organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Thio­phene-2-carbonyl azide

aDepartment of Chemistry & Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, TX 79409, USA
*Correspondence e-mail: michael.findlater@ttu.edu

(Received 15 July 2013; accepted 16 July 2013; online 24 July 2013)

The title compound, C5H3N3OS, is almost planar (r.m.s. deviation for the ten non-H atoms = 0.018 Å) and forms an extended layer structure in the (100) plane, held together via hydrogen-bonding inter­actions between adjacent mol­ecules. Of particular note is the occurrence of RC—H⋯N=N+=NR inter­actions between an aromatic C—H group and an azide moiety which, in conjunction with a complementary C—H⋯O=C inter­action, forms a nine-membered ring.

Related literature

For a previous preparation of the title compound, see: Binder et al. (1977[Binder, D., Habison, G. & Noe, C. R. (1977). Synthesis, pp. 255-256.]). For the synthesis of the starting material, 2-thio­phene­carbonyl chloride, see: Kruse et al. (1989[Kruse, L. I., Ladd, D. L., Harrsch, P. B., McCabe, F. L., Mong, S.-M., Faucette, L. & Johnson, R. (1989). J. Med. Chem. 32, 409-417.]). For related structures, see: Arsenyan et al. (2008[Arsenyan, P., Petrenko, A. & Belyakov, S. (2008). Tetrahedron Lett. 49, 5255-5257.]); Elshaarawy & Janiak (2011[Elshaarawy, R. F. & Janiak, C. (2011). Z. Naturforsch. Teil B, 66, 1201-1208.]); Low et al. (2009[Low, J. N., Quesada, A., Santos, L. M. N. B. F., Schröder, B. & Gomes, L. R. (2009). J. Chem. Crystallogr. 39, 747-752.]).

[Scheme 1]

Experimental

Crystal data
  • C5H3N3OS

  • Mr = 153.16

  • Monoclinic, C 2/c

  • a = 12.668 (3) Å

  • b = 6.2153 (12) Å

  • c = 16.400 (3) Å

  • β = 95.91 (3)°

  • V = 1284.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 153 K

  • 0.20 × 0.16 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.920, Tmax = 0.939

  • 2728 measured reflections

  • 1459 independent reflections

  • 1152 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.154

  • S = 1.13

  • 1459 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1i 0.95 2.63 3.512 (4) 155
C3—H3⋯N3ii 0.95 2.66 3.396 (4) 135
C4—H4⋯O1ii 0.95 2.47 3.415 (4) 173
Symmetry codes: (i) x, y-1, z; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013[Sheldrick, G. M. (2013). SHELX2013. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (Fig. 1) displays a different organization in the solid state to that seen in related compounds. It forms one-dimensional hydrogen-bonded chains through the formation of C—H···N/O hydrogen bonds (Table 1 and Fig. 2), that are then linked into two-dimensional sheets in the (1 0 0) plane by further C—H···N interactions. This results in utilization of all the H atoms in the molecule for hydrogen-bonding. All three related structures (Arsenyan et al., 2008; Elshaarawy & Janiak, 2011; Low et al., 2009) are, in contrast, dominated by N—H···O/N hydrogen bonding, resulting in two different one-dimensional chains (Arsenyan et al., 2008; Low et al., 2009), and a two-dimensional sheet (Elshaarawy & Janiak, 2011).

Related literature top

For a previous preparation of the title compound, see: Binder et al. (1977). For the synthesis of the starting material, 2-thiophenecarbonyl chloride, see: Kruse et al. (1989). For related structures, see: Arsenyan et al. (2008); Elshaarawy & Janiak (2011); Low et al. (2009).

Experimental top

The title compound was prepared by the method of Binder et al. (1977), from 2-thiophenecarbonyl chloride (Kruse et al., 1989). Crystals suitable for X-ray structure determination were obtained by cooling a toluene solution of the title compound to -30°C.

Refinement top

Carbon-bound H atoms were included in calculated positions (C—H distances are 0.95 Å) and refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of one of the hydrogen-bonded sheets in the (1 0 0) plane.
Thiophene-2-carbonyl azide top
Crystal data top
C5H3N3OSF(000) = 624
Mr = 153.16Dx = 1.584 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.668 (3) ÅCell parameters from 1494 reflections
b = 6.2153 (12) Åθ = 1.0–27.5°
c = 16.400 (3) ŵ = 0.43 mm1
β = 95.91 (3)°T = 153 K
V = 1284.4 (4) Å3Block, colourless
Z = 80.20 × 0.16 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
1152 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.025
ϕ and ω scansθmax = 27.4°, θmin = 2.5°
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
h = 1516
Tmin = 0.920, Tmax = 0.939k = 78
2728 measured reflectionsl = 2121
1459 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0659P)2 + 3.253P]
where P = (Fo2 + 2Fc2)/3
1459 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C5H3N3OSV = 1284.4 (4) Å3
Mr = 153.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.668 (3) ŵ = 0.43 mm1
b = 6.2153 (12) ÅT = 153 K
c = 16.400 (3) Å0.20 × 0.16 × 0.15 mm
β = 95.91 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1459 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
1152 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.939Rint = 0.025
2728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.13Δρmax = 0.59 e Å3
1459 reflectionsΔρmin = 0.49 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3676 (2)0.0373 (4)0.57926 (15)0.0260 (6)
C20.3494 (2)0.1827 (4)0.59864 (15)0.0238 (6)
H20.34010.29880.56090.029*
C30.3478 (2)0.1956 (5)0.68730 (18)0.0334 (7)
H30.33680.32670.71500.040*
C40.3632 (2)0.0048 (5)0.72675 (17)0.0347 (7)
H40.36470.01050.78450.042*
C50.3763 (2)0.1133 (5)0.49575 (15)0.0271 (6)
N10.3946 (2)0.3386 (4)0.49385 (13)0.0323 (6)
N20.39920 (19)0.4093 (4)0.42227 (13)0.0308 (6)
N30.4044 (2)0.4879 (5)0.36125 (15)0.0401 (7)
O10.36928 (17)0.0003 (4)0.43538 (12)0.0382 (5)
S10.37950 (6)0.20165 (12)0.66320 (4)0.0360 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0249 (13)0.0295 (14)0.0237 (12)0.0011 (11)0.0039 (10)0.0039 (10)
C20.0247 (13)0.0226 (13)0.0248 (12)0.0005 (10)0.0062 (10)0.0053 (10)
C30.0358 (16)0.0308 (16)0.0340 (15)0.0005 (12)0.0055 (12)0.0079 (12)
C40.0364 (16)0.0438 (18)0.0240 (13)0.0034 (14)0.0035 (11)0.0026 (12)
C50.0251 (13)0.0311 (15)0.0255 (13)0.0021 (11)0.0045 (10)0.0028 (11)
N10.0438 (14)0.0336 (13)0.0196 (11)0.0007 (11)0.0028 (9)0.0002 (9)
N20.0317 (13)0.0335 (14)0.0266 (12)0.0035 (10)0.0002 (9)0.0026 (10)
N30.0461 (16)0.0450 (16)0.0286 (13)0.0109 (13)0.0005 (10)0.0039 (12)
O10.0519 (14)0.0382 (12)0.0255 (10)0.0086 (10)0.0080 (8)0.0072 (9)
S10.0487 (5)0.0318 (4)0.0275 (4)0.0028 (3)0.0036 (3)0.0018 (3)
Geometric parameters (Å, º) top
C1—C21.428 (4)C4—S11.679 (3)
C1—C51.464 (4)C4—H40.9500
C1—S11.708 (3)C5—O11.212 (3)
C2—C31.459 (4)C5—N11.420 (4)
C2—H20.9500N1—N21.260 (3)
C3—C41.355 (4)N2—N31.122 (3)
C3—H30.9500
C2—C1—C5123.1 (2)C3—C4—S1113.2 (2)
C2—C1—S1113.34 (19)C3—C4—H4123.4
C5—C1—S1123.5 (2)S1—C4—H4123.4
C1—C2—C3107.1 (2)O1—C5—N1123.7 (2)
C1—C2—H2126.5O1—C5—C1124.8 (3)
C3—C2—H2126.5N1—C5—C1111.5 (2)
C4—C3—C2114.3 (3)N2—N1—C5112.8 (2)
C4—C3—H3122.8N3—N2—N1174.5 (3)
C2—C3—H3122.8C4—S1—C192.11 (14)
C5—C1—C2—C3178.9 (2)S1—C1—C5—N10.6 (3)
S1—C1—C2—C30.5 (3)O1—C5—N1—N22.1 (4)
C1—C2—C3—C40.0 (3)C1—C5—N1—N2178.0 (2)
C2—C3—C4—S10.5 (4)C3—C4—S1—C10.7 (3)
C2—C1—C5—O10.1 (4)C2—C1—S1—C40.7 (2)
S1—C1—C5—O1179.2 (2)C5—C1—S1—C4178.7 (2)
C2—C1—C5—N1179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i0.952.633.512 (4)155
C3—H3···N3ii0.952.663.396 (4)135
C4—H4···O1ii0.952.473.415 (4)173
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i0.952.633.512 (4)155
C3—H3···N3ii0.952.663.396 (4)135
C4—H4···O1ii0.952.473.415 (4)173
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Robert A. Welch Foundation for their support of GCH via the Welch Summer Scholars Program, and Texas Tech University for start-up funds.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArsenyan, P., Petrenko, A. & Belyakov, S. (2008). Tetrahedron Lett. 49, 5255–5257.  Web of Science CSD CrossRef CAS Google Scholar
First citationBinder, D., Habison, G. & Noe, C. R. (1977). Synthesis, pp. 255–256.  CrossRef Google Scholar
First citationElshaarawy, R. F. & Janiak, C. (2011). Z. Naturforsch. Teil B, 66, 1201–1208.  Google Scholar
First citationKruse, L. I., Ladd, D. L., Harrsch, P. B., McCabe, F. L., Mong, S.-M., Faucette, L. & Johnson, R. (1989). J. Med. Chem. 32, 409–417.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLow, J. N., Quesada, A., Santos, L. M. N. B. F., Schröder, B. & Gomes, L. R. (2009). J. Chem. Crystallogr. 39, 747–752.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2013). SHELX2013. University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds