organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Sulfanyl­­idene-3,4-di­hydro­quinoxalin-2-yl)benzohydrazide di­methyl­formamide monosolvate

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue, Ibn Batouta, Rabat, Morocco, bLaboratoire de Chimie de Coordination du CNRS 205, Route de Narbonne 31077, Toulouse, France, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: a_zanzoul@yahoo.fr

(Received 28 June 2013; accepted 10 July 2013; online 17 July 2013)

The 2-sulfanyl­idene-3,4-di­hydro­quinoxalin-2-yl ring system of the title solvate, C15H12N4OS·C3H7NO, is essentially planar, the maximum deviation from the mean plane being 0.024 (2) Å for the thione C atom. The mean plane through the fused-ring system is almost perpendicular to the terminal phenyl ring, as indicated by the dihedral angle of 70.05 (8)°. In the crystal, the main and solvent mol­ecules are linked by N—H⋯O hydrogen bonds, forming a layer parallel to (010).

Related literature

For potential applications of quinoxaline derivatives, see: Cheon et al. (2004[Cheon, H.-G., Lee, C.-M., Kim, B.-T. & Hwang, K.-J. (2004). Bioorg. Med. Chem. Lett. 14, 2661-2664.]); Jackson et al. (1991[Jackson, P. F., Davenport, T. W., Resch, J. F., Scott Lehr, G. & Pullan, L. M. (1991). Bioorg. Med. Chem. Lett. 1, 751-756.]); Benzeid et al. (2012[Benzeid, H., Mothes, E., Essassi, E. M., Faller, P. & Pratviel, G. (2012). Compt. Rend. Chim. 15, 79-85.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N4OS·C3H7NO

  • Mr = 369.44

  • Monoclinic, P 21 /c

  • a = 10.4053 (2) Å

  • b = 16.8563 (5) Å

  • c = 10.3624 (2) Å

  • β = 100.882 (2)°

  • V = 1784.83 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 180 K

  • 0.20 × 0.12 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2012[Oxford Diffraction (2012). Oxford Diffraction Ltd, Yarnton,England.]) Tmin = 0.960, Tmax = 0.992

  • 15848 measured reflections

  • 4153 independent reflections

  • 3090 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.03

  • 4153 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2i 0.88 2.14 2.906 (2) 146
N4—H4N⋯O2ii 0.88 2.04 2.906 (2) 166
N1—H1⋯O1iii 0.88 2.01 2.8331 (19) 154
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, -z; (iii) -x+2, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2012[Oxford Diffraction (2012). Oxford Diffraction Ltd, Yarnton,England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2012[Oxford Diffraction (2012). Oxford Diffraction Ltd, Yarnton,England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinoxaline derivatives have been discovered as leads for a novel series of dipeptidyl peptidase-IV molecules (Cheon et al., 2004). They are also used as ligands for the strychnine-insensitive glycine site (Jackson et al., 1991) and as new fluorescent probes for amyloid-β fibrils (Benzeid et al., 2012).

The crystal structure of title compound is build up from two fused six-membered rings (N1, N2 C1–C8) linked to a benzohydrazide system (N3, N4, O1, C9–C15) and a dimethylformamide solvent molecule as shown in Fig. 1. The fused rings system is almost planar with the maximum deviation from the mean plane being -0.024 (2) Å for the C1 atom. The dihedral angle between the terminal phenyl ring and the fused ring system is 70.05 (8)°. In the crystal structure, the molecules and the solvent are linked by N—H···O hydrogen bond to form a layer parallel to (0 1 0), Table 1.

Related literature top

For potential applications of quinoxaline derivatives, see: Cheon et al. (2004); Jackson et al. (1991); Benzeid et al. (2012).

Experimental top

A mixture of quinoxaline-2,3-dithione (1 g, 5.15 10 -3 mol), benzhydrazide (1.4 g, 0.01 mol) and DMF (40 ml) was boiled under reflux for 48 h. The volume of DMF was reduced under reduced pressure (2 ml) and the residue was taken up into 100 ml of diethyl ether. An oily product precipitated quickly after addition of diethyl ether. After centrifugation the diethyl ether phase was recovered and the precipitate (oily product) was washed with diethyl ether (2 x 3 ml). The product crystallized in the diethyl ether phase overnight at room temperature. Crystals were collected, washed with diethyl ether (5 ml) and dried under vacuum. Yield: 700 mg, 46%.

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.95 Å (aromatic), N—H = 0.88 Å and C—H = 0.98 Å (methyl) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq(aromatic and N) and Uiso(H) = 1.5 Ueq(methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2012); cell refinement: CrysAlis RED (Oxford Diffraction, 2012); data reduction: CrysAlis RED (Oxford Diffraction, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the components of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
N'-(3-Sulfanylidene-3,4-dihydroquinoxalin-2-yl)benzohydrazide dimethylformamide monosolvate top
Crystal data top
C15H12N4OS·C3H7NOF(000) = 776
Mr = 369.44Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4153 reflections
a = 10.4053 (2) Åθ = 3.1–27.9°
b = 16.8563 (5) ŵ = 0.21 mm1
c = 10.3624 (2) ÅT = 180 K
β = 100.882 (2)°Plate, yellow
V = 1784.83 (7) Å30.20 × 0.12 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini ultra)
diffractometer
4153 independent reflections
Graphite monochromator3090 reflections with I > 2σ(I)
Detector resolution: 16.1978 pixels mm-1Rint = 0.043
ω scansθmax = 27.9°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2012)
h = 1313
Tmin = 0.960, Tmax = 0.992k = 2121
15848 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.657P]
where P = (Fo2 + 2Fc2)/3
4153 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H12N4OS·C3H7NOV = 1784.83 (7) Å3
Mr = 369.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4053 (2) ŵ = 0.21 mm1
b = 16.8563 (5) ÅT = 180 K
c = 10.3624 (2) Å0.20 × 0.12 × 0.04 mm
β = 100.882 (2)°
Data collection top
Oxford Diffraction Xcalibur (Eos, Gemini ultra)
diffractometer
4153 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2012)
3090 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.992Rint = 0.043
15848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
4153 reflectionsΔρmin = 0.25 e Å3
235 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.90077 (17)0.07517 (11)0.52315 (18)0.0238 (4)
C20.97172 (18)0.13196 (12)0.33400 (19)0.0277 (4)
C31.0611 (2)0.18006 (13)0.2856 (2)0.0353 (5)
H31.13200.20400.34380.042*
C41.0448 (2)0.19226 (15)0.1524 (2)0.0451 (6)
H41.10460.22490.11790.054*
C50.9401 (2)0.15666 (16)0.0673 (2)0.0475 (6)
H50.93000.16490.02480.057*
C60.8519 (2)0.11001 (15)0.1155 (2)0.0403 (5)
H60.78080.08680.05650.048*
C70.86557 (18)0.09631 (12)0.25101 (19)0.0289 (4)
C80.79327 (17)0.03925 (11)0.42633 (17)0.0231 (4)
C90.64594 (16)0.12910 (12)0.37671 (17)0.0245 (4)
C100.53941 (17)0.17643 (11)0.29440 (17)0.0230 (4)
C110.40700 (17)0.15997 (12)0.28901 (18)0.0264 (4)
H110.38170.11750.33910.032*
C120.31276 (19)0.20563 (13)0.2106 (2)0.0339 (5)
H120.22260.19510.20830.041*
C130.3494 (2)0.26669 (13)0.1356 (2)0.0357 (5)
H130.28430.29620.07870.043*
C140.4802 (2)0.28490 (12)0.14304 (19)0.0332 (5)
H140.50490.32780.09340.040*
C150.57487 (19)0.24034 (12)0.22322 (18)0.0290 (4)
H150.66470.25340.22980.035*
C160.5145 (2)0.09973 (14)0.0642 (2)0.0382 (5)
H16A0.49050.07770.01550.057*
H16C0.50320.15750.06490.057*
H16B0.45820.07680.14180.057*
C170.7469 (2)0.09952 (17)0.0508 (2)0.0474 (6)
H17A0.83390.08270.03810.071*
H17B0.74720.15680.06660.071*
H17C0.72460.07160.12650.071*
C180.6865 (2)0.05175 (12)0.17353 (19)0.0314 (4)
H180.77710.04170.16840.038*
N10.98526 (15)0.11775 (9)0.46798 (15)0.0263 (4)
H11.05390.13800.52030.032*
N20.77741 (15)0.04876 (10)0.29977 (15)0.0277 (4)
N30.70812 (15)0.00590 (10)0.47938 (15)0.0306 (4)
H3N0.71110.00520.56480.037*
N40.61647 (15)0.05320 (10)0.39948 (15)0.0264 (4)
H4N0.53950.03360.36390.032*
N50.65059 (16)0.08079 (10)0.06642 (15)0.0312 (4)
O10.75344 (13)0.15906 (9)0.42053 (14)0.0373 (4)
O20.61339 (14)0.03660 (9)0.27891 (13)0.0342 (3)
S10.91904 (5)0.06336 (3)0.68523 (5)0.03039 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0196 (8)0.0200 (9)0.0310 (10)0.0026 (7)0.0027 (7)0.0020 (7)
C20.0236 (9)0.0272 (10)0.0317 (10)0.0012 (8)0.0033 (8)0.0048 (8)
C30.0263 (10)0.0356 (12)0.0422 (12)0.0059 (9)0.0017 (9)0.0084 (9)
C40.0325 (11)0.0529 (15)0.0495 (13)0.0053 (10)0.0066 (10)0.0223 (11)
C50.0351 (12)0.0684 (18)0.0373 (12)0.0015 (12)0.0028 (10)0.0218 (12)
C60.0291 (11)0.0580 (15)0.0308 (11)0.0051 (10)0.0018 (9)0.0078 (10)
C70.0219 (9)0.0338 (11)0.0306 (10)0.0001 (8)0.0037 (8)0.0043 (8)
C80.0192 (8)0.0234 (10)0.0256 (9)0.0012 (7)0.0016 (7)0.0026 (7)
C90.0180 (8)0.0364 (11)0.0193 (9)0.0036 (8)0.0043 (7)0.0022 (8)
C100.0222 (8)0.0265 (10)0.0197 (8)0.0018 (7)0.0020 (7)0.0027 (7)
C110.0229 (9)0.0269 (10)0.0290 (10)0.0018 (8)0.0040 (8)0.0027 (8)
C120.0233 (9)0.0340 (12)0.0411 (11)0.0028 (8)0.0020 (8)0.0018 (9)
C130.0369 (11)0.0318 (12)0.0340 (11)0.0097 (9)0.0041 (9)0.0025 (9)
C140.0454 (12)0.0270 (11)0.0274 (10)0.0004 (9)0.0072 (9)0.0033 (8)
C150.0275 (9)0.0335 (11)0.0262 (9)0.0027 (8)0.0060 (8)0.0025 (8)
C160.0374 (11)0.0440 (13)0.0349 (11)0.0037 (10)0.0114 (9)0.0034 (10)
C170.0407 (13)0.0691 (17)0.0308 (11)0.0010 (12)0.0030 (10)0.0126 (11)
C180.0308 (10)0.0328 (11)0.0312 (10)0.0021 (9)0.0075 (8)0.0017 (8)
N10.0198 (7)0.0260 (9)0.0312 (9)0.0047 (6)0.0006 (6)0.0010 (7)
N20.0214 (8)0.0350 (10)0.0260 (8)0.0024 (7)0.0025 (6)0.0003 (7)
N30.0284 (8)0.0413 (10)0.0213 (8)0.0152 (7)0.0031 (7)0.0067 (7)
N40.0199 (7)0.0328 (9)0.0246 (8)0.0067 (7)0.0008 (6)0.0023 (7)
N50.0300 (9)0.0392 (10)0.0241 (8)0.0000 (7)0.0048 (7)0.0041 (7)
O10.0192 (7)0.0457 (9)0.0432 (8)0.0007 (6)0.0041 (6)0.0027 (7)
O20.0356 (8)0.0374 (8)0.0286 (7)0.0017 (6)0.0033 (6)0.0069 (6)
S10.0267 (2)0.0378 (3)0.0253 (3)0.0027 (2)0.00135 (19)0.0026 (2)
Geometric parameters (Å, º) top
C1—N11.343 (2)C11—H110.9500
C1—C81.483 (2)C12—C131.386 (3)
C1—S11.6661 (19)C12—H120.9500
C2—N11.390 (2)C13—C141.383 (3)
C2—C31.396 (3)C13—H130.9500
C2—C71.401 (3)C14—C151.384 (3)
C3—C41.374 (3)C14—H140.9500
C3—H30.9500C15—H150.9500
C4—C51.401 (3)C16—N51.456 (3)
C4—H40.9500C16—H16A0.9800
C5—C61.372 (3)C16—H16C0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.404 (3)C17—N51.456 (3)
C6—H60.9500C17—H17A0.9800
C7—N21.384 (2)C17—H17B0.9800
C8—N21.300 (2)C17—H17C0.9800
C8—N31.360 (2)C18—O21.234 (2)
C9—O11.233 (2)C18—N51.330 (3)
C9—N41.347 (3)C18—H180.9500
C9—C101.495 (2)N1—H10.8800
C10—C151.394 (3)N3—N41.390 (2)
C10—C111.396 (2)N3—H3N0.8800
C11—C121.383 (3)N4—H4N0.8800
N1—C1—C8113.62 (16)C14—C13—H13119.8
N1—C1—S1122.24 (13)C12—C13—H13119.8
C8—C1—S1124.13 (14)C13—C14—C15119.64 (19)
N1—C2—C3120.68 (17)C13—C14—H14120.2
N1—C2—C7117.32 (17)C15—C14—H14120.2
C3—C2—C7122.00 (18)C14—C15—C10120.48 (18)
C4—C3—C2118.92 (19)C14—C15—H15119.8
C4—C3—H3120.5C10—C15—H15119.8
C2—C3—H3120.5N5—C16—H16A109.5
C3—C4—C5120.2 (2)N5—C16—H16C109.5
C3—C4—H4119.9H16A—C16—H16C109.5
C5—C4—H4119.9N5—C16—H16B109.5
C6—C5—C4120.7 (2)H16A—C16—H16B109.5
C6—C5—H5119.7H16C—C16—H16B109.5
C4—C5—H5119.7N5—C17—H17A109.5
C5—C6—C7120.7 (2)N5—C17—H17B109.5
C5—C6—H6119.7H17A—C17—H17B109.5
C7—C6—H6119.7N5—C17—H17C109.5
N2—C7—C2121.65 (17)H17A—C17—H17C109.5
N2—C7—C6120.77 (17)H17B—C17—H17C109.5
C2—C7—C6117.58 (18)O2—C18—N5126.27 (19)
N2—C8—N3120.54 (16)O2—C18—H18116.9
N2—C8—C1124.59 (17)N5—C18—H18116.9
N3—C8—C1114.87 (16)C1—N1—C2124.49 (15)
O1—C9—N4123.04 (17)C1—N1—H1117.8
O1—C9—C10120.98 (18)C2—N1—H1117.8
N4—C9—C10115.98 (15)C8—N2—C7118.23 (16)
C15—C10—C11119.35 (17)C8—N3—N4120.40 (15)
C15—C10—C9118.19 (16)C8—N3—H3N119.8
C11—C10—C9122.44 (17)N4—N3—H3N119.8
C12—C11—C10119.86 (18)C9—N4—N3119.73 (15)
C12—C11—H11120.1C9—N4—H4N120.1
C10—C11—H11120.1N3—N4—H4N120.1
C11—C12—C13120.21 (19)C18—N5—C17121.23 (17)
C11—C12—H12119.9C18—N5—C16121.41 (17)
C13—C12—H12119.9C17—N5—C16117.25 (17)
C14—C13—C12120.34 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.882.142.906 (2)146
N4—H4N···O2ii0.882.042.906 (2)166
N1—H1···O1iii0.882.012.8331 (19)154
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.882.142.906 (2)146
N4—H4N···O2ii0.882.042.906 (2)166
N1—H1···O1iii0.882.012.8331 (19)154
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+2, y, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBenzeid, H., Mothes, E., Essassi, E. M., Faller, P. & Pratviel, G. (2012). Compt. Rend. Chim. 15, 79–85.  Web of Science CrossRef CAS Google Scholar
First citationCheon, H.-G., Lee, C.-M., Kim, B.-T. & Hwang, K.-J. (2004). Bioorg. Med. Chem. Lett. 14, 2661–2664.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJackson, P. F., Davenport, T. W., Resch, J. F., Scott Lehr, G. & Pullan, L. M. (1991). Bioorg. Med. Chem. Lett. 1, 751–756.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2012). Oxford Diffraction Ltd, Yarnton,England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds