organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(2,2-di­methyl-3a,6a-di­hydro­furo[3,2-d][1,3]dioxol-5-yl)-4-oxo-4H-chromene-3-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 11 July 2013; accepted 16 July 2013; online 24 July 2013)

In the title mol­ecule, C18H16O7, the dioxolane ring adopts an envelope conformation with the dimethyl-substituted C atom as the flap. The furan ring is almost coplanar with the pyran ring, with a dihedral angle of 1.04 (10)° between the planes, and it makes a dihedral angle of 67.97 (11)° with the mean plane of the dioxolane ring. The latter makes a dihedral angle of 67.15 (10)° with the pyran ring. The O atom attached to the pyran ring deviates by −0.009 (1) Å. The crystal packing features C—H⋯O hydrogen bonds, forming a three-dimensional structure. The meth­oxy­carbonyl atoms are disordered over two positions, with a refined occupancy ratio of 0.508 (18):0.492 (18).

Related literature

For the biological importance of 4H-chromene derivatives, see: Cai (2007[Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.], 2008[Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]); Cai et al. (2006[Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627-2644.]); Caine (1993[Caine, B. (1993). Science, 260, 1814-1816.]); Gabor (1988[Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91-126. Budapest: Akademiai Kiado.]); Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O7

  • Mr = 344.31

  • Orthorhombic, P 21 21 21

  • a = 6.8875 (3) Å

  • b = 15.4958 (6) Å

  • c = 15.9035 (6) Å

  • V = 1697.34 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.979

  • 9565 measured reflections

  • 4131 independent reflections

  • 2983 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.03

  • 4131 reflections

  • 267 parameters

  • 99 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O7i 0.93 2.59 3.296 (2) 133
C13—H13⋯O3ii 0.93 2.59 3.230 (10) 127
C14—H14⋯O1ii 0.98 2.50 3.429 (2) 159
C18—H18C⋯O1iii 0.96 2.55 3.460 (3) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4H-Chromenes are biologically important compounds used as synthetic ligands in the design of drugs and discovery processes. They exhibit numerous biological and pharmacological properties, such as anti-viral, anti-fungal, antiinflammatory, anti-diabetic, cardionthonic, anti-anaphylactic and anti-cancer activity (Cai, 2008, 2007; Cai et al., 2006; Gabor, 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). In view of the different applications of this class of compounds, we have undertaken the synthesis and the crystal structure analysis of the title compound.

In the title molecule, Fig. 1, the dioxolane ring adopts an envelope conformation with atom C16 as the flap. The furan ring (O5/C12—C15) is almost coplanar with the pyran ring (O2/C1/C2/C7—C9), with a dihedral angle of 1.04 (10) ° and makes a dihedral angle of 67.97 (11) ° with the mean plane of the dioxolane ring (06/07/C14—C16). The mean plane of the dioxolane ring makes a dihedral angle of 67.15 (10) ° with the pyran ring. The oxygen atom O1 attached with the pyran ring deviates by -0.009 (1) Å. The methyl carbon atoms C17 and C18 attached with the dioxolane ring deviate by -1.666 (3) Å and 0.736 (3) Å, respectively from the mean plane.

The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds, forming a three-dimensional structure (Table 1 and Fig. 2).

Related literature top

For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Caine (1993); Gabor (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

Triethylamine (1.10 ml, 4 equiv) was added to a stirred solution of 4-hydroxycoumarin (0.32 g, 2 mmol) and (E)-6-(benzyloxy)-2,2-dimethyl-5- (2-nitrovinyl)tetrahydrofuro[3,2-d][1,3]dioxole (0.65 g, 4 mmol) in methanol (6 ml). The reaction mixture was heated at 343 - 353 K for 24 h, and the progress of the reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated in vacuum. The resulting residue was further purifed by flash column chromatography (ethyl acetate/hexane) on silica gel. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

The methyl carboxylate group (O3/O4/C10/C11) is disordered over two positions with arefined occupancy ratio of 0.508 (18):0.492 (18). The C9—C10 and C9'— C10' interatomic distances were restrained to be equal using the SHELXL97 SADI command. The SHELXL97 DFIX instruction restrains the interatomic distance between pairs of atoms C10—O4/C10'—O4', O4—C11/O4'—C11' and C10—O3/C10'—O3' to 1.40 (1), 1.45 (1) and 1.20 (1) Å, respectively. The restraints, SHELXL97 commands FLAT and SIMU, ensure chemically and physically reasonable parameters for the disordered atoms. The hydrogen atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. C-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
Methyl 2-(2,2-dimethyl-3a,6a-dihydrofuro[3,2-d][1,3]dioxol-5-yl)-4-oxo-4H-chromene-3-carboxylate top
Crystal data top
C18H16O7F(000) = 720
Mr = 344.31Dx = 1.347 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4131 reflections
a = 6.8875 (3) Åθ = 1.8–28.3°
b = 15.4958 (6) ŵ = 0.11 mm1
c = 15.9035 (6) ÅT = 293 K
V = 1697.34 (12) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4131 independent reflections
Radiation source: fine-focus sealed tube2983 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.969, Tmax = 0.979k = 2014
9565 measured reflectionsl = 1421
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.0367P]
where P = (Fo2 + 2Fc2)/3
4131 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.18 e Å3
99 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H16O7V = 1697.34 (12) Å3
Mr = 344.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.8875 (3) ŵ = 0.11 mm1
b = 15.4958 (6) ÅT = 293 K
c = 15.9035 (6) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4131 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2983 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.021
9565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04199 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
4131 reflectionsΔρmin = 0.19 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6753 (3)0.14269 (11)0.41547 (11)0.0497 (4)
C20.6727 (3)0.20723 (11)0.48234 (11)0.0476 (4)
C30.6773 (3)0.18438 (14)0.56749 (12)0.0627 (5)
H30.67890.12650.58290.075*
C40.6797 (3)0.24736 (17)0.62848 (13)0.0720 (6)
H40.68280.23160.68490.086*
C50.6775 (3)0.33337 (15)0.60685 (13)0.0666 (5)
H50.67990.37540.64860.080*
C60.6719 (3)0.35725 (13)0.52421 (12)0.0595 (5)
H60.67030.41530.50950.071*
C70.6686 (3)0.29417 (11)0.46269 (10)0.0456 (4)
C80.6653 (2)0.26426 (9)0.31685 (10)0.0425 (4)
C90.6757 (3)0.17837 (10)0.32992 (11)0.0449 (4)
C120.6554 (3)0.30873 (10)0.23675 (10)0.0449 (4)
C130.6472 (3)0.39241 (11)0.22124 (11)0.0520 (4)
H130.64400.43570.26170.062*
C140.6441 (3)0.40610 (11)0.12871 (12)0.0563 (5)
H140.52860.43810.11080.068*
C150.6451 (3)0.31385 (11)0.09405 (11)0.0545 (4)
H150.52720.30250.06140.065*
C160.9405 (3)0.37635 (12)0.06399 (13)0.0614 (5)
C171.0874 (4)0.34751 (18)0.12818 (18)0.0877 (8)
H17A1.16950.39520.14300.132*
H17B1.16500.30180.10510.132*
H17C1.02140.32710.17750.132*
C181.0317 (5)0.40685 (17)0.01674 (15)0.0937 (9)
H18A0.93180.41860.05730.141*
H18B1.11660.36290.03810.141*
H18C1.10480.45850.00630.141*
O10.6772 (2)0.06461 (8)0.42838 (9)0.0699 (4)
O20.66072 (19)0.32230 (7)0.38098 (7)0.0491 (3)
O50.6553 (2)0.25723 (7)0.16682 (7)0.0544 (3)
O60.8081 (2)0.30677 (8)0.04404 (8)0.0618 (4)
O70.8187 (2)0.44315 (7)0.09562 (8)0.0653 (4)
O30.5952 (18)0.0645 (6)0.2327 (6)0.081 (2)0.508 (18)
O40.8963 (12)0.1191 (6)0.2314 (5)0.0710 (16)0.508 (18)
C100.7106 (15)0.1130 (7)0.2611 (7)0.0565 (18)0.508 (18)
C110.9518 (18)0.0578 (9)0.1669 (7)0.108 (3)0.508 (18)
H11A0.99670.00560.19290.163*0.508 (18)
H11B1.05390.08200.13320.163*0.508 (18)
H11C0.84170.04530.13200.163*0.508 (18)
O3'0.5216 (14)0.0826 (5)0.2331 (6)0.0666 (17)0.492 (18)
O4'0.8513 (16)0.0905 (6)0.2447 (5)0.0742 (17)0.492 (18)
C10'0.6656 (16)0.1144 (8)0.2596 (7)0.061 (2)0.492 (18)
C11'0.867 (2)0.0196 (8)0.1862 (6)0.105 (4)0.492 (18)
H11D0.83250.03320.21400.158*0.492 (18)
H11E0.99830.01570.16610.158*0.492 (18)
H11F0.78120.02910.13960.158*0.492 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0482 (9)0.0419 (9)0.0589 (10)0.0049 (8)0.0052 (9)0.0058 (8)
C20.0378 (8)0.0541 (10)0.0508 (9)0.0047 (8)0.0026 (8)0.0037 (8)
C30.0542 (11)0.0733 (13)0.0606 (12)0.0067 (11)0.0008 (10)0.0108 (10)
C40.0567 (12)0.1145 (19)0.0448 (10)0.0050 (14)0.0063 (10)0.0005 (11)
C50.0576 (11)0.0838 (15)0.0584 (11)0.0008 (11)0.0093 (11)0.0180 (10)
C60.0542 (10)0.0625 (11)0.0618 (11)0.0016 (10)0.0070 (10)0.0129 (9)
C70.0377 (8)0.0492 (9)0.0500 (9)0.0010 (8)0.0055 (8)0.0024 (7)
C80.0407 (8)0.0360 (8)0.0507 (9)0.0020 (7)0.0028 (8)0.0020 (7)
C90.0480 (8)0.0358 (8)0.0508 (9)0.0021 (8)0.0031 (9)0.0011 (7)
C120.0442 (9)0.0389 (8)0.0515 (9)0.0010 (7)0.0049 (8)0.0015 (7)
C130.0616 (11)0.0377 (8)0.0568 (10)0.0088 (8)0.0132 (9)0.0027 (7)
C140.0591 (11)0.0453 (9)0.0643 (11)0.0097 (9)0.0072 (9)0.0115 (8)
C150.0566 (11)0.0554 (10)0.0515 (10)0.0042 (9)0.0036 (9)0.0078 (8)
C160.0721 (13)0.0455 (10)0.0665 (12)0.0116 (9)0.0215 (11)0.0097 (9)
C170.0602 (13)0.0983 (18)0.1045 (19)0.0049 (13)0.0050 (14)0.0084 (16)
C180.130 (2)0.0729 (14)0.0783 (16)0.0319 (15)0.0492 (15)0.0167 (13)
O10.0924 (10)0.0408 (7)0.0765 (9)0.0053 (7)0.0154 (9)0.0126 (6)
O20.0601 (7)0.0378 (5)0.0495 (6)0.0006 (6)0.0059 (6)0.0029 (5)
O50.0746 (9)0.0394 (6)0.0491 (7)0.0077 (6)0.0002 (6)0.0004 (5)
O60.0768 (9)0.0494 (7)0.0592 (7)0.0103 (7)0.0143 (7)0.0078 (6)
O70.0865 (10)0.0385 (6)0.0709 (8)0.0073 (7)0.0242 (8)0.0005 (6)
O30.110 (5)0.047 (3)0.087 (3)0.023 (3)0.030 (4)0.002 (2)
O40.081 (3)0.064 (3)0.068 (3)0.025 (3)0.010 (2)0.017 (3)
C100.081 (4)0.031 (3)0.057 (3)0.002 (3)0.029 (3)0.002 (3)
C110.126 (7)0.109 (7)0.090 (5)0.048 (5)0.009 (4)0.041 (5)
O3'0.087 (4)0.047 (3)0.066 (2)0.015 (3)0.022 (3)0.003 (2)
O4'0.097 (4)0.056 (3)0.069 (3)0.031 (3)0.013 (3)0.020 (2)
C10'0.087 (4)0.037 (3)0.058 (3)0.008 (3)0.013 (3)0.005 (3)
C11'0.151 (9)0.094 (6)0.072 (4)0.060 (5)0.021 (5)0.039 (4)
Geometric parameters (Å, º) top
C1—O11.227 (2)C15—O61.381 (2)
C1—C21.460 (2)C15—O51.454 (2)
C1—C91.469 (2)C15—H150.9800
C2—C71.383 (2)C16—O71.424 (2)
C2—C31.400 (3)C16—O61.447 (2)
C3—C41.376 (3)C16—C171.505 (3)
C3—H30.9300C16—C181.505 (3)
C4—C51.377 (3)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.366 (3)C17—H17C0.9600
C5—H50.9300C18—H18A0.9600
C6—C71.383 (2)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
C7—O21.372 (2)O3—C101.183 (7)
C8—C91.349 (2)O4—C101.366 (7)
C8—O21.3602 (19)O4—C111.449 (7)
C8—C121.450 (2)C11—H11A0.9600
C9—C10'1.496 (6)C11—H11B0.9600
C9—C101.511 (5)C11—H11C0.9600
C12—C131.321 (2)O3'—C10'1.185 (7)
C12—O51.3689 (19)O4'—C10'1.353 (7)
C13—C141.487 (3)O4'—C11'1.444 (7)
C13—H130.9300C11'—H11D0.9600
C14—O71.433 (2)C11'—H11E0.9600
C14—C151.532 (3)C11'—H11F0.9600
C14—H140.9800
O1—C1—C2123.62 (16)O6—C15—O5111.78 (15)
O1—C1—C9121.75 (16)O6—C15—C14106.56 (14)
C2—C1—C9114.64 (14)O5—C15—C14106.08 (14)
C7—C2—C3117.73 (17)O6—C15—H15110.8
C7—C2—C1120.20 (16)O5—C15—H15110.8
C3—C2—C1122.07 (17)C14—C15—H15110.8
C4—C3—C2120.18 (19)O7—C16—O6104.35 (16)
C4—C3—H3119.9O7—C16—C17111.85 (17)
C2—C3—H3119.9O6—C16—C17110.54 (17)
C3—C4—C5120.69 (19)O7—C16—C18108.59 (18)
C3—C4—H4119.7O6—C16—C18108.04 (17)
C5—C4—H4119.7C17—C16—C18113.0 (2)
C6—C5—C4120.20 (19)C16—C17—H17A109.5
C6—C5—H5119.9C16—C17—H17B109.5
C4—C5—H5119.9H17A—C17—H17B109.5
C5—C6—C7119.3 (2)C16—C17—H17C109.5
C5—C6—H6120.3H17A—C17—H17C109.5
C7—C6—H6120.3H17B—C17—H17C109.5
O2—C7—C6116.50 (16)C16—C18—H18A109.5
O2—C7—C2121.61 (15)C16—C18—H18B109.5
C6—C7—C2121.88 (17)H18A—C18—H18B109.5
C9—C8—O2122.55 (15)C16—C18—H18C109.5
C9—C8—C12127.36 (14)H18A—C18—H18C109.5
O2—C8—C12110.09 (12)H18B—C18—H18C109.5
C8—C9—C1120.94 (15)C8—O2—C7119.96 (12)
C8—C9—C10'122.4 (6)C12—O5—C15107.15 (12)
C1—C9—C10'116.3 (6)C15—O6—C16109.09 (13)
C8—C9—C10123.9 (6)C16—O7—C14109.45 (12)
C1—C9—C10114.8 (6)C10—O4—C11116.5 (6)
C10'—C9—C1011.9 (6)O3—C10—O4122.8 (7)
C13—C12—O5114.86 (15)O3—C10—C9126.5 (8)
C13—C12—C8129.24 (15)O4—C10—C9110.6 (6)
O5—C12—C8115.90 (12)C10'—O4'—C11'113.1 (7)
C12—C13—C14108.99 (15)O3'—C10'—O4'128.0 (7)
C12—C13—H13125.5O3'—C10'—C9125.5 (8)
C14—C13—H13125.5O4'—C10'—C9105.6 (6)
O7—C14—C13114.10 (17)O4'—C11'—H11D109.5
O7—C14—C15103.77 (14)O4'—C11'—H11E109.5
C13—C14—C15102.88 (14)H11D—C11'—H11E109.5
O7—C14—H14111.8O4'—C11'—H11F109.5
C13—C14—H14111.8H11D—C11'—H11F109.5
C15—C14—H14111.8H11E—C11'—H11F109.5
O1—C1—C2—C7179.32 (18)O7—C14—C15—O5117.25 (16)
C9—C1—C2—C70.8 (2)C13—C14—C15—O51.91 (19)
O1—C1—C2—C31.7 (3)C9—C8—O2—C70.6 (2)
C9—C1—C2—C3178.20 (17)C12—C8—O2—C7179.96 (14)
C7—C2—C3—C40.6 (3)C6—C7—O2—C8177.25 (15)
C1—C2—C3—C4178.34 (17)C2—C7—O2—C82.9 (2)
C2—C3—C4—C50.0 (3)C13—C12—O5—C150.2 (2)
C3—C4—C5—C60.4 (4)C8—C12—O5—C15179.94 (15)
C4—C5—C6—C70.1 (3)O6—C15—O5—C12117.13 (16)
C5—C6—C7—O2179.26 (18)C14—C15—O5—C121.38 (19)
C5—C6—C7—C20.6 (3)O5—C15—O6—C1698.06 (17)
C3—C2—C7—O2178.92 (16)C14—C15—O6—C1617.39 (19)
C1—C2—C7—O22.1 (3)O7—C16—O6—C1526.20 (19)
C3—C2—C7—C61.0 (3)C17—C16—O6—C1594.21 (18)
C1—C2—C7—C6178.04 (17)C18—C16—O6—C15141.63 (19)
O2—C8—C9—C12.4 (3)O6—C16—O7—C1424.8 (2)
C12—C8—C9—C1176.98 (17)C17—C16—O7—C1494.74 (19)
O2—C8—C9—C10'175.3 (5)C18—C16—O7—C14139.83 (19)
C12—C8—C9—C10'4.1 (6)C13—C14—O7—C1696.76 (18)
O2—C8—C9—C10170.6 (5)C15—C14—O7—C1614.40 (19)
C12—C8—C9—C1010.0 (5)C11—O4—C10—O34.9 (16)
O1—C1—C9—C8177.14 (18)C11—O4—C10—C9177.9 (8)
C2—C1—C9—C82.9 (3)C8—C9—C10—O3107.4 (13)
O1—C1—C9—C10'3.8 (5)C1—C9—C10—O379.2 (13)
C2—C1—C9—C10'176.3 (5)C10'—C9—C10—O321 (4)
O1—C1—C9—C109.3 (5)C8—C9—C10—O469.7 (11)
C2—C1—C9—C10170.7 (4)C1—C9—C10—O4103.7 (10)
C9—C8—C12—C13179.15 (19)C10'—C9—C10—O4156 (6)
O2—C8—C12—C131.4 (3)C11'—O4'—C10'—O3'2.9 (18)
C9—C8—C12—O50.5 (3)C11'—O4'—C10'—C9171.8 (8)
O2—C8—C12—O5178.90 (14)C8—C9—C10'—O3'90.0 (14)
O5—C12—C13—C141.1 (2)C1—C9—C10'—O3'83.2 (14)
C8—C12—C13—C14178.57 (17)C10—C9—C10'—O3'169 (7)
C12—C13—C14—O7109.86 (17)C8—C9—C10'—O4'100.7 (10)
C12—C13—C14—C151.8 (2)C1—C9—C10'—O4'86.1 (10)
O7—C14—C15—O61.99 (18)C10—C9—C10'—O4'1 (5)
C13—C14—C15—O6121.15 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O7i0.932.593.296 (2)133
C13—H13···O3ii0.932.593.230 (10)127
C14—H14···O1ii0.982.503.429 (2)159
C18—H18C···O1iii0.962.553.460 (3)159
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O7i0.932.593.296 (2)133
C13—H13···O3ii0.932.593.230 (10)127
C14—H14···O1ii0.982.503.429 (2)159
C18—H18C···O1iii0.962.553.460 (3)159
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

ZF,TS and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for data collection and UGC (SAP–CAS) is acknowleged for the departmental facilties. ZF also thanks the UGC for a meritorious fellowship and TS thanks DST Inspire for a fellowship.

References

First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101.  Google Scholar
First citationCai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.  Web of Science PubMed Google Scholar
First citationCai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644.  Web of Science PubMed CAS Google Scholar
First citationCaine, B. (1993). Science, 260, 1814–1816.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.  Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds