organic compounds
Thiophene-2-carbonyl azide
aDepartment of Chemistry & Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, TX 79409, USA
*Correspondence e-mail: michael.findlater@ttu.edu
The title compound, C5H3N3OS, is almost planar (r.m.s. deviation for the ten non-H atoms = 0.018 Å) and forms an extended layer structure in the (100) plane, held together via hydrogen-bonding interactions between adjacent molecules. Of particular note is the occurrence of RC—H⋯N−=N+=NR interactions between an aromatic C—H group and an azide moiety which, in conjunction with a complementary C—H⋯O=C interaction, forms a nine-membered ring.
Related literature
For a previous preparation of the title compound, see: Binder et al. (1977). For the synthesis of the starting material, 2-thiophenecarbonyl chloride, see: Kruse et al. (1989). For related structures, see: Arsenyan et al. (2008); Elshaarawy & Janiak (2011); Low et al. (2009).
Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 1998); cell COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL, enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813019740/tk5242sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813019740/tk5242Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813019740/tk5242Isup3.cml
The title compound was prepared by the method of Binder et al. (1977), from 2-thiophenecarbonyl chloride (Kruse et al., 1989). Crystals suitable for X-ray
were obtained by cooling a toluene solution of the title compound to -30°C.Carbon-bound H atoms were included in calculated positions (C—H distances are 0.95 Å) and refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom).
Data collection: COLLECT (Nonius, 1998); cell
COLLECT (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. View of one of the hydrogen-bonded sheets in the (1 0 0) plane. |
C5H3N3OS | F(000) = 624 |
Mr = 153.16 | Dx = 1.584 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.668 (3) Å | Cell parameters from 1494 reflections |
b = 6.2153 (12) Å | θ = 1.0–27.5° |
c = 16.400 (3) Å | µ = 0.43 mm−1 |
β = 95.91 (3)° | T = 153 K |
V = 1284.4 (4) Å3 | Block, colourless |
Z = 8 | 0.20 × 0.16 × 0.15 mm |
Nonius KappaCCD diffractometer | 1152 reflections with I > 2σ(I) |
Radiation source: fine focus sealed tube | Rint = 0.025 |
ϕ and ω scans | θmax = 27.4°, θmin = 2.5° |
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) | h = −15→16 |
Tmin = 0.920, Tmax = 0.939 | k = −7→8 |
2728 measured reflections | l = −21→21 |
1459 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0659P)2 + 3.253P] where P = (Fo2 + 2Fc2)/3 |
1459 reflections | (Δ/σ)max = 0.001 |
91 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
C5H3N3OS | V = 1284.4 (4) Å3 |
Mr = 153.16 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 12.668 (3) Å | µ = 0.43 mm−1 |
b = 6.2153 (12) Å | T = 153 K |
c = 16.400 (3) Å | 0.20 × 0.16 × 0.15 mm |
β = 95.91 (3)° |
Nonius KappaCCD diffractometer | 1459 independent reflections |
Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) | 1152 reflections with I > 2σ(I) |
Tmin = 0.920, Tmax = 0.939 | Rint = 0.025 |
2728 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.59 e Å−3 |
1459 reflections | Δρmin = −0.49 e Å−3 |
91 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3676 (2) | 0.0373 (4) | 0.57926 (15) | 0.0260 (6) | |
C2 | 0.3494 (2) | −0.1827 (4) | 0.59864 (15) | 0.0238 (6) | |
H2 | 0.3401 | −0.2988 | 0.5609 | 0.029* | |
C3 | 0.3478 (2) | −0.1956 (5) | 0.68730 (18) | 0.0334 (7) | |
H3 | 0.3368 | −0.3267 | 0.7150 | 0.040* | |
C4 | 0.3632 (2) | −0.0048 (5) | 0.72675 (17) | 0.0347 (7) | |
H4 | 0.3647 | 0.0105 | 0.7845 | 0.042* | |
C5 | 0.3763 (2) | 0.1133 (5) | 0.49575 (15) | 0.0271 (6) | |
N1 | 0.3946 (2) | 0.3386 (4) | 0.49385 (13) | 0.0323 (6) | |
N2 | 0.39920 (19) | 0.4093 (4) | 0.42227 (13) | 0.0308 (6) | |
N3 | 0.4044 (2) | 0.4879 (5) | 0.36125 (15) | 0.0401 (7) | |
O1 | 0.36928 (17) | −0.0003 (4) | 0.43538 (12) | 0.0382 (5) | |
S1 | 0.37950 (6) | 0.20165 (12) | 0.66320 (4) | 0.0360 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0249 (13) | 0.0295 (14) | 0.0237 (12) | −0.0011 (11) | 0.0039 (10) | −0.0039 (10) |
C2 | 0.0247 (13) | 0.0226 (13) | 0.0248 (12) | 0.0005 (10) | 0.0062 (10) | 0.0053 (10) |
C3 | 0.0358 (16) | 0.0308 (16) | 0.0340 (15) | −0.0005 (12) | 0.0055 (12) | 0.0079 (12) |
C4 | 0.0364 (16) | 0.0438 (18) | 0.0240 (13) | 0.0034 (14) | 0.0035 (11) | 0.0026 (12) |
C5 | 0.0251 (13) | 0.0311 (15) | 0.0255 (13) | −0.0021 (11) | 0.0045 (10) | −0.0028 (11) |
N1 | 0.0438 (14) | 0.0336 (13) | 0.0196 (11) | −0.0007 (11) | 0.0028 (9) | −0.0002 (9) |
N2 | 0.0317 (13) | 0.0335 (14) | 0.0266 (12) | −0.0035 (10) | 0.0002 (9) | −0.0026 (10) |
N3 | 0.0461 (16) | 0.0450 (16) | 0.0286 (13) | −0.0109 (13) | 0.0005 (10) | 0.0039 (12) |
O1 | 0.0519 (14) | 0.0382 (12) | 0.0255 (10) | −0.0086 (10) | 0.0080 (8) | −0.0072 (9) |
S1 | 0.0487 (5) | 0.0318 (4) | 0.0275 (4) | −0.0028 (3) | 0.0036 (3) | −0.0018 (3) |
C1—C2 | 1.428 (4) | C4—S1 | 1.679 (3) |
C1—C5 | 1.464 (4) | C4—H4 | 0.9500 |
C1—S1 | 1.708 (3) | C5—O1 | 1.212 (3) |
C2—C3 | 1.459 (4) | C5—N1 | 1.420 (4) |
C2—H2 | 0.9500 | N1—N2 | 1.260 (3) |
C3—C4 | 1.355 (4) | N2—N3 | 1.122 (3) |
C3—H3 | 0.9500 | ||
C2—C1—C5 | 123.1 (2) | C3—C4—S1 | 113.2 (2) |
C2—C1—S1 | 113.34 (19) | C3—C4—H4 | 123.4 |
C5—C1—S1 | 123.5 (2) | S1—C4—H4 | 123.4 |
C1—C2—C3 | 107.1 (2) | O1—C5—N1 | 123.7 (2) |
C1—C2—H2 | 126.5 | O1—C5—C1 | 124.8 (3) |
C3—C2—H2 | 126.5 | N1—C5—C1 | 111.5 (2) |
C4—C3—C2 | 114.3 (3) | N2—N1—C5 | 112.8 (2) |
C4—C3—H3 | 122.8 | N3—N2—N1 | 174.5 (3) |
C2—C3—H3 | 122.8 | C4—S1—C1 | 92.11 (14) |
C5—C1—C2—C3 | 178.9 (2) | S1—C1—C5—N1 | −0.6 (3) |
S1—C1—C2—C3 | −0.5 (3) | O1—C5—N1—N2 | 2.1 (4) |
C1—C2—C3—C4 | 0.0 (3) | C1—C5—N1—N2 | −178.0 (2) |
C2—C3—C4—S1 | 0.5 (4) | C3—C4—S1—C1 | −0.7 (3) |
C2—C1—C5—O1 | −0.1 (4) | C2—C1—S1—C4 | 0.7 (2) |
S1—C1—C5—O1 | 179.2 (2) | C5—C1—S1—C4 | −178.7 (2) |
C2—C1—C5—N1 | −179.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N1i | 0.95 | 2.63 | 3.512 (4) | 155 |
C3—H3···N3ii | 0.95 | 2.66 | 3.396 (4) | 135 |
C4—H4···O1ii | 0.95 | 2.47 | 3.415 (4) | 173 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N1i | 0.95 | 2.63 | 3.512 (4) | 155 |
C3—H3···N3ii | 0.95 | 2.66 | 3.396 (4) | 135 |
C4—H4···O1ii | 0.95 | 2.47 | 3.415 (4) | 173 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y, z+1/2. |
Acknowledgements
The authors gratefully acknowledge the Robert A. Welch Foundation for their support of GCH via the Welch Summer Scholars Program, and Texas Tech University for start-up funds.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Arsenyan, P., Petrenko, A. & Belyakov, S. (2008). Tetrahedron Lett. 49, 5255–5257. Web of Science CSD CrossRef CAS Google Scholar
Binder, D., Habison, G. & Noe, C. R. (1977). Synthesis, pp. 255–256. CrossRef Google Scholar
Elshaarawy, R. F. & Janiak, C. (2011). Z. Naturforsch. Teil B, 66, 1201–1208. Google Scholar
Kruse, L. I., Ladd, D. L., Harrsch, P. B., McCabe, F. L., Mong, S.-M., Faucette, L. & Johnson, R. (1989). J. Med. Chem. 32, 409–417. CrossRef CAS PubMed Web of Science Google Scholar
Low, J. N., Quesada, A., Santos, L. M. N. B. F., Schröder, B. & Gomes, L. R. (2009). J. Chem. Crystallogr. 39, 747–752. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2013). SHELX2013. University of Göttingen, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (Fig. 1) displays a different organization in the solid state to that seen in related compounds. It forms one-dimensional hydrogen-bonded chains through the formation of C—H···N/O hydrogen bonds (Table 1 and Fig. 2), that are then linked into two-dimensional sheets in the (1 0 0) plane by further C—H···N interactions. This results in utilization of all the H atoms in the molecule for hydrogen-bonding. All three related structures (Arsenyan et al., 2008; Elshaarawy & Janiak, 2011; Low et al., 2009) are, in contrast, dominated by N—H···O/N hydrogen bonding, resulting in two different one-dimensional chains (Arsenyan et al., 2008; Low et al., 2009), and a two-dimensional sheet (Elshaarawy & Janiak, 2011).