organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Allyl-4-chloro-2H-indazol-5-yl)-4-meth­­oxy­benzene­sulfonamide hemi­hydrate

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: hakima_chicha@yahoo.fr

(Received 23 July 2013; accepted 24 July 2013; online 31 July 2013)

The fused five- and six-membered rings in the title compound, C17H16ClN3O3S·0.5H2O, are practically coplanar, with the maximum deviation from the mean plane being 0.057 (3) Å for the C atom bound to the exocyclic N atom. The indazole system makes a dihedral angle of 66.18 (12)° with the plane through the benzene ring, and it is nearly perpendicular to the allyl group, as indicated by the N—N—C—C torsion angle of 79.2 (3)°. In the crystal, the water mol­ecule, lying on a twofold axis, forms O—H⋯N and accepts N—H⋯O hydrogen bonds. Additional C—H⋯O hydrogen bonds contribute to the formation of a chain along the b-axis direction.

Related literature

For the pharmacological activity of sulfonamides, see: Brzozowski et al. (2010[Brzozowski, Z., Slawinski, J., Saczewski, F., Innocenti, A. & Supuran, C. T. (2010). Eur. J. Med. Chem. 45, 2396-2404.]); Drew (2000[Drew, J. (2000). Science, 287, 1960-964.]); Garaj et al. (2005[Garaj, V., Puccetti, L., Fasolis, G., Winum, J. Y., Montero, J. L., Scozzafava, A., Vullo, D., Innocenti, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3102-3108.]); Lopez et al. (2010[Lopez, M., Bornaghi, L. F., Innocenti, A., Vullo, D., Charman, S. A., Supuran, C. T. & Poulsen, S.-A. (2010). J. Med. Chem. 53, 2913-2926.]). For similar compounds, see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16ClN3O3S·0.5H2O

  • Mr = 386.86

  • Monoclinic, C 2/c

  • a = 23.5515 (9) Å

  • b = 8.9081 (3) Å

  • c = 20.8278 (8) Å

  • β = 122.628 (2)°

  • V = 3680.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.41 × 0.38 × 0.27 mm

Data collection
  • Bruker X8 APEX diffractometer

  • 20391 measured reflections

  • 4389 independent reflections

  • 2740 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.02

  • 4389 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.83 2.04 2.875 (2) 174
O4—H4⋯N2 0.87 2.00 2.822 (2) 158
C7—H7⋯O3ii 0.93 2.37 3.288 (3) 170
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Research on sulfonamides are justified by the medical interest of these compounds. Indeed, these drugs possess different types of pharmacological activities such as anti-bacterial, hypoglycemic, anti-inflammatory agents and anti-tumour (Lopez, et al., 2010), anti-carbonic anhydrase (Brzozowski et al., 2010), hypoglycemia (Drew, 2000) and anti-cancer activity (Garaj et al., 2005). This work is part of research on the synthesis of some new N-(6 (4)-indazolyl derivatives)aylsulfonamide recently reported by our group (Abbassi et al., 2012, Abbassi et al., 2013).

The molecule of the N-(2-allyl-5-chloro-2H-indazol-5-yl)-4-methoxybenzenesulfonamide is built up from fused five- and six-membered rings which are almost co-planar, with a maximum deviation of -0.057 (3) Å for C1 atom as shown in Fig. 1. Moreover, the fused rings system is nearly perpendicular to the plane through the atoms forming the allyl group (C8-C10) and to benzene ring (C11-C16) as indicated by the dihedral angles between them of 66.4 (5) and 66.18 (12)°, respectively.

The cohesion of the crystal structure is ensured by O4–H4···N2, N1–H1···O4 and C7–H7···O3 hydrogen bonds formed between the water and the organic molecules forming a one-dimensional chain along the b axis (Table 2).

Related literature top

For the pharmacological activity of sulfonamides, see: Brzozowski et al. (2010); Drew (2000); Garaj et al. (2005); Lopez et al. (2010). For similar compounds, see: Abbassi et al. (2012, 2013).

Experimental top

A mixture of 2-allyl-5-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in absolute ethanol (25 ml) was heated at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate:hexane 1:9). The title compound was recrystallized from its ethanol solution.

Refinement top

The C-bound H atoms were located in a difference map and treated as riding with C—H = 0.93-0.97 Å for methyl-, methylene-, aromatic-H, respectively. The N—H and O–H atoms were included in their "as located" positions. Uiso(H) = 1.2Ueq (aromatic, methylene, NH and OH) and Uiso(H) = 1.5 Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
N-(2-Allyl-4-chloro-2H-indazol-5-yl)-4-methoxybenzenesulfonamide hemihydrate top
Crystal data top
C17H16ClN3O3S·0.5H2OF(000) = 1608
Mr = 386.86Dx = 1.396 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4389 reflections
a = 23.5515 (9) Åθ = 2.5–27.9°
b = 8.9081 (3) ŵ = 0.35 mm1
c = 20.8278 (8) ÅT = 296 K
β = 122.628 (2)°Block, colourless
V = 3680.1 (2) Å30.41 × 0.38 × 0.27 mm
Z = 8
Data collection top
Bruker X8 APEX
diffractometer
2740 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 27.9°, θmin = 2.5°
ϕ and ω scansh = 3029
20391 measured reflectionsk = 1111
4389 independent reflectionsl = 2527
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0457P)2 + 2.416P]
where P = (Fo2 + 2Fc2)/3
4389 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C17H16ClN3O3S·0.5H2OV = 3680.1 (2) Å3
Mr = 386.86Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.5515 (9) ŵ = 0.35 mm1
b = 8.9081 (3) ÅT = 296 K
c = 20.8278 (8) Å0.41 × 0.38 × 0.27 mm
β = 122.628 (2)°
Data collection top
Bruker X8 APEX
diffractometer
2740 reflections with I > 2σ(I)
20391 measured reflectionsRint = 0.057
4389 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
4389 reflectionsΔρmin = 0.33 e Å3
231 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07686 (11)0.1101 (2)0.24133 (13)0.0363 (5)
C20.06759 (12)0.0223 (3)0.19808 (14)0.0434 (6)
H20.05690.01210.14830.052*
C30.07383 (13)0.1630 (3)0.22687 (14)0.0457 (6)
H30.06880.24760.19810.055*
C40.08816 (12)0.1761 (3)0.30157 (13)0.0402 (5)
C50.09891 (11)0.0468 (2)0.34607 (13)0.0369 (5)
C60.09541 (11)0.0968 (2)0.31577 (13)0.0361 (5)
C70.10847 (12)0.1007 (3)0.41405 (14)0.0458 (6)
H70.11690.04410.45580.055*
C80.11049 (16)0.3571 (3)0.46422 (16)0.0612 (8)
H8A0.07700.43580.43940.073*
H8B0.10280.30650.50010.073*
C90.1797 (2)0.4252 (4)0.5063 (2)0.0854 (11)
H90.19470.46790.47730.103*
C100.2188 (2)0.4290 (6)0.5770 (3)0.1285 (17)
H10A0.20560.38740.60800.154*
H10B0.26100.47340.59870.154*
C110.19083 (12)0.3430 (3)0.25760 (13)0.0404 (5)
C120.23937 (14)0.2387 (3)0.27121 (15)0.0517 (7)
H120.22880.16070.23690.062*
C130.30364 (14)0.2495 (3)0.33557 (15)0.0521 (7)
H130.33640.17960.34430.062*
C140.31891 (13)0.3638 (3)0.38665 (14)0.0448 (6)
C150.26970 (14)0.4682 (3)0.37284 (15)0.0555 (7)
H150.28020.54610.40720.067*
C160.20606 (13)0.4575 (3)0.30924 (15)0.0514 (7)
H160.17320.52690.30080.062*
C170.43186 (15)0.2760 (4)0.47218 (17)0.0706 (9)
H17A0.47220.30570.51890.106*
H17B0.44090.26880.43250.106*
H17C0.41710.18020.47900.106*
N10.06279 (10)0.2526 (2)0.20483 (11)0.0415 (5)
H10.04730.31770.22000.050*
N20.09126 (11)0.3021 (2)0.33985 (12)0.0491 (5)
N30.10311 (11)0.2499 (2)0.40710 (12)0.0481 (5)
O10.08137 (9)0.47240 (19)0.14958 (10)0.0602 (5)
O20.11154 (9)0.2212 (2)0.12606 (10)0.0550 (5)
O30.38047 (10)0.3849 (2)0.45159 (10)0.0651 (6)
O40.00000.5316 (2)0.25000.0455 (6)
H40.03240.48000.28680.055*
S10.10886 (3)0.32522 (7)0.17658 (3)0.04380 (18)
Cl10.11387 (4)0.25023 (7)0.37487 (4)0.0539 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0325 (12)0.0362 (11)0.0432 (14)0.0015 (9)0.0224 (10)0.0012 (10)
C20.0502 (15)0.0461 (13)0.0395 (14)0.0016 (11)0.0279 (12)0.0045 (11)
C30.0548 (15)0.0385 (13)0.0473 (15)0.0058 (11)0.0299 (13)0.0112 (11)
C40.0418 (13)0.0355 (12)0.0426 (13)0.0036 (10)0.0223 (11)0.0035 (10)
C50.0334 (12)0.0374 (12)0.0354 (12)0.0021 (10)0.0156 (10)0.0031 (10)
C60.0328 (12)0.0341 (11)0.0399 (13)0.0014 (9)0.0186 (10)0.0063 (10)
C70.0488 (15)0.0420 (13)0.0425 (14)0.0026 (11)0.0220 (12)0.0046 (11)
C80.078 (2)0.0522 (15)0.0503 (16)0.0095 (15)0.0324 (15)0.0060 (13)
C90.113 (3)0.069 (2)0.060 (2)0.022 (2)0.038 (2)0.0236 (18)
C100.090 (3)0.168 (5)0.130 (4)0.029 (3)0.061 (3)0.046 (4)
C110.0413 (13)0.0437 (13)0.0389 (13)0.0031 (11)0.0233 (11)0.0003 (11)
C120.0509 (16)0.0530 (15)0.0490 (16)0.0001 (12)0.0255 (13)0.0111 (12)
C130.0469 (15)0.0546 (15)0.0521 (16)0.0088 (12)0.0250 (13)0.0044 (13)
C140.0446 (14)0.0488 (14)0.0360 (13)0.0008 (11)0.0185 (11)0.0006 (11)
C150.0555 (17)0.0510 (15)0.0479 (16)0.0041 (13)0.0200 (13)0.0123 (12)
C160.0516 (16)0.0462 (14)0.0530 (16)0.0083 (12)0.0259 (13)0.0020 (12)
C170.0550 (18)0.085 (2)0.0531 (18)0.0131 (16)0.0170 (15)0.0047 (16)
N10.0426 (11)0.0384 (10)0.0480 (12)0.0044 (9)0.0272 (10)0.0030 (9)
N20.0621 (14)0.0374 (10)0.0467 (13)0.0070 (10)0.0285 (11)0.0033 (10)
N30.0580 (14)0.0422 (11)0.0400 (12)0.0039 (10)0.0238 (11)0.0007 (10)
O10.0570 (11)0.0533 (11)0.0583 (12)0.0038 (9)0.0232 (10)0.0218 (9)
O20.0580 (12)0.0709 (12)0.0423 (10)0.0083 (9)0.0311 (9)0.0085 (9)
O30.0547 (12)0.0710 (12)0.0449 (11)0.0067 (10)0.0106 (9)0.0085 (9)
O40.0490 (14)0.0278 (11)0.0537 (15)0.0000.0238 (12)0.000
S10.0435 (3)0.0467 (3)0.0391 (3)0.0030 (3)0.0210 (3)0.0045 (3)
Cl10.0702 (5)0.0371 (3)0.0480 (4)0.0009 (3)0.0275 (3)0.0084 (3)
Geometric parameters (Å, º) top
C1—C61.371 (3)C11—C121.379 (3)
C1—N11.423 (3)C11—C161.382 (3)
C1—C21.428 (3)C11—S11.757 (2)
C2—C31.363 (3)C12—C131.382 (4)
C2—H20.9300C12—H120.9300
C3—C41.408 (3)C13—C141.373 (3)
C3—H30.9300C13—H130.9300
C4—N21.356 (3)C14—O31.361 (3)
C4—C51.413 (3)C14—C151.390 (4)
C5—C71.393 (3)C15—C161.367 (3)
C5—C61.409 (3)C15—H150.9300
C6—Cl11.731 (2)C16—H160.9300
C7—N31.336 (3)C17—O31.425 (3)
C7—H70.9300C17—H17A0.9600
C8—N31.461 (3)C17—H17B0.9600
C8—C91.501 (5)C17—H17C0.9600
C8—H8A0.9700N1—S11.622 (2)
C8—H8B0.9700N1—H10.8338
C9—C101.247 (5)N2—N31.355 (3)
C9—H90.9300O1—S11.4359 (18)
C10—H10A0.9300O2—S11.4286 (18)
C10—H10B0.9300O4—H40.8662
C6—C1—N1121.5 (2)C11—C12—C13120.4 (2)
C6—C1—C2119.3 (2)C11—C12—H12119.8
N1—C1—C2119.2 (2)C13—C12—H12119.8
C3—C2—C1122.6 (2)C14—C13—C12119.7 (2)
C3—C2—H2118.7C14—C13—H13120.2
C1—C2—H2118.7C12—C13—H13120.2
C2—C3—C4117.9 (2)O3—C14—C13124.5 (2)
C2—C3—H3121.1O3—C14—C15115.9 (2)
C4—C3—H3121.1C13—C14—C15119.7 (2)
N2—C4—C3128.5 (2)C16—C15—C14120.7 (2)
N2—C4—C5110.8 (2)C16—C15—H15119.7
C3—C4—C5120.6 (2)C14—C15—H15119.7
C7—C5—C6134.9 (2)C15—C16—C11119.6 (2)
C7—C5—C4105.0 (2)C15—C16—H16120.2
C6—C5—C4120.0 (2)C11—C16—H16120.2
C1—C6—C5119.4 (2)O3—C17—H17A109.5
C1—C6—Cl1122.73 (17)O3—C17—H17B109.5
C5—C6—Cl1117.83 (18)H17A—C17—H17B109.5
N3—C7—C5106.2 (2)O3—C17—H17C109.5
N3—C7—H7126.9H17A—C17—H17C109.5
C5—C7—H7126.9H17B—C17—H17C109.5
N3—C8—C9110.7 (3)C1—N1—S1122.73 (16)
N3—C8—H8A109.5C1—N1—H1116.2
C9—C8—H8A109.5S1—N1—H1112.1
N3—C8—H8B109.5N3—N2—C4103.84 (18)
C9—C8—H8B109.5C7—N3—N2114.1 (2)
H8A—C8—H8B108.1C7—N3—C8126.8 (2)
C10—C9—C8125.3 (4)N2—N3—C8119.0 (2)
C10—C9—H9117.4C14—O3—C17118.8 (2)
C8—C9—H9117.4O2—S1—O1119.55 (12)
C9—C10—H10A120.0O2—S1—N1108.20 (11)
C9—C10—H10B120.0O1—S1—N1104.94 (11)
H10A—C10—H10B120.0O2—S1—C11107.69 (12)
C12—C11—C16119.9 (2)O1—S1—C11108.89 (11)
C12—C11—S1119.78 (19)N1—S1—C11106.92 (11)
C16—C11—S1120.25 (19)
C6—C1—C2—C32.7 (4)C13—C14—C15—C160.6 (4)
N1—C1—C2—C3173.7 (2)C14—C15—C16—C111.0 (4)
C1—C2—C3—C41.8 (4)C12—C11—C16—C151.3 (4)
C2—C3—C4—N2174.2 (2)S1—C11—C16—C15178.7 (2)
C2—C3—C4—C53.0 (4)C6—C1—N1—S1114.3 (2)
N2—C4—C5—C70.3 (3)C2—C1—N1—S169.4 (3)
C3—C4—C5—C7177.4 (2)C3—C4—N2—N3176.8 (2)
N2—C4—C5—C6177.8 (2)C5—C4—N2—N30.6 (3)
C3—C4—C5—C60.1 (3)C5—C7—N3—N20.6 (3)
N1—C1—C6—C5170.4 (2)C5—C7—N3—C8178.8 (2)
C2—C1—C6—C55.8 (3)C4—N2—N3—C70.8 (3)
N1—C1—C6—Cl18.6 (3)C4—N2—N3—C8179.2 (2)
C2—C1—C6—Cl1175.13 (17)C9—C8—N3—C799.0 (3)
C7—C5—C6—C1171.9 (3)C9—C8—N3—N279.2 (3)
C4—C5—C6—C14.6 (3)C13—C14—O3—C175.1 (4)
C7—C5—C6—Cl17.2 (4)C15—C14—O3—C17175.5 (3)
C4—C5—C6—Cl1176.30 (18)C1—N1—S1—O256.3 (2)
C6—C5—C7—N3176.7 (3)C1—N1—S1—O1175.03 (18)
C4—C5—C7—N30.2 (3)C1—N1—S1—C1159.5 (2)
N3—C8—C9—C10127.3 (4)C12—C11—S1—O215.3 (2)
C16—C11—C12—C131.2 (4)C16—C11—S1—O2167.2 (2)
S1—C11—C12—C13178.6 (2)C12—C11—S1—O1146.4 (2)
C11—C12—C13—C140.7 (4)C16—C11—S1—O136.2 (2)
C12—C13—C14—O3179.9 (3)C12—C11—S1—N1100.7 (2)
C12—C13—C14—C150.4 (4)C16—C11—S1—N176.7 (2)
O3—C14—C15—C16180.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.832.042.875 (2)174
O4—H4···N20.872.002.822 (2)158
C7—H7···O3ii0.932.373.288 (3)170
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.832.042.875 (2)174
O4—H4···N20.872.002.822 (2)158
C7—H7···O3ii0.932.373.288 (3)170
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS and CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrzozowski, Z., Slawinski, J., Saczewski, F., Innocenti, A. & Supuran, C. T. (2010). Eur. J. Med. Chem. 45, 2396–2404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDrew, J. (2000). Science, 287, 1960–964.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaraj, V., Puccetti, L., Fasolis, G., Winum, J. Y., Montero, J. L., Scozzafava, A., Vullo, D., Innocenti, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3102–3108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLopez, M., Bornaghi, L. F., Innocenti, A., Vullo, D., Charman, S. A., Supuran, C. T. & Poulsen, S.-A. (2010). J. Med. Chem. 53, 2913–2926.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds