,13,16-hexaoxacyclooctadecane–water (1/2/1) top
Crystal data top
(NH4)2[Zn(NCS)4]·2C12H24O6·H2OF(000) = 1864
Mr = 880.41Dx = 1.269 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5119 reflections
a = 22.7875 (12) Åθ = 2.6–26.7°
b = 23.6254 (12) ŵ = 0.77 mm1
c = 8.5593 (5) ÅT = 293 K
V = 4608.0 (4) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4641 independent reflections
Radiation source: fine-focus sealed tube2467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω and ϕ scanθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2428
Tmin = 0.802, Tmax = 0.861k = 1929
24101 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0932P)2 + 0.2607P]
where P = (Fo2 + 2Fc2)/3
4641 reflections(Δ/σ)max = 0.001
454 parametersΔρmax = 0.72 e Å3
276 restraintsΔρmin = 0.24 e Å3
Crystal data top
(NH4)2[Zn(NCS)4]·2C12H24O6·H2OV = 4608.0 (4) Å3
Mr = 880.41Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 22.7875 (12) ŵ = 0.77 mm1
b = 23.6254 (12) ÅT = 293 K
c = 8.5593 (5) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2467 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.861Rint = 0.058
24101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052276 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.72 e Å3
4641 reflectionsΔρmin = 0.24 e Å3
454 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.51074 (15)0.13492 (16)0.9699 (5)0.0534 (10)
C20.6728 (3)0.25000.7518 (7)0.0668 (16)
C30.4978 (4)0.25000.4932 (11)0.094 (2)
O10.6093 (3)0.0412 (3)0.5640 (8)0.086 (2)0.666 (8)
O20.6025 (4)0.0710 (3)0.4650 (8)0.082 (2)0.666 (8)
O30.6681 (3)0.1007 (3)0.1940 (9)0.079 (2)0.666 (8)
O40.6950 (3)0.0163 (3)0.0249 (8)0.0798 (19)0.666 (8)
O50.6998 (3)0.0974 (4)0.0798 (7)0.083 (2)0.666 (8)
O60.6318 (3)0.1232 (3)0.3415 (9)0.092 (2)0.666 (8)
C40.6209 (4)0.1375 (4)0.4993 (11)0.103 (3)0.666 (8)
H4A0.60250.17440.50530.124*0.666 (8)
H4B0.65760.13880.55670.124*0.666 (8)
C50.5811 (4)0.0935 (4)0.5696 (12)0.106 (3)0.666 (8)
H5A0.57210.10340.67700.127*0.666 (8)
H5B0.54460.09180.51150.127*0.666 (8)
C60.5761 (5)0.0013 (5)0.6449 (14)0.097 (4)0.666 (8)
H6A0.53630.00070.60460.116*0.666 (8)
H6B0.57450.01100.75490.116*0.666 (8)
C70.6040 (4)0.0556 (5)0.6243 (9)0.102 (3)0.666 (8)
H7A0.64430.05440.66030.122*0.666 (8)
H7B0.58310.08350.68590.122*0.666 (8)
C80.6256 (5)0.1260 (4)0.4391 (12)0.103 (3)0.666 (8)
H8A0.60090.15390.48980.123*0.666 (8)
H8B0.66460.12860.48400.123*0.666 (8)
C90.6284 (4)0.1378 (4)0.2670 (12)0.094 (3)0.666 (8)
H9A0.64070.17660.25000.113*0.666 (8)
H9B0.58970.13310.22140.113*0.666 (8)
C100.6751 (5)0.1127 (5)0.0337 (12)0.093 (4)0.666 (8)
H10A0.63770.10930.01990.111*0.666 (8)
H10B0.68950.15100.01980.111*0.666 (8)
C110.7185 (4)0.0709 (4)0.0321 (10)0.091 (3)0.666 (8)
H11A0.75470.07240.02730.109*0.666 (8)
H11B0.72730.08050.13970.109*0.666 (8)
C120.7343 (5)0.0238 (5)0.0886 (15)0.094 (4)0.666 (8)
H12A0.74260.01480.19690.113*0.666 (8)
H12B0.77090.02370.03080.113*0.666 (8)
C130.7052 (4)0.0806 (5)0.0767 (10)0.098 (3)0.666 (8)
H13A0.72820.10840.13330.118*0.666 (8)
H13B0.66660.07880.12410.118*0.666 (8)
C140.6687 (5)0.1489 (5)0.0924 (14)0.107 (4)0.666 (8)
H14A0.62960.14470.04880.129*0.666 (8)
H14B0.68890.17850.03510.129*0.666 (8)
C150.6647 (5)0.1645 (4)0.2617 (13)0.107 (3)0.666 (8)
H15A0.70380.16690.30620.128*0.666 (8)
H15B0.64600.20120.27260.128*0.666 (8)
O1'0.6101 (6)0.0748 (7)0.5055 (18)0.095 (4)0.334 (8)
O2'0.5880 (8)0.0418 (7)0.489 (2)0.094 (4)0.334 (8)
O3'0.6481 (6)0.1061 (6)0.2641 (16)0.073 (4)0.334 (8)
O4'0.6913 (5)0.0500 (6)0.0013 (14)0.062 (3)0.334 (8)
O5'0.7128 (6)0.0659 (6)0.0284 (19)0.082 (4)0.334 (8)
O6'0.6437 (7)0.1284 (6)0.2342 (19)0.103 (5)0.334 (8)
C4'0.6350 (10)0.1591 (9)0.373 (2)0.115 (6)0.334 (8)
H4'10.62230.19740.34950.138*0.334 (8)
H4'20.67140.16130.43190.138*0.334 (8)
C5'0.5891 (10)0.1293 (8)0.468 (3)0.118 (7)0.334 (8)
H5'10.58090.15040.56230.142*0.334 (8)
H5'20.55310.12630.40790.142*0.334 (8)
C6'0.5720 (9)0.0449 (9)0.604 (2)0.103 (6)0.334 (8)
H6'10.53340.04320.55630.124*0.334 (8)
H6'20.56830.06490.70240.124*0.334 (8)
C7'0.5935 (12)0.0141 (10)0.634 (2)0.098 (7)0.334 (8)
H7'10.63400.01370.66860.118*0.334 (8)
H7'20.56970.03260.71320.118*0.334 (8)
C8'0.6053 (10)0.0980 (7)0.513 (2)0.094 (6)0.334 (8)
H8'10.57870.11590.58650.113*0.334 (8)
H8'20.64440.09870.55860.113*0.334 (8)
C9'0.6055 (9)0.1305 (8)0.363 (2)0.093 (6)0.334 (8)
H9'10.61480.16990.38220.112*0.334 (8)
H9'20.56710.12850.31390.112*0.334 (8)
C10'0.6499 (6)0.1330 (6)0.1179 (19)0.071 (4)0.334 (8)
H10C0.61340.12670.06210.085*0.334 (8)
H10D0.65530.17350.13120.085*0.334 (8)
C11'0.7003 (6)0.1085 (6)0.028 (3)0.058 (4)0.334 (8)
H11C0.73650.11390.08580.070*0.334 (8)
H11D0.70410.12790.07160.070*0.334 (8)
C12'0.7390 (6)0.0224 (7)0.0687 (18)0.080 (4)0.334 (8)
H12C0.75140.04310.16080.096*0.334 (8)
H12D0.77170.02090.00380.096*0.334 (8)
C13'0.7211 (12)0.0367 (9)0.114 (2)0.082 (6)0.334 (8)
H13C0.75150.05470.17550.098*0.334 (8)
H13D0.68500.03620.17380.098*0.334 (8)
C14'0.6902 (10)0.1195 (6)0.007 (3)0.105 (6)0.334 (8)
H14C0.65210.11520.05630.125*0.334 (8)
H14D0.71600.13820.08090.125*0.334 (8)
C15'0.6838 (11)0.1560 (10)0.135 (3)0.105 (7)0.334 (8)
H15C0.72130.16050.18710.127*0.334 (8)
H15D0.66920.19320.10670.127*0.334 (8)
N10.52011 (15)0.18067 (14)0.9297 (4)0.0703 (10)
N20.6247 (3)0.25000.7865 (7)0.0768 (16)
N30.5010 (3)0.25000.6166 (7)0.0796 (16)
N40.61488 (17)0.01292 (18)0.2144 (5)0.0594 (9)
S10.49673 (5)0.07035 (4)1.02060 (15)0.0704 (4)
S20.7443 (4)0.25000.740 (7)0.100 (6)0.39 (9)
S2A0.7397 (6)0.25000.684 (5)0.098 (5)0.61 (9)
S30.5017 (4)0.2703 (4)0.3036 (5)0.138 (3)0.376 (9)
S3A0.4660 (14)0.25000.3119 (17)0.161 (7)0.248 (18)
Zn10.54016 (3)0.25000.82110 (8)0.0587 (3)
O1W0.3179 (18)0.25000.361 (5)0.328 (15)0.425 (15)
O2W0.3443 (14)0.25000.199 (3)0.328 (15)0.575 (15)
H1W0.31 (2)0.25000.258 (11)0.492*0.425 (15)
H2W0.289 (15)0.25000.43 (4)0.492*0.425 (15)
H3W0.327 (15)0.25000.29 (2)0.492*0.575 (15)
H4W0.384 (3)0.25000.19 (5)0.492*0.575 (15)
H4E0.609 (2)0.0122 (17)0.288 (4)0.11 (2)*
H4F0.5826 (12)0.016 (2)0.160 (5)0.099 (18)*
H4G0.6438 (14)0.0081 (19)0.148 (4)0.097 (17)*
H4H0.624 (2)0.0393 (16)0.282 (5)0.11 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (2)0.053 (2)0.059 (3)0.0033 (18)0.0027 (18)0.004 (2)
C20.089 (5)0.043 (3)0.069 (4)0.0000.003 (4)0.000
C30.110 (6)0.090 (5)0.083 (6)0.0000.001 (5)0.000
O10.080 (4)0.112 (5)0.067 (4)0.007 (4)0.016 (3)0.017 (4)
O20.097 (5)0.083 (5)0.065 (4)0.013 (4)0.009 (3)0.026 (4)
O30.085 (5)0.073 (4)0.081 (5)0.002 (3)0.018 (4)0.011 (4)
O40.061 (4)0.113 (5)0.065 (4)0.007 (4)0.013 (3)0.003 (4)
O50.082 (4)0.087 (5)0.080 (5)0.003 (4)0.014 (3)0.031 (4)
O60.110 (4)0.070 (4)0.097 (6)0.012 (3)0.008 (4)0.008 (4)
C40.108 (7)0.098 (7)0.102 (7)0.038 (6)0.010 (6)0.047 (6)
C50.094 (6)0.137 (8)0.086 (7)0.031 (7)0.011 (5)0.042 (7)
C60.096 (8)0.139 (10)0.056 (6)0.014 (7)0.023 (5)0.013 (6)
C70.114 (6)0.133 (8)0.059 (6)0.031 (6)0.004 (5)0.023 (6)
C80.120 (8)0.084 (6)0.105 (8)0.019 (6)0.026 (6)0.030 (6)
C90.105 (7)0.057 (5)0.119 (9)0.002 (5)0.032 (6)0.006 (6)
C100.092 (9)0.089 (7)0.097 (7)0.030 (6)0.022 (7)0.033 (6)
C110.078 (6)0.131 (9)0.063 (5)0.038 (7)0.002 (5)0.034 (6)
C120.061 (6)0.155 (10)0.068 (7)0.007 (6)0.017 (5)0.000 (8)
C130.085 (6)0.138 (9)0.072 (6)0.023 (6)0.007 (5)0.022 (7)
C140.122 (7)0.075 (7)0.124 (9)0.010 (6)0.040 (7)0.036 (7)
C150.129 (7)0.058 (5)0.133 (9)0.009 (5)0.017 (7)0.012 (6)
O1'0.087 (7)0.101 (10)0.097 (10)0.023 (8)0.017 (7)0.039 (8)
O2'0.098 (9)0.108 (11)0.075 (8)0.022 (8)0.004 (7)0.019 (8)
O3'0.072 (8)0.053 (6)0.094 (10)0.012 (6)0.007 (6)0.004 (7)
O4'0.047 (6)0.076 (8)0.063 (7)0.009 (6)0.018 (5)0.014 (7)
O5'0.086 (8)0.095 (9)0.066 (8)0.023 (7)0.022 (7)0.027 (8)
O6'0.123 (10)0.056 (7)0.129 (14)0.007 (6)0.046 (9)0.009 (8)
C4'0.141 (13)0.061 (10)0.143 (16)0.026 (10)0.024 (12)0.034 (11)
C5'0.112 (12)0.095 (11)0.147 (15)0.034 (11)0.015 (12)0.051 (11)
C6'0.106 (12)0.123 (14)0.081 (11)0.001 (12)0.026 (10)0.014 (11)
C7'0.102 (13)0.123 (14)0.070 (12)0.014 (12)0.020 (10)0.002 (12)
C8'0.104 (11)0.094 (12)0.084 (12)0.036 (10)0.006 (10)0.031 (10)
C9'0.113 (12)0.075 (10)0.091 (13)0.040 (9)0.017 (10)0.024 (10)
C10'0.063 (8)0.051 (7)0.099 (11)0.007 (6)0.011 (8)0.016 (8)
C11'0.044 (9)0.058 (8)0.074 (9)0.003 (7)0.007 (7)0.024 (7)
C12'0.087 (10)0.102 (11)0.052 (9)0.019 (9)0.017 (7)0.023 (9)
C13'0.083 (12)0.114 (13)0.049 (10)0.023 (11)0.004 (9)0.022 (9)
C14'0.124 (12)0.084 (11)0.106 (13)0.024 (10)0.035 (11)0.035 (11)
C15'0.140 (13)0.057 (9)0.120 (16)0.020 (10)0.046 (12)0.011 (10)
N10.087 (2)0.0477 (19)0.076 (3)0.0038 (17)0.0057 (19)0.0091 (19)
N20.069 (3)0.063 (3)0.099 (5)0.0000.015 (3)0.000
N30.110 (5)0.068 (3)0.060 (4)0.0000.009 (4)0.000
N40.061 (3)0.067 (2)0.051 (3)0.007 (2)0.001 (2)0.002 (2)
S10.0688 (7)0.0521 (6)0.0903 (9)0.0072 (5)0.0075 (6)0.0253 (6)
S20.080 (5)0.099 (5)0.121 (17)0.0000.029 (5)0.000
S2A0.070 (3)0.104 (3)0.121 (12)0.0000.025 (4)0.000
S30.149 (6)0.198 (9)0.067 (3)0.007 (4)0.005 (3)0.016 (3)
S3A0.234 (17)0.175 (14)0.076 (7)0.0000.019 (11)0.000
Zn10.0725 (5)0.0362 (3)0.0674 (5)0.0000.0085 (4)0.000
O1W0.39 (3)0.34 (2)0.25 (3)0.0000.20 (3)0.000
O2W0.39 (3)0.34 (2)0.25 (3)0.0000.20 (3)0.000
Geometric parameters (Å, º) top
C1—N11.154 (4)O2'—C7'1.410 (10)
C1—S11.618 (4)O3'—C10'1.405 (10)
C2—N21.136 (7)O3'—C9'1.410 (10)
C2—S2A1.631 (9)O4'—C12'1.403 (9)
C2—S21.632 (10)O4'—C11'1.414 (10)
C3—N31.058 (8)O5'—C14'1.403 (10)
C3—S3i1.695 (10)O5'—C13'1.409 (10)
C3—S31.695 (10)O6'—C15'1.406 (10)
C3—S3A1.714 (12)O6'—C4'1.409 (10)
O1—C61.393 (9)C4'—C5'1.497 (10)
O1—C51.394 (8)C4'—H4'10.9700
O2—C71.411 (8)C4'—H4'20.9700
O2—C81.420 (8)C5'—H5'10.9700
O3—C91.406 (8)C5'—H5'20.9700
O3—C101.410 (8)C6'—C7'1.501 (10)
O4—C111.398 (7)C6'—H6'10.9700
O4—C121.411 (9)C6'—H6'20.9700
O5—C131.402 (8)C7'—H7'10.9700
O5—C141.413 (9)C7'—H7'20.9700
O6—C151.407 (8)C8'—C9'1.500 (10)
O6—C41.414 (8)C8'—H8'10.9700
C4—C51.504 (8)C8'—H8'20.9700
C4—H4A0.9700C9'—H9'10.9700
C4—H4B0.9700C9'—H9'20.9700
C5—H5A0.9700C10'—C11'1.500 (10)
C5—H5B0.9700C10'—H10C0.9700
C6—C71.499 (9)C10'—H10D0.9700
C6—H6A0.9700C11'—H11C0.9700
C6—H6B0.9700C11'—H11D0.9700
C7—H7A0.9700C12'—C13'1.506 (10)
C7—H7B0.9700C12'—H12C0.9700
C8—C91.501 (8)C12'—H12D0.9700
C8—H8A0.9700C13'—H13C0.9700
C8—H8B0.9700C13'—H13D0.9700
C9—H9A0.9700C14'—C15'1.499 (10)
C9—H9B0.9700C14'—H14C0.9700
C10—C111.507 (8)C14'—H14D0.9700
C10—H10A0.9700C15'—H15C0.9700
C10—H10B0.9700C15'—H15D0.9700
C11—H11A0.9700N1—Zn11.938 (3)
C11—H11B0.9700N2—Zn11.948 (6)
C12—C131.501 (8)N3—Zn11.964 (7)
C12—H12A0.9700N4—H4E0.873 (10)
C12—H12B0.9700N4—H4F0.874 (10)
C13—H13A0.9700N4—H4G0.878 (10)
C13—H13B0.9700N4—H4H0.878 (10)
C14—C151.497 (9)S3—S3i0.957 (17)
C14—H14A0.9700Zn1—N1i1.938 (3)
C14—H14B0.9700O1W—H1W0.900 (11)
C15—H15A0.9700O1W—H2W0.899 (10)
C15—H15B0.9700O1W—H3W0.61 (7)
O1'—C6'1.401 (10)O2W—H1W0.9 (5)
O1'—C5'1.411 (10)O2W—H3W0.900 (10)
O2'—C8'1.401 (10)O2W—H4W0.898 (11)
N1—C1—S1178.1 (4)O6'—C4'—H4'1110.1
N2—C2—S2A174.3 (16)C5'—C4'—H4'1110.1
N2—C2—S2168 (2)O6'—C4'—H4'2110.1
N3—C3—S3i162.2 (5)C5'—C4'—H4'2110.1
N3—C3—S3162.2 (5)H4'1—C4'—H4'2108.4
N3—C3—S3A158.9 (13)O1'—C5'—C4'108.5 (17)
C6—O1—C5109.4 (8)O1'—C5'—H5'1110.0
C7—O2—C8112.2 (8)C4'—C5'—H5'1110.0
C9—O3—C10112.3 (7)O1'—C5'—H5'2110.0
C11—O4—C12111.0 (8)C4'—C5'—H5'2110.0
C13—O5—C14111.2 (9)H5'1—C5'—H5'2108.4
C15—O6—C4113.1 (9)O1'—C6'—C7'112 (2)
O6—C4—C5108.9 (7)O1'—C6'—H6'1109.3
O6—C4—H4A109.9C7'—C6'—H6'1109.3
C5—C4—H4A109.9O1'—C6'—H6'2109.3
O6—C4—H4B109.9C7'—C6'—H6'2109.3
C5—C4—H4B109.9H6'1—C6'—H6'2108.0
H4A—C4—H4B108.3O2'—C7'—C6'104.5 (18)
O1—C5—C4108.7 (9)O2'—C7'—H7'1110.8
O1—C5—H5A110.0C6'—C7'—H7'1110.8
C4—C5—H5A110.0O2'—C7'—H7'2110.8
O1—C5—H5B110.0C6'—C7'—H7'2110.8
C4—C5—H5B110.0H7'1—C7'—H7'2108.9
H5A—C5—H5B108.3O2'—C8'—C9'110.9 (17)
O1—C6—C7108.6 (8)O2'—C8'—H8'1109.5
O1—C6—H6A110.0C9'—C8'—H8'1109.5
C7—C6—H6A110.0O2'—C8'—H8'2109.5
O1—C6—H6B110.0C9'—C8'—H8'2109.5
C7—C6—H6B110.0H8'1—C8'—H8'2108.0
H6A—C6—H6B108.4O3'—C9'—C8'107.9 (14)
O2—C7—C6109.5 (9)O3'—C9'—H9'1110.1
O2—C7—H7A109.8C8'—C9'—H9'1110.1
C6—C7—H7A109.8O3'—C9'—H9'2110.1
O2—C7—H7B109.8C8'—C9'—H9'2110.1
C6—C7—H7B109.8H9'1—C9'—H9'2108.4
H7A—C7—H7B108.2O3'—C10'—C11'107.8 (15)
O2—C8—C9109.8 (7)O3'—C10'—H10C110.1
O2—C8—H8A109.7C11'—C10'—H10C110.1
C9—C8—H8A109.7O3'—C10'—H10D110.1
O2—C8—H8B109.7C11'—C10'—H10D110.1
C9—C8—H8B109.7H10C—C10'—H10D108.5
H8A—C8—H8B108.2O4'—C11'—C10'110.3 (12)
O3—C9—C8110.4 (8)O4'—C11'—H11C109.6
O3—C9—H9A109.6C10'—C11'—H11C109.6
C8—C9—H9A109.6O4'—C11'—H11D109.6
O3—C9—H9B109.6C10'—C11'—H11D109.6
C8—C9—H9B109.6H11C—C11'—H11D108.1
H9A—C9—H9B108.1O4'—C12'—C13'109.3 (18)
O3—C10—C11107.8 (8)O4'—C12'—H12C109.8
O3—C10—H10A110.2C13'—C12'—H12C109.8
C11—C10—H10A110.2O4'—C12'—H12D109.8
O3—C10—H10B110.2C13'—C12'—H12D109.8
C11—C10—H10B110.2H12C—C12'—H12D108.3
H10A—C10—H10B108.5O5'—C13'—C12'105.6 (15)
O4—C11—C10109.8 (9)O5'—C13'—H13C110.6
O4—C11—H11A109.7C12'—C13'—H13C110.6
C10—C11—H11A109.7O5'—C13'—H13D110.6
O4—C11—H11B109.7C12'—C13'—H13D110.6
C10—C11—H11B109.7H13C—C13'—H13D108.8
H11A—C11—H11B108.2O5'—C14'—C15'112 (2)
O4—C12—C13107.1 (9)O5'—C14'—H14C109.1
O4—C12—H12A110.3C15'—C14'—H14C109.1
C13—C12—H12A110.3O5'—C14'—H14D109.1
O4—C12—H12B110.3C15'—C14'—H14D109.1
C13—C12—H12B110.3H14C—C14'—H14D107.9
H12A—C12—H12B108.6O6'—C15'—C14'106.6 (19)
O5—C13—C12110.9 (11)O6'—C15'—H15C110.4
O5—C13—H13A109.5C14'—C15'—H15C110.4
C12—C13—H13A109.5O6'—C15'—H15D110.4
O5—C13—H13B109.5C14'—C15'—H15D110.4
C12—C13—H13B109.5H15C—C15'—H15D108.6
H13A—C13—H13B108.0C1—N1—Zn1168.0 (4)
O5—C14—C15108.4 (9)C2—N2—Zn1173.6 (6)
O5—C14—H14A110.0C3—N3—Zn1157.0 (7)
C15—C14—H14A110.0H4E—N4—H4F109 (5)
O5—C14—H14B110.0H4E—N4—H4G119 (5)
C15—C14—H14B110.0H4F—N4—H4G107 (5)
H14A—C14—H14B108.4H4E—N4—H4H92 (5)
O6—C15—C14109.4 (11)H4F—N4—H4H120 (5)
O6—C15—H15A109.8H4G—N4—H4H110 (5)
C14—C15—H15A109.8S3i—S3—C373.6 (3)
O6—C15—H15B109.8N1—Zn1—N1i115.4 (2)
C14—C15—H15B109.8N1—Zn1—N2107.82 (13)
H15A—C15—H15B108.2N1i—Zn1—N2107.82 (13)
C6'—O1'—C5'112.8 (17)N1—Zn1—N3108.70 (13)
C8'—O2'—C7'106.5 (15)N1i—Zn1—N3108.70 (13)
C10'—O3'—C9'111.7 (14)N2—Zn1—N3108.2 (2)
C12'—O4'—C11'114.2 (14)H1W—O1W—H2W120 (2)
C14'—O5'—C13'107.7 (17)H2W—O1W—H3W152 (10)
C15'—O6'—C4'111.2 (18)H1W—O2W—H4W152 (10)
O6'—C4'—C5'108 (2)H3W—O2W—H4W121 (2)
C15—O6—C4—C5174.9 (8)O1'—C6'—C7'—O2'68 (3)
C6—O1—C5—C4173.1 (8)C7'—O2'—C8'—C9'175.8 (18)
O6—C4—C5—O161.5 (10)C10'—O3'—C9'—C8'178.1 (15)
C5—O1—C6—C7174.5 (8)O2'—C8'—C9'—O3'64 (2)
C8—O2—C7—C6176.9 (8)C9'—O3'—C10'—C11'174.2 (15)
O1—C6—C7—O263.5 (11)C12'—O4'—C11'—C10'174.0 (14)
C7—O2—C8—C9174.4 (8)O3'—C10'—C11'—O4'62.7 (18)
C10—O3—C9—C8176.1 (8)C11'—O4'—C12'—C13'171.2 (15)
O2—C8—C9—O364.5 (10)C14'—O5'—C13'—C12'174.0 (16)
C9—O3—C10—C11179.8 (8)O4'—C12'—C13'—O5'68 (2)
C12—O4—C11—C10178.8 (9)C13'—O5'—C14'—C15'175.8 (19)
O3—C10—C11—O465.3 (10)C4'—O6'—C15'—C14'179.3 (18)
C11—O4—C12—C13179.6 (8)O5'—C14'—C15'—O6'62 (2)
C14—O5—C13—C12175.7 (9)S3i—C3—N3—Zn167 (3)
O4—C12—C13—O567.7 (11)S3—C3—N3—Zn167 (3)
C13—O5—C14—C15179.8 (8)S3A—C3—N3—Zn1180.0
C4—O6—C15—C14174.1 (8)N3—C3—S3—S3i156 (3)
O5—C14—C15—O663.7 (11)S3A—C3—S3—S3i62.2 (12)
C15'—O6'—C4'—C5'176.4 (18)C1—N1—Zn1—N1i170.5 (15)
C6'—O1'—C5'—C4'175.5 (17)C1—N1—Zn1—N269.0 (17)
O6'—C4'—C5'—O1'62 (2)C1—N1—Zn1—N348.1 (17)
C5'—O1'—C6'—C7'176.4 (18)C3—N3—Zn1—N1116.85 (12)
C8'—O2'—C7'—C6'177.5 (18)C3—N3—Zn1—N1i116.85 (12)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4H···O10.88 (1)2.44 (4)3.069 (8)129 (4)
N4—H4E···O20.87 (1)2.06 (1)2.934 (8)176 (5)
N4—H4G···O40.88 (1)1.97 (2)2.829 (7)166 (4)
N4—H4G···O50.88 (1)2.53 (4)3.010 (8)115 (3)
N4—H4H···O60.88 (1)2.05 (3)2.850 (8)150 (5)
N4—H4F···S1ii0.87 (1)2.63 (2)3.441 (4)156 (4)
Symmetry code: (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4H···O10.878 (10)2.44 (4)3.069 (8)129 (4)
N4—H4E···O20.873 (10)2.062 (14)2.934 (8)176 (5)
N4—H4G···O40.878 (10)1.971 (17)2.829 (7)166 (4)
N4—H4G···O50.878 (10)2.53 (4)3.010 (8)115 (3)
N4—H4H···O60.878 (10)2.05 (3)2.850 (8)150 (5)
N4—H4F···S1i0.874 (10)2.63 (2)3.441 (4)156 (4)
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection. KR thanks the University Grants Commission, Government of India, for financial support granted under a Major Research Project [F. No.41–1008/2012 (SR)].

References

First citationAkutagawa, T., Hashimoto, A., Nishihara, S., Hasegawa, T. & Nakamura, T. (2002). J. Supramol. Chem. 2, 175–186.  CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationKryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579–4588.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamesh, V., Rajarajan, K., Kumar, K. S., Subashini, A. & NizamMohideen, M. (2012). Acta Cryst. E68, m335–m336.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m469-m470
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds