organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1257-o1258

Allyl 2-(2,2-di­methyl-3a,6a-di­hydro­furo[3,2-d][1,3]dioxol-5-yl)-4-oxo-4H-chromene-3-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 3 July 2013; accepted 8 July 2013; online 13 July 2013)

In the title compound, C20H18O7, the dioxolane ring adopts an envelope conformation with the dimethyl-substituted C atom as the flap, and its mean plane makes a dihedral angle of 73.25 (2)° with the pyran ring mean plane. The furan ring makes dihedral angles of 67.43 (12) and 6.20 (11)° with the mean plane of the dioxolane and pyran rings, respectively. The O atom attached to the pyran ring deviates by 0.0219 (2) Å from its mean plane. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming chains along [010] and enclosing R22(9) loops. They stack along the a axis with ππ inter­actions involving the 4H-chromene units [centroid–centroid distances of 3.6389 (13) and 3.6555 (13) Å]. The terminal CH2=CH- atoms of the allyl acetate group are disordered over two sets of sites with a refined occupancy ratio of 0.717 (6):0.283 (6).

Related literature

For the biological importance of 4H-chromene derivatives, see: Cai (2007[Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.], 2008[Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]); Cai et al. (2006[Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627-2644.]); Caine (1993[Caine, B. (1993). Science, 260, 1814-1816.]); Gabor (1988[Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91-126. Budapest: Akademiai Kiado.]); Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18O7

  • Mr = 370.34

  • Orthorhombic, P 21 21 21

  • a = 6.9461 (6) Å

  • b = 15.5688 (11) Å

  • c = 16.5572 (11) Å

  • V = 1790.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.979

  • 17828 measured reflections

  • 4459 independent reflections

  • 2758 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.01

  • 4459 reflections

  • 252 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O3i 0.93 2.47 3.190 (3) 134
C12—H12⋯O2i 0.98 2.54 3.477 (3) 160
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4H-Chromenes are biologically important compounds used as synthetic ligands in the design of drugs and discovery processes. They exhibit numerous biological and pharmacological properties, such as anti-viral, anti-fungal, anti-inflammatory, anti-diabetic, cardionthonic, anti-anaphylactic and anti-cancer activity (Cai, 2008, 2007; Cai et al., 2006; Caine, 1993; Gabor, 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). In view of the different applications of this class of compounds, we have undertaken the synthesis and crystal structure analysis of the title compound.

In the title molecule, Fig. 1, the dioxolane ring adopts an envelope conformation with atom C14 as the flap. The furan ring (O5/C10-C13) makes dihedral angles of 67.43 (12)° and 6.20 (11)° with the mean plane of the dioxolane ring (06/07/C12-C14) and the pyran ring (O1/C1/C6-C9), respectively. The dioxolane ring mean plane makes a dihedral angle of 73.25 (11) ° with the pyran ring. The oxygen atom O2 attached with the pyran ring deviates by -0.0219 (2)Å. The methyl carbon atoms C15 and C16 attached with the mean plane of the dioxolane ring deviate by -0.7157 (3)Å and 1.6682 (3)Å, respectively.

In the crystal, molecules are linked via C-H···O hydrogen bonds into chains along [010], containing R22(9) loops (Table 1 and Fig. 2). They stack along the a axis with π-π interactions involving the 4H-chromene units, with centroid-to-centroid distances of 3.6389 (13) Å for Cg1-Cg2i and 3.6555 (13) Å for Cg1···Cg2ii, where Cg1 and Cg2 are the centroids of rings O1/C1/C6-C9 and C1-C6, respectively; symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) x-1/2, -y+1/2, -z+1.

Related literature top

For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Caine (1993); Gabor (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007).

Experimental top

Triethylamine (1.10 mL, 4 equiv) was added to a stirred solution of 4-hydroxycoumarin (0.32 g, 2 mmol) and(E)-6-(benzyloxy)-2,2-dimethyl -5-(2-nitrovinyl)tetrahydrofuro[3,2-d][1,3]dioxole (0.65 g, 4 mmol) in ally alcohol (6 mL). The reaction mixture was heated at 343 - 353 K for 24h, and the progress of the reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated in vacuum. The resulting residue was further purified by flash column chromatography (ethyl acetate/hexane) on silica gel. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

The terminal atoms, C19 and C20, of the allyl acetate group are disordered over two positions (C19/C19' & C20/C20') with a refined occupancy ratio of 0.717 (6):0.283 (6). The C-C distances of the disordered atoms were restrained to be equal. The displacement parameters of the disordered atoms were restrained to be equal for bonded atoms.The hydrogen atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 - 0.98 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level. The position of the disordered terminal atoms (C19' & C20') of the allyl acetate group are shown with dashed bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds (see Table 1 for details) are shown as dashed lines. H-atoms not involved in hydrogen bonding have been omitted for clarity.
Allyl 2-(2,2-dimethyl-3a,6a-dihydrofuro[3,2-d][1,3]dioxol-5-yl)-4-oxo-4H-chromene-3-carboxylate top
Crystal data top
C20H18O7F(000) = 776
Mr = 370.34Dx = 1.374 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4459 reflections
a = 6.9461 (6) Åθ = 1.8–28.4°
b = 15.5688 (11) ŵ = 0.11 mm1
c = 16.5572 (11) ÅT = 293 K
V = 1790.5 (2) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4459 independent reflections
Radiation source: fine-focus sealed tube2758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω and ϕ scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.969, Tmax = 0.979k = 1820
17828 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.1102P]
where P = (Fo2 + 2Fc2)/3
4459 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.16 e Å3
3 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H18O7V = 1790.5 (2) Å3
Mr = 370.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9461 (6) ŵ = 0.11 mm1
b = 15.5688 (11) ÅT = 293 K
c = 16.5572 (11) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4459 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2758 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.072
17828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
4459 reflectionsΔρmin = 0.18 e Å3
252 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8806 (3)0.19806 (13)0.54128 (13)0.0478 (5)
C20.8795 (3)0.13352 (16)0.48303 (14)0.0610 (6)
H20.88150.07600.49810.073*
C30.8754 (4)0.15601 (18)0.40384 (16)0.0680 (7)
H30.87290.11350.36440.082*
C40.8749 (4)0.2410 (2)0.38153 (14)0.0708 (7)
H40.87360.25540.32700.085*
C50.8762 (3)0.30481 (17)0.43860 (14)0.0601 (6)
H50.87510.36210.42260.072*
C60.8792 (3)0.28392 (13)0.52099 (12)0.0483 (5)
C70.8791 (3)0.34926 (13)0.58404 (14)0.0490 (5)
C80.8760 (3)0.31570 (12)0.66668 (12)0.0450 (4)
C90.8759 (3)0.23043 (12)0.68069 (12)0.0448 (4)
C100.8641 (3)0.18772 (13)0.75846 (12)0.0474 (5)
C110.8519 (3)0.10532 (14)0.77512 (13)0.0563 (6)
H110.85730.06110.73740.068*
C120.8280 (3)0.09404 (15)0.86374 (14)0.0579 (6)
H120.93200.05910.88660.069*
C130.8357 (3)0.18598 (15)0.89523 (13)0.0559 (5)
H130.94380.19340.93260.067*
C140.5271 (3)0.13462 (15)0.91078 (15)0.0582 (6)
C150.4091 (4)0.10992 (19)0.98298 (17)0.0770 (8)
H15A0.32950.15750.99870.116*
H15B0.49300.09481.02680.116*
H15C0.32920.06160.96960.116*
C160.4054 (4)0.1653 (2)0.84136 (17)0.0866 (9)
H16A0.32850.21320.85850.130*
H16B0.32280.11960.82370.130*
H16C0.48730.18280.79760.130*
C170.8718 (3)0.38088 (13)0.73205 (13)0.0521 (5)
C180.6630 (5)0.4621 (2)0.81426 (19)0.0953 (10)
H18A0.68320.51970.79380.114*0.717 (6)
H18B0.75200.45210.85840.114*0.717 (6)
H18C0.78730.47350.83880.114*0.283 (6)
H18D0.62070.51500.78910.114*0.283 (6)
O10.8825 (2)0.17128 (9)0.62034 (8)0.0526 (4)
O20.8790 (2)0.42692 (10)0.57063 (10)0.0661 (4)
O31.0102 (3)0.41371 (12)0.76106 (12)0.0808 (6)
O40.6918 (2)0.39953 (12)0.75106 (11)0.0700 (5)
O50.8584 (2)0.24039 (9)0.82508 (9)0.0600 (4)
O60.6630 (2)0.19952 (9)0.93415 (9)0.0576 (4)
O70.6435 (2)0.06344 (9)0.88869 (10)0.0658 (5)
C190.4667 (7)0.4514 (4)0.8412 (4)0.113 (2)0.717 (6)
H190.37710.44070.80070.135*0.717 (6)
C200.4030 (9)0.4545 (4)0.9085 (4)0.127 (2)0.717 (6)
H20A0.48470.46490.95190.152*0.717 (6)
H20B0.27200.44640.91720.152*0.717 (6)
C19'0.5331 (18)0.4427 (12)0.8768 (7)0.113 (2)0.283 (6)
H19'0.55730.46750.92690.135*0.283 (6)
C20'0.395 (2)0.3975 (11)0.8720 (11)0.127 (2)0.283 (6)
H20C0.36450.37110.82320.152*0.283 (6)
H20D0.31730.38860.91700.152*0.283 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0385 (10)0.0503 (12)0.0547 (11)0.0032 (10)0.0064 (10)0.0001 (10)
C20.0558 (13)0.0592 (14)0.0681 (14)0.0029 (12)0.0104 (12)0.0096 (11)
C30.0587 (14)0.0806 (18)0.0649 (15)0.0089 (14)0.0150 (13)0.0147 (13)
C40.0567 (14)0.101 (2)0.0543 (13)0.0098 (16)0.0078 (12)0.0022 (14)
C50.0498 (12)0.0694 (16)0.0613 (14)0.0040 (12)0.0034 (11)0.0117 (12)
C60.0363 (10)0.0534 (12)0.0552 (12)0.0036 (9)0.0037 (10)0.0065 (9)
C70.0378 (10)0.0440 (12)0.0652 (13)0.0029 (9)0.0030 (10)0.0102 (10)
C80.0368 (10)0.0390 (11)0.0591 (11)0.0031 (9)0.0010 (9)0.0031 (9)
C90.0391 (10)0.0402 (11)0.0551 (11)0.0023 (9)0.0046 (10)0.0014 (9)
C100.0457 (11)0.0405 (11)0.0559 (11)0.0014 (9)0.0013 (10)0.0009 (9)
C110.0634 (14)0.0384 (11)0.0670 (13)0.0082 (11)0.0120 (11)0.0043 (10)
C120.0576 (13)0.0470 (13)0.0691 (14)0.0098 (10)0.0112 (11)0.0136 (11)
C130.0568 (13)0.0558 (13)0.0552 (12)0.0033 (11)0.0054 (10)0.0083 (11)
C140.0545 (12)0.0504 (13)0.0697 (14)0.0003 (11)0.0034 (12)0.0100 (11)
C150.0736 (16)0.0735 (17)0.0841 (17)0.0069 (14)0.0211 (14)0.0063 (15)
C160.0611 (16)0.113 (2)0.0854 (19)0.0091 (15)0.0148 (14)0.0031 (17)
C170.0566 (13)0.0391 (11)0.0607 (13)0.0057 (10)0.0023 (11)0.0062 (9)
C180.119 (3)0.081 (2)0.0861 (19)0.0074 (19)0.027 (2)0.0218 (17)
O10.0619 (9)0.0387 (7)0.0572 (8)0.0002 (7)0.0054 (7)0.0002 (7)
O20.0776 (10)0.0426 (9)0.0781 (10)0.0026 (8)0.0005 (9)0.0134 (7)
O30.0786 (12)0.0649 (11)0.0988 (14)0.0292 (10)0.0059 (10)0.0146 (10)
O40.0706 (11)0.0701 (11)0.0694 (10)0.0107 (9)0.0055 (9)0.0126 (9)
O50.0813 (10)0.0417 (8)0.0568 (8)0.0106 (8)0.0030 (9)0.0032 (7)
O60.0622 (9)0.0487 (9)0.0618 (9)0.0015 (7)0.0016 (8)0.0060 (7)
O70.0734 (11)0.0411 (8)0.0830 (11)0.0022 (8)0.0250 (9)0.0000 (8)
C190.085 (4)0.147 (5)0.106 (5)0.043 (4)0.007 (3)0.051 (4)
C200.102 (3)0.155 (6)0.124 (4)0.006 (4)0.028 (3)0.045 (4)
C19'0.085 (4)0.147 (5)0.106 (5)0.043 (4)0.007 (3)0.051 (4)
C20'0.102 (3)0.155 (6)0.124 (4)0.006 (4)0.028 (3)0.045 (4)
Geometric parameters (Å, º) top
C1—O11.374 (2)C14—O71.420 (3)
C1—C61.378 (3)C14—O61.436 (3)
C1—C21.393 (3)C14—C151.500 (3)
C2—C31.357 (4)C14—C161.505 (4)
C2—H20.9300C15—H15A0.9600
C3—C41.373 (4)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.371 (4)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.403 (3)C16—H16C0.9600
C5—H50.9300C17—O31.190 (3)
C6—C71.458 (3)C17—O41.322 (3)
C7—O21.229 (2)C18—C19'1.407 (10)
C7—C81.465 (3)C18—O41.443 (3)
C8—C91.348 (3)C18—C191.444 (6)
C8—C171.484 (3)C18—H18A0.9700
C9—O11.360 (2)C18—H18B0.9700
C9—C101.452 (3)C18—H18C0.9700
C10—C111.315 (3)C18—H18D0.9700
C10—O51.375 (2)C19—C201.200 (7)
C11—C121.487 (3)C19—H190.9300
C11—H110.9300C20—H20A0.9300
C12—O71.429 (3)C20—H20B0.9300
C12—C131.524 (3)C19'—C20'1.194 (10)
C12—H120.9800C19'—H19'0.9300
C13—O61.378 (3)C20'—H20C0.9300
C13—O51.446 (3)C20'—H20D0.9300
C13—H130.9800
O1—C1—C6121.77 (19)C14—C15—H15A109.5
O1—C1—C2116.2 (2)C14—C15—H15B109.5
C6—C1—C2122.1 (2)H15A—C15—H15B109.5
C3—C2—C1118.9 (2)C14—C15—H15C109.5
C3—C2—H2120.6H15A—C15—H15C109.5
C1—C2—H2120.6H15B—C15—H15C109.5
C2—C3—C4120.5 (2)C14—C16—H16A109.5
C2—C3—H3119.7C14—C16—H16B109.5
C4—C3—H3119.7H16A—C16—H16B109.5
C5—C4—C3120.8 (2)C14—C16—H16C109.5
C5—C4—H4119.6H16A—C16—H16C109.5
C3—C4—H4119.6H16B—C16—H16C109.5
C4—C5—C6120.2 (2)O3—C17—O4125.0 (2)
C4—C5—H5119.9O3—C17—C8124.9 (2)
C6—C5—H5119.9O4—C17—C8110.01 (18)
C1—C6—C5117.5 (2)C19'—C18—O4118.5 (8)
C1—C6—C7120.15 (18)O4—C18—C19106.1 (3)
C5—C6—C7122.3 (2)C19'—C18—H18A123.3
O2—C7—C6123.8 (2)O4—C18—H18A110.5
O2—C7—C8121.3 (2)C19—C18—H18A110.5
C6—C7—C8114.84 (17)C19'—C18—H18B79.6
C9—C8—C7120.80 (19)O4—C18—H18B110.5
C9—C8—C17123.24 (18)C19—C18—H18B110.5
C7—C8—C17115.96 (17)H18A—C18—H18B108.7
C8—C9—O1122.74 (18)C19'—C18—H18C107.6
C8—C9—C10127.15 (18)O4—C18—H18C107.7
O1—C9—C10110.10 (16)C19—C18—H18C137.1
C11—C10—O5114.30 (18)H18A—C18—H18C81.3
C11—C10—C9129.54 (19)C19'—C18—H18D107.7
O5—C10—C9116.12 (16)O4—C18—H18D107.7
C10—C11—C12109.2 (2)C19—C18—H18D86.8
C10—C11—H11125.4H18B—C18—H18D130.8
C12—C11—H11125.4H18C—C18—H18D107.1
O7—C12—C11115.1 (2)C9—O1—C1119.63 (16)
O7—C12—C13104.20 (17)C17—O4—C18116.9 (2)
C11—C12—C13102.87 (17)C10—O5—C13107.35 (15)
O7—C12—H12111.4C13—O6—C14109.78 (16)
C11—C12—H12111.4C14—O7—C12108.99 (16)
C13—C12—H12111.4C20—C19—C18129.0 (6)
O6—C13—O5112.41 (18)C20—C19—H19115.5
O6—C13—C12105.87 (18)C18—C19—H19115.5
O5—C13—C12106.21 (17)C19—C20—H20A120.0
O6—C13—H13110.7C19—C20—H20B120.0
O5—C13—H13110.7H20A—C20—H20B120.0
C12—C13—H13110.7C20'—C19'—C18126.4 (14)
O7—C14—O6104.14 (16)C20'—C19'—H19'116.8
O7—C14—C15108.5 (2)C18—C19'—H19'116.8
O6—C14—C15108.96 (19)C19'—C20'—H20C120.0
O7—C14—C16111.8 (2)C19'—C20'—H20D120.0
O6—C14—C16110.6 (2)H20C—C20'—H20D120.0
C15—C14—C16112.5 (2)
O1—C1—C2—C3179.2 (2)O7—C12—C13—O5119.41 (19)
C6—C1—C2—C30.5 (3)C11—C12—C13—O51.1 (2)
C1—C2—C3—C40.8 (4)C9—C8—C17—O393.4 (3)
C2—C3—C4—C50.8 (4)C7—C8—C17—O387.0 (3)
C3—C4—C5—C60.3 (4)C9—C8—C17—O489.1 (2)
O1—C1—C6—C5179.62 (18)C7—C8—C17—O490.6 (2)
C2—C1—C6—C50.1 (3)C8—C9—O1—C13.0 (3)
O1—C1—C6—C70.2 (3)C10—C9—O1—C1175.57 (17)
C2—C1—C6—C7179.58 (19)C6—C1—O1—C92.4 (3)
C4—C5—C6—C10.0 (3)C2—C1—O1—C9177.38 (16)
C4—C5—C6—C7179.5 (2)O3—C17—O4—C182.7 (3)
C1—C6—C7—O2179.6 (2)C8—C17—O4—C18179.8 (2)
C5—C6—C7—O21.0 (3)C19'—C18—O4—C17131.5 (8)
C1—C6—C7—C81.4 (3)C19—C18—O4—C17162.3 (3)
C5—C6—C7—C8178.04 (18)C11—C10—O5—C131.2 (3)
O2—C7—C8—C9179.9 (2)C9—C10—O5—C13176.71 (18)
C6—C7—C8—C90.8 (3)O6—C13—O5—C10115.4 (2)
O2—C7—C8—C170.3 (3)C12—C13—O5—C100.0 (2)
C6—C7—C8—C17178.81 (17)O5—C13—O6—C1499.2 (2)
C7—C8—C9—O11.4 (3)C12—C13—O6—C1416.4 (2)
C17—C8—C9—O1179.03 (18)O7—C14—O6—C1326.2 (2)
C7—C8—C9—C10176.96 (18)C15—C14—O6—C13141.8 (2)
C17—C8—C9—C102.7 (3)C16—C14—O6—C1394.0 (2)
C8—C9—C10—C11175.5 (2)O6—C14—O7—C1225.7 (2)
O1—C9—C10—C113.0 (3)C15—C14—O7—C12141.66 (19)
C8—C9—C10—O52.1 (3)C16—C14—O7—C1293.7 (2)
O1—C9—C10—O5179.38 (16)C11—C12—O7—C1495.8 (2)
O5—C10—C11—C122.0 (3)C13—C12—O7—C1416.0 (2)
C9—C10—C11—C12175.6 (2)C19'—C18—C19—C2021.5 (15)
C10—C11—C12—O7110.8 (2)O4—C18—C19—C20140.6 (7)
C10—C11—C12—C131.8 (3)O4—C18—C19'—C20'29 (2)
O7—C12—C13—O60.3 (2)C19—C18—C19'—C20'44.0 (15)
C11—C12—C13—O6120.75 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.932.473.190 (3)134
C12—H12···O2i0.982.543.477 (3)160
Symmetry code: (i) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H18O7
Mr370.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.9461 (6), 15.5688 (11), 16.5572 (11)
V3)1790.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
17828, 4459, 2758
Rint0.072
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.01
No. of reflections4459
No. of parameters252
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.932.473.190 (3)134
C12—H12···O2i0.982.543.477 (3)160
Symmetry code: (i) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. ZF, TS and DV acknowledge the UGC (SAP–CAS) for the departmental facilities. ZF also thanks the UGC for a meritorious fellowship and TS thanks the DST Inspire for a fellowship.

References

First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101.  Google Scholar
First citationCai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.  Web of Science PubMed Google Scholar
First citationCai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644.  Web of Science PubMed CAS Google Scholar
First citationCaine, B. (1993). Science, 260, 1814–1816.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.  Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1257-o1258
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds