organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1291-o1292

5′′-(2-Fluoro­benzyl­­idene)-1′-(2-fluoro­phen­yl)-1′′-methyl-1′,2′,3′,5′,6′,7′,8′,8a'-octa­hydro­di­spiro­[ace­naphthyl­ene-1,3′-indolizine-2′,3′′-piperidine]-2,4′′(1H)-dione

aDepartment of Physics, Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 10 July 2013; accepted 15 July 2013; online 20 July 2013)

In the title compound, C37H32F2N2O2, the central six-membered piperidine ring adopts a twisted half-chair conformation, with the N and methyl­ene C atoms deviating by −0.2875 (16) and 0.4965 (15) Å, respectively, from the mean plane defined by the other four atoms. The piperidine connected to the octa­hydro­indolizine ring is in a half-chair conformation. The five-membered pyrrole ring adopts a slightly twisted envelope conformation with the piperidine C atom as the flap atom. The F and H atoms of both fluoro­benzene rings are disordered, with occupancy factors of 0.941 (3):0.059 (3) and 0.863 (3):0.137 (3). The mol­ecular structure features some intra­molecular C—H⋯O inter­actions. In the crystal, a supra­molecular zigzag chain sustained by C—H⋯F inter­actions parallel to the c axis is formed, generating a C(12) graph-set motif.

Related literature

For indolizine derivatives, see: Medda et al. (2003[Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.]). For background to spiro compounds, see: Caramella & Grunanger (1984[Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley]); James et al. (1991[James, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.]); Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikamiy, Y. (1991). Tetrahedron, 47, 6617-6622.]). For related structures, see: Sussman & Wodak (1973[Sussman, J. L. & Wodak, S. J. (1973). Acta Cryst. B29, 2918-2926.]); Wodak (1975[Wodak, S. J. (1975). Acta Cryst. B31, 569-573.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C37H32F2N2O2

  • Mr = 574.65

  • Monoclinic, P 21 /c

  • a = 8.5161 (3) Å

  • b = 16.8176 (6) Å

  • c = 20.5195 (6) Å

  • β = 99.845 (2)°

  • V = 2895.53 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.978

  • 27283 measured reflections

  • 5702 independent reflections

  • 4231 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.146

  • S = 1.02

  • 5702 reflections

  • 409 parameters

  • 23 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2 0.97 2.35 2.930 (3) 118
C7—H7⋯O1 0.98 2.31 2.823 (2) 112
C22—H22⋯O1 0.93 2.58 3.146 (3) 120
C10—H10B⋯F1i 0.97 2.53 3.102 (3) 118
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Spiro-compounds represent an important class of naturally occurring substances which in many cases exhibit important biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella & Grunanger, 1984). It is also pertinent to note that the synthesis of biologically active indolizine derivatives continues to attract the attention of organic chemists because of their wide spectrum of biological activities (Medda et al., 2003). Owing to their biological importance, we have synthesized and report here the crystal structure of the title indolizine compound.

In the title compound (Fig. 1), the six-membered piperidine ring adopts a twisted half-chair conformation, as evidenced by the puckering parameters q2 = 0.5457 (19) Å, θ = 35.2 (2)°, ϕ = 42.0 (4)° (Cremer & Pople, 1975). The sum of the bond angles around N1 [331.80 (1)°] indicates a pyramidal geometry. In the octahydroindolizine ring, the piperidine ring has a half-chair conformation and the pyrrole ring is in a slightly twisted envelope conformation, with the C8 atom at the flap of the envelope. The twist of the 2-fluorobenzene ring (C32–C37) with respect to the spiro junction is indicated by the torsion angle C3—C31—C32—C33 = 41.43 (2)°. The C8—N2 bond length [1.453 (2) Å] is comparable with Csp2—Nsp2 distances found in similar structures (Sussman & Wodak, 1973; Wodak, 1975). The dihedral angle between the fluorobenzene rings is 74.56 (1)°, and these rings make angles of 36.91 (1) and 70.91 (1)° with the acenaphthene group. The molecular structure features some intramolecular C—H···O interactions.

In the crystal structure, a zigzag supramolecular chain sustained by a C—H···F interaction, generating a graph-set motif of C11(12), parallel to the c axis, is formed (Fig. 2).

Related literature top

For indolizine derivatives, see: Medda et al. (2003). For background to spiro compounds, see: Caramella & Grunanger (1984); James et al. (1991); Kobayashi et al. (1991). For related structures, see: Sussman & Wodak (1973); Wodak (1975). For ring conformation analysis, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

A mixture of 1-methyl-3,5-bis[(E)-2-fluorophenylmethylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol) and piperidine-2-carboxylic acid (1 mmol) was dissolved in isopropyl alcohol (15 ml) and heated to reflux for 60 min. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water (100 ml) to obtain a pure yellow solid having a melting point of 510 K (yield 92%)

Refinement top

H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93–0.98 Å, and with Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for the CH3 group. The two F and two H atoms of the fluorobenzene rings are disordered over two sets of sites in the ratios 0.941 (3):0.059 (3) and 0.863 (3):0.137 (3), respectively. The F atoms were refined as two sets of atoms (F1, F1', and F2, F2') sharing the same site [their xyz and Uij parameters were equated by dummy atom constraints using the EADP command]. Also, FLAT and DFIX restraints were used to stabilize the refinement of the disordered atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Partial packing diagram showing C11(12) motif.
5''-(2-Fluorobenzylidene)-1'-(2-fluorophenyl)-1''-methyl-1',2',3',5',6',7',8',8a'-octahydrodispiro[acenaphthylene-1,3'-indolizine-2',3''-piperidine]-2,4''(1H)-dione top
Crystal data top
C37H32F2N2O2F(000) = 1208
Mr = 574.65Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 8.5161 (3) Åθ = 2–26°
b = 16.8176 (6) ŵ = 0.09 mm1
c = 20.5195 (6) ÅT = 293 K
β = 99.845 (2)°Block, yellow
V = 2895.53 (17) Å30.30 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
5702 independent reflections
Radiation source: fine-focus sealed tube4231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω and ϕ scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.974, Tmax = 0.978l = 2522
27283 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0673P)2 + 1.2896P]
where P = (Fo2 + 2Fc2)/3
5702 reflections(Δ/σ)max < 0.001
409 parametersΔρmax = 0.70 e Å3
23 restraintsΔρmin = 0.45 e Å3
Crystal data top
C37H32F2N2O2V = 2895.53 (17) Å3
Mr = 574.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5161 (3) ŵ = 0.09 mm1
b = 16.8176 (6) ÅT = 293 K
c = 20.5195 (6) Å0.30 × 0.30 × 0.25 mm
β = 99.845 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
5702 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4231 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.978Rint = 0.033
27283 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05223 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.02Δρmax = 0.70 e Å3
5702 reflectionsΔρmin = 0.45 e Å3
409 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6712 (3)0.02064 (19)0.28763 (12)0.0678 (7)
H1A0.71480.05820.32110.102*
H1B0.73210.02180.25240.102*
H1C0.67540.03180.30640.102*
C60.4080 (2)0.04033 (11)0.31277 (9)0.0372 (4)
H6A0.46460.06530.35260.045*
H6B0.38450.01420.32320.045*
C50.2531 (2)0.08512 (10)0.28843 (8)0.0318 (4)
C40.1667 (2)0.04161 (10)0.22699 (9)0.0328 (4)
C30.2679 (2)0.00480 (11)0.18251 (9)0.0352 (4)
C20.4399 (2)0.01283 (14)0.20876 (10)0.0465 (5)
H2A0.44960.06700.22520.056*
H2B0.50090.00850.17310.056*
C70.1462 (2)0.09501 (10)0.34238 (8)0.0331 (4)
H70.03570.08720.32050.040*
C80.1632 (2)0.18227 (11)0.36217 (9)0.0371 (4)
H80.26300.19030.39310.045*
C90.0260 (3)0.21723 (12)0.39059 (11)0.0500 (5)
H9A0.02280.19390.43360.060*
H9B0.07370.20510.36180.060*
C100.0457 (3)0.30692 (13)0.39748 (13)0.0624 (6)
H10A0.04740.32940.41200.075*
H10B0.13790.31880.43080.075*
C110.0666 (3)0.34456 (13)0.33238 (12)0.0570 (6)
H11A0.03160.33930.30090.068*
H11B0.08880.40080.33910.068*
C120.2009 (3)0.30590 (12)0.30461 (11)0.0499 (5)
H12A0.20630.32780.26130.060*
H12B0.30150.31640.33340.060*
C130.2847 (2)0.17411 (11)0.26733 (9)0.0347 (4)
C140.4631 (2)0.19945 (12)0.29021 (10)0.0451 (5)
C150.5233 (3)0.23152 (13)0.23229 (12)0.0523 (5)
C160.6665 (3)0.26351 (17)0.22479 (16)0.0771 (8)
H160.75190.26440.25970.093*
C170.6809 (4)0.29505 (19)0.16283 (19)0.0900 (10)
H170.77810.31660.15710.108*
C180.5589 (4)0.29523 (16)0.11125 (16)0.0782 (9)
H180.57350.31800.07140.094*
C190.4094 (3)0.26143 (13)0.11645 (12)0.0575 (6)
C200.2719 (4)0.25647 (14)0.06846 (11)0.0645 (7)
H200.27350.27550.02600.077*
C210.1360 (3)0.22419 (14)0.08309 (11)0.0591 (6)
H210.04660.22130.05010.071*
C220.1254 (3)0.19480 (12)0.14682 (10)0.0460 (5)
H220.02950.17530.15620.055*
C230.2581 (2)0.19573 (11)0.19405 (9)0.0386 (4)
C240.3982 (3)0.22939 (12)0.17870 (10)0.0457 (5)
C310.1995 (2)0.00713 (11)0.11974 (9)0.0383 (4)
H310.09380.00900.10870.046*
C320.2695 (2)0.04237 (11)0.06619 (10)0.0423 (5)
C370.23416 (17)0.01148 (8)0.00325 (11)0.0520 (5)
C360.2894 (3)0.04094 (16)0.05035 (12)0.0742 (8)
H360.26120.01780.09180.089*
C350.3877 (3)0.10561 (18)0.04128 (14)0.0871 (10)
H350.42840.12670.07680.104*
C340.4265 (3)0.13946 (17)0.02006 (14)0.0829 (9)
H340.49290.18370.02580.100*
C330.3685 (3)0.10869 (14)0.07303 (12)0.0602 (6)
C710.1764 (2)0.03691 (11)0.39982 (9)0.0381 (4)
C720.09500 (17)0.03280 (12)0.39963 (9)0.0517 (5)
C730.1094 (3)0.08554 (14)0.45142 (15)0.0702 (8)
H730.04990.13220.44800.084*
C740.2128 (4)0.06792 (17)0.50795 (14)0.0744 (8)
H740.22470.10250.54380.089*
C750.2982 (3)0.00060 (17)0.51141 (12)0.0733 (8)
H750.36920.01290.54970.088*
C760.2799 (3)0.05192 (14)0.45829 (11)0.0573 (6)
N20.17327 (19)0.22003 (9)0.29931 (7)0.0376 (4)
N10.50577 (18)0.04147 (10)0.26180 (8)0.0425 (4)
O10.02247 (15)0.03953 (8)0.21400 (7)0.0444 (3)
O20.53158 (19)0.20027 (10)0.34713 (8)0.0602 (4)
F10.13693 (19)0.05231 (8)0.00574 (10)0.0724 (5)0.941 (3)
F1'0.406 (2)0.1403 (13)0.1341 (6)0.0724 (5)0.059 (3)
F20.0043 (2)0.05342 (10)0.34383 (8)0.0805 (6)0.863 (3)
F2'0.3741 (8)0.1167 (3)0.4695 (7)0.0805 (6)0.137 (3)
H330.396 (3)0.1312 (18)0.1148 (8)0.097*0.941 (3)
H33'0.167 (3)0.033 (3)0.00 (4)0.097*0.059 (3)
H760.342 (2)0.0977 (9)0.464 (2)0.097*0.863 (3)
H76'0.0232 (6)0.0475 (9)0.3622 (4)0.097*0.137 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0343 (11)0.110 (2)0.0578 (14)0.0101 (12)0.0041 (10)0.0045 (14)
C60.0373 (10)0.0413 (10)0.0325 (9)0.0031 (8)0.0047 (8)0.0015 (8)
C50.0337 (9)0.0317 (9)0.0302 (9)0.0012 (7)0.0065 (7)0.0000 (7)
C40.0344 (10)0.0285 (9)0.0354 (10)0.0002 (7)0.0060 (8)0.0005 (7)
C30.0379 (10)0.0314 (9)0.0370 (10)0.0001 (7)0.0087 (8)0.0013 (8)
C20.0428 (11)0.0563 (13)0.0413 (11)0.0096 (9)0.0100 (9)0.0044 (9)
C70.0348 (9)0.0324 (9)0.0321 (9)0.0007 (7)0.0060 (7)0.0002 (7)
C80.0457 (10)0.0335 (10)0.0317 (9)0.0014 (8)0.0050 (8)0.0014 (7)
C90.0616 (13)0.0432 (12)0.0475 (12)0.0096 (10)0.0160 (10)0.0018 (9)
C100.0838 (17)0.0432 (13)0.0642 (15)0.0152 (12)0.0241 (13)0.0094 (11)
C110.0725 (15)0.0312 (11)0.0649 (15)0.0061 (10)0.0052 (12)0.0046 (10)
C120.0671 (14)0.0310 (10)0.0508 (12)0.0042 (9)0.0080 (11)0.0013 (9)
C130.0385 (10)0.0328 (9)0.0320 (9)0.0037 (7)0.0041 (8)0.0000 (7)
C140.0441 (11)0.0422 (11)0.0473 (12)0.0094 (9)0.0028 (9)0.0016 (9)
C150.0526 (13)0.0447 (12)0.0613 (14)0.0128 (10)0.0145 (11)0.0022 (10)
C160.0623 (16)0.0731 (18)0.098 (2)0.0264 (14)0.0191 (15)0.0128 (16)
C170.081 (2)0.081 (2)0.118 (3)0.0280 (17)0.047 (2)0.0140 (19)
C180.103 (2)0.0587 (16)0.087 (2)0.0046 (15)0.0547 (19)0.0182 (15)
C190.0839 (17)0.0402 (12)0.0560 (14)0.0020 (11)0.0331 (13)0.0073 (10)
C200.107 (2)0.0498 (14)0.0410 (13)0.0132 (14)0.0231 (14)0.0126 (10)
C210.0861 (18)0.0485 (13)0.0390 (12)0.0135 (12)0.0005 (12)0.0052 (10)
C220.0575 (13)0.0395 (11)0.0387 (11)0.0036 (9)0.0016 (9)0.0021 (8)
C230.0522 (11)0.0290 (9)0.0347 (10)0.0008 (8)0.0077 (9)0.0012 (7)
C240.0591 (13)0.0338 (10)0.0474 (12)0.0035 (9)0.0185 (10)0.0026 (9)
C310.0406 (10)0.0352 (10)0.0393 (10)0.0022 (8)0.0073 (8)0.0025 (8)
C320.0455 (11)0.0430 (11)0.0387 (10)0.0012 (8)0.0078 (9)0.0056 (8)
C370.0636 (14)0.0479 (13)0.0453 (12)0.0069 (10)0.0121 (11)0.0007 (10)
C360.100 (2)0.082 (2)0.0441 (14)0.0115 (16)0.0233 (14)0.0010 (13)
C350.110 (2)0.097 (2)0.0615 (17)0.0279 (19)0.0363 (17)0.0179 (16)
C340.096 (2)0.087 (2)0.0681 (18)0.0404 (17)0.0198 (16)0.0181 (15)
C330.0709 (16)0.0585 (15)0.0510 (13)0.0196 (12)0.0096 (12)0.0076 (11)
C710.0424 (10)0.0361 (10)0.0395 (10)0.0038 (8)0.0173 (8)0.0028 (8)
C720.0491 (12)0.0453 (12)0.0626 (14)0.0007 (10)0.0152 (11)0.0046 (10)
C730.0805 (18)0.0481 (14)0.091 (2)0.0039 (12)0.0401 (16)0.0191 (13)
C740.096 (2)0.0721 (18)0.0621 (17)0.0162 (16)0.0322 (16)0.0298 (14)
C750.097 (2)0.0772 (19)0.0443 (13)0.0044 (16)0.0085 (13)0.0168 (13)
C760.0761 (16)0.0577 (14)0.0377 (11)0.0021 (12)0.0083 (11)0.0093 (10)
N20.0485 (9)0.0292 (8)0.0350 (8)0.0001 (7)0.0068 (7)0.0005 (6)
N10.0315 (8)0.0581 (11)0.0378 (9)0.0023 (7)0.0056 (7)0.0001 (8)
O10.0343 (7)0.0511 (8)0.0475 (8)0.0042 (6)0.0058 (6)0.0128 (6)
O20.0546 (9)0.0696 (11)0.0504 (9)0.0159 (8)0.0078 (7)0.0063 (8)
F10.1051 (13)0.0591 (9)0.0528 (9)0.0272 (8)0.0135 (9)0.0110 (7)
F1'0.1051 (13)0.0591 (9)0.0528 (9)0.0272 (8)0.0135 (9)0.0110 (7)
F20.0798 (12)0.0546 (10)0.0961 (13)0.0212 (8)0.0158 (10)0.0144 (9)
F2'0.0798 (12)0.0546 (10)0.0961 (13)0.0212 (8)0.0158 (10)0.0144 (9)
Geometric parameters (Å, º) top
C1—N11.460 (3)C17—C181.350 (4)
C1—H1A0.9600C17—H170.9300
C1—H1B0.9600C18—C191.416 (4)
C1—H1C0.9600C18—H180.9300
C6—N11.444 (2)C19—C201.398 (4)
C6—C51.527 (2)C19—C241.405 (3)
C6—H6A0.9700C20—C211.358 (4)
C6—H6B0.9700C20—H200.9300
C5—C41.533 (2)C21—C221.415 (3)
C5—C71.558 (2)C21—H210.9300
C5—C131.594 (2)C22—C231.357 (3)
C4—O11.212 (2)C22—H220.9300
C4—C31.492 (2)C23—C241.404 (3)
C3—C311.335 (3)C31—C321.463 (3)
C3—C21.501 (3)C31—H310.9300
C2—N11.457 (3)C32—C371.377 (3)
C2—H2A0.9700C32—C331.390 (3)
C2—H2B0.9700C37—F11.3483 (10)
C7—C711.519 (2)C37—C361.361 (3)
C7—C81.523 (2)C37—H33'0.930 (2)
C7—H70.9800C36—C351.366 (4)
C8—N21.453 (2)C36—H360.9300
C8—C91.511 (3)C35—C341.369 (4)
C8—H80.9800C35—H350.9300
C9—C101.522 (3)C34—C331.370 (3)
C9—H9A0.9700C34—H340.9300
C9—H9B0.9700C33—F1'1.3494 (11)
C10—C111.516 (3)C33—H330.9298 (11)
C10—H10A0.9700C71—C721.362 (3)
C10—H10B0.9700C71—C761.385 (3)
C11—C121.510 (3)C72—F21.3471 (10)
C11—H11A0.9700C72—C731.374 (3)
C11—H11B0.9700C72—H76'0.9300 (11)
C12—N21.464 (2)C73—C741.363 (4)
C12—H12A0.9700C73—H730.9300
C12—H12B0.9700C74—C751.358 (4)
C13—N21.463 (2)C74—H740.9300
C13—C231.526 (3)C75—C761.378 (3)
C13—C141.570 (3)C75—H750.9300
C14—O21.213 (2)C76—F2'1.3485 (11)
C14—C151.475 (3)C76—H760.9298 (11)
C15—C161.365 (3)F1—H33'0.42 (15)
C15—C241.395 (3)F1'—H330.420 (4)
C16—C171.402 (4)F2—H76'0.420 (2)
C16—H160.9300F2'—H760.423 (10)
N1—C1—H1A109.5C16—C17—H17118.8
N1—C1—H1B109.5C17—C18—C19121.4 (3)
H1A—C1—H1B109.5C17—C18—H18119.3
N1—C1—H1C109.5C19—C18—H18119.3
H1A—C1—H1C109.5C20—C19—C24116.0 (2)
H1B—C1—H1C109.5C20—C19—C18128.8 (2)
N1—C6—C5109.23 (15)C24—C19—C18115.1 (3)
N1—C6—H6A109.8C21—C20—C19120.7 (2)
C5—C6—H6A109.8C21—C20—H20119.6
N1—C6—H6B109.8C19—C20—H20119.6
C5—C6—H6B109.8C20—C21—C22122.4 (2)
H6A—C6—H6B108.3C20—C21—H21118.8
C6—C5—C4107.45 (14)C22—C21—H21118.8
C6—C5—C7113.42 (14)C23—C22—C21118.6 (2)
C4—C5—C7112.26 (14)C23—C22—H22120.7
C6—C5—C13112.05 (14)C21—C22—H22120.7
C4—C5—C13107.73 (13)C22—C23—C24118.69 (18)
C7—C5—C13103.84 (14)C22—C23—C13131.77 (19)
O1—C4—C3121.52 (16)C24—C23—C13109.18 (17)
O1—C4—C5121.37 (16)C15—C24—C23113.42 (18)
C3—C4—C5117.06 (15)C15—C24—C19123.1 (2)
C31—C3—C4116.74 (17)C23—C24—C19123.4 (2)
C31—C3—C2123.69 (17)C3—C31—C32128.23 (18)
C4—C3—C2119.49 (16)C3—C31—H31115.9
N1—C2—C3111.81 (16)C32—C31—H31115.9
N1—C2—H2A109.3C37—C32—C33115.40 (18)
C3—C2—H2A109.3C37—C32—C31119.99 (17)
N1—C2—H2B109.3C33—C32—C31124.57 (19)
C3—C2—H2B109.3F1—C37—C36117.9 (2)
H2A—C2—H2B107.9F1—C37—C32117.34 (18)
C71—C7—C8114.66 (15)C36—C37—C32124.74 (18)
C71—C7—C5116.15 (14)F1—C37—H33'4 (10)
C8—C7—C5104.59 (14)C36—C37—H33'121 (10)
C71—C7—H7107.0C32—C37—H33'114 (10)
C8—C7—H7107.0C37—C36—C35117.9 (2)
C5—C7—H7107.0C37—C36—H36121.0
N2—C8—C9109.84 (16)C35—C36—H36121.0
N2—C8—C7101.64 (14)C36—C35—C34120.1 (2)
C9—C8—C7115.67 (17)C36—C35—H35119.9
N2—C8—H8109.8C34—C35—H35119.9
C9—C8—H8109.8C35—C34—C33120.6 (3)
C7—C8—H8109.8C35—C34—H34119.7
C8—C9—C10109.95 (19)C33—C34—H34119.7
C8—C9—H9A109.7F1'—C33—C34121.8 (13)
C10—C9—H9A109.7F1'—C33—C32117.0 (13)
C8—C9—H9B109.7C34—C33—C32121.2 (2)
C10—C9—H9B109.7F1'—C33—H331 (4)
H9A—C9—H9B108.2C34—C33—H33121 (3)
C11—C10—C9111.09 (18)C32—C33—H33118 (3)
C11—C10—H10A109.4C72—C71—C76114.05 (18)
C9—C10—H10A109.4C72—C71—C7122.22 (17)
C11—C10—H10B109.4C76—C71—C7123.59 (18)
C9—C10—H10B109.4F2—C72—C71117.99 (18)
H10A—C10—H10B108.0F2—C72—C73116.8 (2)
C12—C11—C10111.32 (18)C71—C72—C73125.16 (19)
C12—C11—H11A109.4F2—C72—H76'2.4 (8)
C10—C11—H11A109.4C71—C72—H76'119.5 (11)
C12—C11—H11B109.4C73—C72—H76'115.3 (11)
C10—C11—H11B109.4C74—C73—C72118.5 (2)
H11A—C11—H11B108.0C74—C73—H73120.8
N2—C12—C11109.28 (18)C72—C73—H73120.8
N2—C12—H12A109.8C75—C74—C73119.4 (2)
C11—C12—H12A109.8C75—C74—H74120.3
N2—C12—H12B109.8C73—C74—H74120.3
C11—C12—H12B109.8C74—C75—C76120.2 (3)
H12A—C12—H12B108.3C74—C75—H75119.9
N2—C13—C23108.52 (15)C76—C75—H75119.9
N2—C13—C14113.04 (15)F2'—C76—C75112.8 (7)
C23—C13—C14101.71 (15)F2'—C76—C71124.5 (7)
N2—C13—C5102.78 (14)C75—C76—C71122.7 (2)
C23—C13—C5119.21 (14)F2'—C76—H763 (4)
C14—C13—C5111.93 (15)C75—C76—H76116 (3)
O2—C14—C15126.59 (19)C71—C76—H76122 (3)
O2—C14—C13124.88 (19)C8—N2—C13107.98 (14)
C15—C14—C13108.06 (17)C8—N2—C12113.46 (15)
C16—C15—C24119.9 (2)C13—N2—C12116.45 (16)
C16—C15—C14132.5 (2)C6—N1—C2109.67 (15)
C24—C15—C14107.59 (18)C6—N1—C1111.95 (16)
C15—C16—C17118.0 (3)C2—N1—C1110.18 (17)
C15—C16—H16121.0C37—F1—H33'8 (10)
C17—C16—H16121.0C33—F1'—H333 (9)
C18—C17—C16122.4 (3)C72—F2—H76'5.3 (17)
C18—C17—H17118.8C76—F2'—H767 (8)
N1—C6—C5—C461.26 (19)C5—C13—C23—C24124.67 (18)
N1—C6—C5—C7174.07 (15)C16—C15—C24—C23179.3 (2)
N1—C6—C5—C1356.89 (19)C14—C15—C24—C232.3 (3)
C6—C5—C4—O1147.63 (17)C16—C15—C24—C192.2 (4)
C7—C5—C4—O122.3 (2)C14—C15—C24—C19174.7 (2)
C13—C5—C4—O191.5 (2)C22—C23—C24—C15176.11 (19)
C6—C5—C4—C334.8 (2)C13—C23—C24—C152.2 (2)
C7—C5—C4—C3160.15 (15)C22—C23—C24—C190.9 (3)
C13—C5—C4—C386.13 (18)C13—C23—C24—C19174.83 (19)
O1—C4—C3—C3121.0 (3)C20—C19—C24—C15178.3 (2)
C5—C4—C3—C31156.56 (17)C18—C19—C24—C151.1 (3)
O1—C4—C3—C2162.03 (18)C20—C19—C24—C231.5 (3)
C5—C4—C3—C220.4 (2)C18—C19—C24—C23177.8 (2)
C31—C3—C2—N1148.31 (19)C4—C3—C31—C32179.44 (17)
C4—C3—C2—N128.4 (3)C2—C3—C31—C323.7 (3)
C6—C5—C7—C7121.1 (2)C3—C31—C32—C37140.96 (19)
C4—C5—C7—C71100.96 (18)C3—C31—C32—C3341.4 (3)
C13—C5—C7—C71142.95 (15)C33—C32—C37—F1179.21 (15)
C6—C5—C7—C8106.39 (17)C31—C32—C37—F11.39 (19)
C4—C5—C7—C8131.58 (15)C33—C32—C37—C360.40 (12)
C13—C5—C7—C815.49 (17)C31—C32—C37—C36178.22 (17)
C71—C7—C8—N2164.53 (14)F1—C37—C36—C35179.91 (17)
C5—C7—C8—N236.16 (17)C32—C37—C36—C350.30 (14)
C71—C7—C8—C976.6 (2)C37—C36—C35—C340.7 (3)
C5—C7—C8—C9155.07 (16)C36—C35—C34—C330.5 (4)
N2—C8—C9—C1056.4 (2)C35—C34—C33—F1'179.2 (3)
C7—C8—C9—C10170.73 (18)C35—C34—C33—C320.3 (4)
C8—C9—C10—C1154.0 (3)C37—C32—C33—F1'179.7 (2)
C9—C10—C11—C1253.7 (3)C31—C32—C33—F1'2.6 (4)
C10—C11—C12—N254.7 (3)C37—C32—C33—C340.7 (3)
C6—C5—C13—N2133.40 (15)C31—C32—C33—C34178.4 (2)
C4—C5—C13—N2108.61 (15)C8—C7—C71—C72145.43 (14)
C7—C5—C13—N210.62 (17)C5—C7—C71—C7292.28 (17)
C6—C5—C13—C23106.60 (18)C8—C7—C71—C7630.1 (2)
C4—C5—C13—C2311.4 (2)C5—C7—C71—C7692.18 (19)
C7—C5—C13—C23130.62 (17)C76—C71—C72—F2177.74 (15)
C6—C5—C13—C1411.8 (2)C7—C71—C72—F26.32 (17)
C4—C5—C13—C14129.79 (16)C76—C71—C72—C730.17 (11)
C7—C5—C13—C14110.98 (16)C7—C71—C72—C73175.77 (15)
N2—C13—C14—O256.2 (3)F2—C72—C73—C74177.86 (17)
C23—C13—C14—O2172.4 (2)C71—C72—C73—C740.07 (13)
C5—C13—C14—O259.3 (3)C72—C73—C74—C750.1 (3)
N2—C13—C14—C15116.36 (18)C73—C74—C75—C760.2 (3)
C23—C13—C14—C150.2 (2)C74—C75—C76—F2'179.5 (3)
C5—C13—C14—C15128.16 (17)C74—C75—C76—C710.1 (3)
O2—C14—C15—C165.5 (4)C72—C71—C76—F2'179.2 (2)
C13—C14—C15—C16177.9 (3)C7—C71—C76—F2'4.9 (4)
O2—C14—C15—C24170.9 (2)C72—C71—C76—C750.1 (2)
C13—C14—C15—C241.4 (2)C7—C71—C76—C75175.81 (19)
C24—C15—C16—C171.4 (4)C9—C8—N2—C13168.66 (16)
C14—C15—C16—C17174.7 (3)C7—C8—N2—C1345.67 (18)
C15—C16—C17—C180.5 (5)C9—C8—N2—C1260.7 (2)
C16—C17—C18—C191.6 (5)C7—C8—N2—C12176.30 (16)
C17—C18—C19—C20179.9 (3)C23—C13—N2—C8162.33 (15)
C17—C18—C19—C240.8 (4)C14—C13—N2—C885.64 (18)
C24—C19—C20—C211.7 (3)C5—C13—N2—C835.19 (17)
C18—C19—C20—C21177.6 (3)C23—C13—N2—C1268.7 (2)
C19—C20—C21—C220.5 (4)C14—C13—N2—C1243.3 (2)
C20—C21—C22—C233.0 (3)C5—C13—N2—C12164.16 (15)
C21—C22—C23—C243.1 (3)C11—C12—N2—C859.3 (2)
C21—C22—C23—C13175.42 (19)C11—C12—N2—C13174.40 (16)
N2—C13—C23—C2254.5 (3)C5—C6—N1—C273.89 (19)
C14—C13—C23—C22173.9 (2)C5—C6—N1—C1163.50 (19)
C5—C13—C23—C2262.5 (3)C3—C2—N1—C654.3 (2)
N2—C13—C23—C24118.30 (17)C3—C2—N1—C1177.93 (18)
C14—C13—C23—C241.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O20.972.352.930 (3)118
C7—H7···O10.982.312.823 (2)112
C22—H22···O10.932.583.146 (3)120
C10—H10B···F1i0.972.533.102 (3)118
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O20.972.352.930 (3)118
C7—H7···O10.982.312.823 (2)112
C22—H22···O10.932.583.146 (3)120
C10—H10B···F1i0.972.533.102 (3)118
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

JS and RV thank the management of Madura College for their encouragement and support. RRK thanks DST, New Delhi, for funds under the Fast Track Scheme (Grant No. SR/FT/CS-073/2009). RV thanks Dr R. Jagan of IIT, Madras, for his help with the data collection and solving the structure.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291–312. New York: Wiley  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJames, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikamiy, Y. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationMedda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSussman, J. L. & Wodak, S. J. (1973). Acta Cryst. B29, 2918–2926.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWodak, S. J. (1975). Acta Cryst. B31, 569–573.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1291-o1292
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds