organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Phenyl-1,2,4-tri­aza­spiro­[4.5]dec-1-ene-3-thione

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 1 July 2013; accepted 10 July 2013; online 13 July 2013)

In the title compound, C13H15N3S, the 4,5-di­hydro-3H-1,2,4-triazole ring is nearly planar [maximum deviation = 0.020 (1) Å], while the cyclo­hexane ring adopts a chair conformation. The dihedral angle between the 4,5-di­hydro-3H-1,2,4-triazole ring and the phenyl ring is 74.68 (7)°. No specific inter­molecular inter­actions are discerned in the crystal packing.

Related literature

For wide-spectrum medicinal applications of spiro compounds incorporating heterocyclic substructures, see: Patil et al. (2010[Patil, B. S., Krishnamurthy, G., BhojyaNaik, H. S., Latthe, P. R. & Ghate, M. (2010). Eur. J. Med. Chem. 45, 3329-3334.]); Pawar et al. (2009[Pawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97-107.]); Thadhaney et al. (2010[Thadhaney, B., Sain, D., Pernawat, G. & Talesara, G. L. (2010). Indian J. Chem. Sect. B, 49, 368-373.]); Chin et al. (2008[Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 3, 390-395.]); Wang et al. (2007[Wang, W.-L., Zhu, T.-J., Tao, H.-W., Lu, Z.-Y., Fang, Y.-C., Gu, Q.-Q. & Zhu, W.-M. (2007). Chem. Biodivers. 4, 2913-2919.]); Chande et al. (2005[Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143-1148.]); Obniska et al. (2006[Obniska, J., Kamiński, K. & Tatarczyńska, E. (2006). Pharmacol. Rep. 58, 207-214.]); Kamiński et al. (2008[Kamiński, K., Obniska, J. & Dybala, M. (2008). Eur. J. Med. Chem. 43, 53-61.]); Sarma et al. (2010[Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364-5374.]); Shimakawa et al. (2003[Shimakawa, S., Yoshida, Y. & Niki, E. (2003). Lipids, 38, 225-231.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N3S

  • Mr = 245.34

  • Orthorhombic, P b c a

  • a = 9.4952 (9) Å

  • b = 7.4845 (7) Å

  • c = 34.692 (3) Å

  • V = 2465.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 150 K

  • 0.28 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.810, Tmax = 0.960

  • 41202 measured reflections

  • 3168 independent reflections

  • 2899 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 1.10

  • 3168 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Heterocyclic compounds such as 1.2.4-triazoles exhibit a wide range of biological activities (Patil et al., 2010). Several spiro-compounds incorporating different heterocyclic structures have showed significant industrial and pharmaceutical applications such as anti-microbial (Pawar et al., 2009; Thadhaney et al., 2010), anti-cancer (Chin et al., 2008; Wang et al., 2007), anti-tubercular (Chande et al., 2005) and anti-convulsant activities (Obniska et al., 2006; Kamiński et al., 2008) as well as functioning as antioxidants (Sarma et al., 2010; Shimakawa et al., 2003). In view of such facts and as part of our on-going study on the synthesis of bio-active molecules, we herein report the synthesis and crystal structure of the title compound (I).

As shown in Fig. 1, the 4,5-dihydro-3H-1,2,4-triazole ring (N1–N3/C1/C2) of (I) is nearly planar with a maximum deviation of 0.020 (1) Å for N1 and it makes a dihedral angle of 74.68 (7)° with the phenyl ring (C8–C13). The cyclohexane ring (C2–C7) adopts a chair conformation with the puckering parameters (Cremer & Pople, 1975) of QT = 0.5610 (14) Å, θ = 1.74 (14)° and ϕ = 342 (4)°.

The stabilization of the molecular packing of (I) is assisted by a number of non-bonded forces including van der Waals.

Related literature top

For wide-spectrum medicinal applications of spiro compounds incorporating heterocyclic substructures, see: Patil et al. (2010); Pawar et al. (2009); Thadhaney et al. (2010); Chin et al. (2008); Wang et al. (2007); Chande et al. (2005); Obniska et al. (2006); Kamiński et al. (2008); Sarma et al. (2010); Shimakawa et al. (2003). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of 2-cyclohexylidene-N-phenylhydrazinecarbothioamide (1 mmol) in dry ethyl acetate (15 ml) was added drop wise over 2 h to a stirred solution of 4,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,2-dicarbonitrile (227 mg, 1 mmol) in dry ethyl acetate (10 ml). The pink coloration of the reaction mixture turned quickly to red brown and the mixture was left to stand at room temperature for 48 h. The precipitated DDQ-H2 [JM1] was filtered off and washed with few drops of ethyl acetate. The filtrate was collected, concentrated under vacuum and left at room temperature to afford the title compound as red brown crystals suitable for X-ray diffraction.

IR: 3052 (Ar—CH), 2941, 2863 (Ali – CH), 1594 (Ar—C=C), 1350 (CS); 1H-NMR (CDCl3) 1.26, 1.65, 1.94 and 2.20 (10H, cyclohexane–CH2), 7.707, 7.51, 7.55 (5H, Ar–H); 13C–NMR (CDCl3) 23.58, 24.52 and 33.90 (cyclohexane-CH2), 112.19 (spiro Cx b), 127.81, 129.87, 130.22 (Ar—CH), 135.07 (Ar-c), 187.83 (CS).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.95 and 0.99 Å, with Uiso(H) = 1.2 Uiso(C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title compound (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
4-Phenyl-1,2,4-triazaspiro[4.5]dec-1-ene-3-thione top
Crystal data top
C13H15N3SF(000) = 1040
Mr = 245.34Dx = 1.322 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9973 reflections
a = 9.4952 (9) Åθ = 2.5–28.6°
b = 7.4845 (7) ŵ = 0.24 mm1
c = 34.692 (3) ÅT = 150 K
V = 2465.5 (4) Å3Block, red-brown
Z = 80.28 × 0.22 × 0.17 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3168 independent reflections
Radiation source: fine-focus sealed tube2899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.3660 pixels mm-1θmax = 28.7°, θmin = 2.4°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1010
Tmin = 0.810, Tmax = 0.960l = 4646
41202 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.10 W = 1/[Σ2(FO2) + (0.0483P)2 + 1.0447P]
where P = (FO2 + 2FC2)/3
3168 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H15N3SV = 2465.5 (4) Å3
Mr = 245.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.4952 (9) ŵ = 0.24 mm1
b = 7.4845 (7) ÅT = 150 K
c = 34.692 (3) Å0.28 × 0.22 × 0.17 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3168 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2899 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.960Rint = 0.046
41202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.10Δρmax = 0.40 e Å3
3168 reflectionsΔρmin = 0.25 e Å3
154 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53002 (4)1.40579 (5)0.84564 (2)0.0310 (1)
N10.50442 (11)1.06645 (14)0.87249 (3)0.0199 (3)
N20.53364 (11)1.27385 (15)0.91860 (3)0.0252 (3)
N30.51796 (11)1.13018 (15)0.93661 (3)0.0233 (3)
C10.52216 (12)1.24250 (17)0.87698 (4)0.0219 (3)
C20.49469 (12)0.97820 (16)0.91027 (3)0.0188 (3)
C30.60868 (13)0.83732 (18)0.91727 (4)0.0241 (3)
C40.59589 (15)0.75735 (19)0.95773 (4)0.0282 (4)
C50.44880 (15)0.68348 (18)0.96539 (4)0.0280 (4)
C60.33484 (14)0.82248 (17)0.95781 (3)0.0240 (3)
C70.34706 (13)0.90101 (16)0.91725 (3)0.0209 (3)
C80.47802 (13)0.97938 (17)0.83642 (3)0.0208 (3)
C90.58094 (15)0.87142 (18)0.82019 (4)0.0273 (4)
C100.55240 (17)0.7858 (2)0.78557 (4)0.0346 (4)
C110.42447 (19)0.8099 (2)0.76734 (4)0.0377 (5)
C120.32316 (18)0.9190 (2)0.78367 (4)0.0369 (4)
C130.34905 (15)1.00429 (19)0.81847 (4)0.0283 (4)
H3A0.702700.892700.914200.0290*
H3B0.599700.741100.897900.0290*
H4A0.665800.660100.960700.0340*
H4B0.617700.850600.977100.0340*
H5A0.432400.578400.948600.0340*
H5B0.442700.643300.992500.0340*
H6A0.342900.919800.977000.0290*
H6B0.241100.766500.960900.0290*
H7A0.276000.996500.913900.0250*
H7B0.327600.806600.898000.0250*
H90.669400.856400.832600.0330*
H100.621300.710000.774300.0410*
H110.406100.751500.743600.0450*
H120.235400.935600.771000.0440*
H130.279401.078700.829800.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0373 (2)0.0214 (2)0.0344 (2)0.0050 (1)0.0002 (1)0.0067 (1)
N10.0234 (5)0.0179 (5)0.0183 (5)0.0008 (4)0.0003 (4)0.0003 (4)
N20.0254 (5)0.0214 (5)0.0287 (6)0.0028 (4)0.0010 (4)0.0045 (4)
N30.0255 (5)0.0209 (5)0.0235 (5)0.0009 (4)0.0004 (4)0.0056 (4)
C10.0190 (5)0.0195 (6)0.0272 (6)0.0014 (4)0.0011 (4)0.0011 (5)
C20.0230 (5)0.0172 (6)0.0162 (5)0.0001 (4)0.0014 (4)0.0013 (4)
C30.0240 (6)0.0248 (6)0.0235 (6)0.0054 (5)0.0030 (5)0.0015 (5)
C40.0337 (7)0.0276 (7)0.0234 (6)0.0075 (6)0.0077 (5)0.0000 (5)
C50.0406 (7)0.0218 (6)0.0215 (6)0.0034 (5)0.0025 (5)0.0022 (5)
C60.0308 (6)0.0208 (6)0.0204 (6)0.0017 (5)0.0018 (5)0.0011 (4)
C70.0216 (5)0.0200 (5)0.0210 (6)0.0004 (5)0.0011 (4)0.0011 (4)
C80.0263 (6)0.0189 (6)0.0172 (5)0.0034 (5)0.0008 (4)0.0014 (4)
C90.0313 (7)0.0269 (6)0.0236 (6)0.0007 (5)0.0058 (5)0.0003 (5)
C100.0504 (9)0.0281 (7)0.0252 (7)0.0031 (6)0.0146 (6)0.0030 (5)
C110.0607 (10)0.0340 (8)0.0185 (6)0.0168 (7)0.0013 (6)0.0025 (5)
C120.0434 (8)0.0404 (8)0.0268 (7)0.0093 (7)0.0107 (6)0.0008 (6)
C130.0302 (7)0.0298 (7)0.0250 (6)0.0013 (5)0.0029 (5)0.0006 (5)
Geometric parameters (Å, º) top
S1—C11.6375 (14)C11—C121.383 (2)
N1—C11.3375 (17)C12—C131.388 (2)
N1—C21.4706 (15)C3—H3A0.9900
N1—C81.4330 (15)C3—H3B0.9900
N2—N31.2525 (16)C4—H4A0.9900
N2—C11.4669 (17)C4—H4B0.9900
N3—C21.4757 (16)C5—H5A0.9900
C2—C31.5305 (17)C5—H5B0.9900
C2—C71.5354 (17)C6—H6A0.9900
C3—C41.531 (2)C6—H6B0.9900
C4—C51.525 (2)C7—H7A0.9900
C5—C61.5239 (19)C7—H7B0.9900
C6—C71.5293 (15)C9—H90.9500
C8—C91.3874 (19)C10—H100.9500
C8—C131.3864 (19)C11—H110.9500
C9—C101.388 (2)C12—H120.9500
C10—C111.381 (2)C13—H130.9500
C1—N1—C2110.28 (10)H3A—C3—H3B108.00
C1—N1—C8124.87 (11)C3—C4—H4A109.00
C2—N1—C8124.27 (10)C3—C4—H4B109.00
N3—N2—C1110.17 (10)C5—C4—H4A109.00
N2—N3—C2111.76 (10)C5—C4—H4B109.00
S1—C1—N1131.58 (11)H4A—C4—H4B108.00
S1—C1—N2122.06 (10)C4—C5—H5A109.00
N1—C1—N2106.36 (11)C4—C5—H5B109.00
N1—C2—N3101.32 (9)C6—C5—H5A109.00
N1—C2—C3113.98 (10)C6—C5—H5B109.00
N1—C2—C7111.53 (9)H5A—C5—H5B108.00
N3—C2—C3109.08 (9)C5—C6—H6A109.00
N3—C2—C7109.21 (9)C5—C6—H6B109.00
C3—C2—C7111.19 (10)C7—C6—H6A109.00
C2—C3—C4111.03 (10)C7—C6—H6B109.00
C3—C4—C5111.97 (11)H6A—C6—H6B108.00
C4—C5—C6111.88 (11)C2—C7—H7A109.00
C5—C6—C7111.55 (10)C2—C7—H7B109.00
C2—C7—C6111.04 (10)C6—C7—H7A110.00
N1—C8—C9119.74 (11)C6—C7—H7B109.00
N1—C8—C13119.05 (11)H7A—C7—H7B108.00
C9—C8—C13121.21 (11)C8—C9—H9120.00
C8—C9—C10118.85 (13)C10—C9—H9121.00
C9—C10—C11120.50 (14)C9—C10—H10120.00
C10—C11—C12120.08 (13)C11—C10—H10120.00
C11—C12—C13120.31 (15)C10—C11—H11120.00
C8—C13—C12119.04 (13)C12—C11—H11120.00
C2—C3—H3A109.00C11—C12—H12120.00
C2—C3—H3B109.00C13—C12—H12120.00
C4—C3—H3A110.00C8—C13—H13121.00
C4—C3—H3B109.00C12—C13—H13120.00
C2—N1—C1—S1175.88 (10)N2—N3—C2—C7116.28 (11)
C2—N1—C1—N23.52 (12)N1—C2—C3—C4177.48 (10)
C8—N1—C1—S14.33 (19)N3—C2—C3—C465.07 (13)
C8—N1—C1—N2175.07 (10)C7—C2—C3—C455.43 (13)
C1—N1—C2—N33.14 (12)N1—C2—C7—C6175.60 (10)
C1—N1—C2—C3120.14 (11)N3—C2—C7—C664.44 (12)
C1—N1—C2—C7112.94 (11)C3—C2—C7—C655.98 (13)
C8—N1—C2—N3174.76 (10)C2—C3—C4—C554.36 (15)
C8—N1—C2—C368.24 (14)C3—C4—C5—C653.80 (15)
C8—N1—C2—C758.67 (14)C4—C5—C6—C754.12 (14)
C1—N1—C8—C9110.43 (14)C5—C6—C7—C255.15 (13)
C1—N1—C8—C1369.89 (16)N1—C8—C9—C10178.89 (12)
C2—N1—C8—C979.16 (15)C13—C8—C9—C100.8 (2)
C2—N1—C8—C13100.51 (14)N1—C8—C13—C12179.57 (12)
C1—N2—N3—C20.53 (13)C9—C8—C13—C120.1 (2)
N3—N2—C1—S1176.89 (9)C8—C9—C10—C111.0 (2)
N3—N2—C1—N12.58 (13)C9—C10—C11—C120.5 (2)
N2—N3—C2—N11.50 (12)C10—C11—C12—C130.2 (2)
N2—N3—C2—C3122.02 (11)C11—C12—C13—C80.4 (2)

Experimental details

Crystal data
Chemical formulaC13H15N3S
Mr245.34
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)9.4952 (9), 7.4845 (7), 34.692 (3)
V3)2465.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.28 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.810, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
41202, 3168, 2899
Rint0.046
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 1.10
No. of reflections3168
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.25

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

Tulane University, Erciyes University and Minia University are gratefully acknowledged for supporting this study.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 3, 390–395.  Web of Science CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKamiński, K., Obniska, J. & Dybala, M. (2008). Eur. J. Med. Chem. 43, 53–61.  Web of Science PubMed Google Scholar
First citationObniska, J., Kamiński, K. & Tatarczyńska, E. (2006). Pharmacol. Rep. 58, 207–214.  Web of Science PubMed CAS Google Scholar
First citationPatil, B. S., Krishnamurthy, G., BhojyaNaik, H. S., Latthe, P. R. & Ghate, M. (2010). Eur. J. Med. Chem. 45, 3329–3334.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97–107.  CrossRef Google Scholar
First citationSarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimakawa, S., Yoshida, Y. & Niki, E. (2003). Lipids, 38, 225–231.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThadhaney, B., Sain, D., Pernawat, G. & Talesara, G. L. (2010). Indian J. Chem. Sect. B, 49, 368–373.  Google Scholar
First citationWang, W.-L., Zhu, T.-J., Tao, H.-W., Lu, Z.-Y., Fang, Y.-C., Gu, Q.-Q. & Zhu, W.-M. (2007). Chem. Biodivers. 4, 2913–2919.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds