metal-organic compounds
Poly[[μ-bis(4-nitrophenyl) phosphato-κ2O,O′]sodium]
aUniversity of Wroclaw, Faculty of Chemistry, 14 Joliot-Curie St, 50-383 Wroclaw, Poland
*Correspondence e-mail: aleksandra.gerus@chem.uni.wroc.pl
The title compound, [Na(C12H8N2O8P)], consists of one Na+ cation and one bis(p-nitrophenyl)phosphate anion with a considerable distortion of the phosphate tetrahedron due to the presence of two P—O ester bonds. The anion bridges five Na+ cations whereby each cation is chelated by the nitro O atoms of one anion and bonded via a nitro O atom and phosphate O atoms to four other anions. This bridging arrangement leads to the formation of double layers parallel to (001). Adjacent layers are linked through weak C—H⋯O hydrogen bonds.
Related literature
For hydrolytic cleavage of the phosphodiester bond in bis(p-nitrophenyl)phosphate (BNPP) and related systems, see: Belousoff et al. (2009); Branum et al. (2001); Chang et al. (2009); Liu et al. (2004); Mancin et al. (2005); Oh et al. (1996); Sredhera & Cowan (2001). For crystal structures containing the BNPP entity, see: Bazzicalupi et al. (2004); Bond et al. (1985); Fry et al. (2003); Jurek & Martell (1999); Král et al. (2006); Pletcher et al. (1972); Sax et al. (1970, 1971); Warden et al. (2005); Yoo et al. (1975).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813019260/wm2751sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813019260/wm2751Isup2.hkl
The bis(p-nitrophenyl)phosphate sodium salt was purchased from Sigma-Aldrich. Yellow crystals were obtained after several days by slow evaporation of an aqueous solution.
All H atoms were introduced in geometrically calculated positions, with C—H = 0.95 A ° and Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure and numbering scheme for the BNPP anion. Displacement ellipsoids are shown at the 50% probability level. | |
Fig. 2. Coordination sphere of the Na+ cation in (I). Displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (iii) x + 1, y + 2, z; (iv) x, y + 1, z; (v) x + 1, y + 1, z; (vi) -x + 1, -y + 2, -z + 1; (viii) -x + 2, -y + 3, -z + 1; (xi) -x + 1, -y + 1, -z + 1; (xii) -x + 2, -y + 2, -z + 1]. | |
Fig. 3. Projection of (I) along [100] showing the double layers. Dashed lines indicate C—H···O hydrogen bonds. Displacement ellipsoids are shown at the 50% probability level. | |
Fig. 4. The packing diagram for crystal of the title salt (I). Displacement ellipsoids are shown at 50% probability level. |
[Na(C12H8N2O8P)] | Z = 2 |
Mr = 362.16 | F(000) = 368 |
Triclinic, P1 | Dx = 1.806 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.963 (2) Å | Cell parameters from 8925 reflections |
b = 9.844 (3) Å | θ = 3.2–37.5° |
c = 11.213 (3) Å | µ = 0.29 mm−1 |
α = 103.93 (3)° | T = 100 K |
β = 105.83 (3)° | Block, yellow |
γ = 106.38 (3)° | 0.30 × 0.27 × 0.25 mm |
V = 666.1 (3) Å3 |
Agilent Xcalibur (Onyx with CCD camera) diffractometer | 6748 independent reflections |
Radiation source: fine-focus sealed tube | 5542 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ω and π scans | θmax = 37.6°, θmin = 3.2° |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) | h = −11→10 |
Tmin = 0.918, Tmax = 0.931 | k = −16→15 |
13418 measured reflections | l = −19→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0486P)2 + 0.1337P] where P = (Fo2 + 2Fc2)/3 |
6748 reflections | (Δ/σ)max = 0.001 |
217 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
[Na(C12H8N2O8P)] | γ = 106.38 (3)° |
Mr = 362.16 | V = 666.1 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.963 (2) Å | Mo Kα radiation |
b = 9.844 (3) Å | µ = 0.29 mm−1 |
c = 11.213 (3) Å | T = 100 K |
α = 103.93 (3)° | 0.30 × 0.27 × 0.25 mm |
β = 105.83 (3)° |
Agilent Xcalibur (Onyx with CCD camera) diffractometer | 6748 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) | 5542 reflections with I > 2σ(I) |
Tmin = 0.918, Tmax = 0.931 | Rint = 0.014 |
13418 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.66 e Å−3 |
6748 reflections | Δρmin = −0.33 e Å−3 |
217 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.19163 (3) | 0.36887 (2) | 0.291283 (19) | 0.00783 (4) | |
O1 | 0.52988 (11) | 1.11256 (7) | 0.18582 (7) | 0.01642 (12) | |
O2 | 0.66594 (11) | 1.15233 (7) | 0.39510 (6) | 0.01488 (11) | |
O3 | −0.28509 (13) | −0.46498 (7) | 0.15506 (8) | 0.02195 (14) | |
O4 | −0.14079 (12) | −0.34783 (8) | 0.36644 (7) | 0.01817 (13) | |
O11 | 0.18884 (10) | 0.45097 (6) | 0.18143 (6) | 0.01210 (10) | |
O21 | 0.02554 (10) | 0.20680 (6) | 0.18007 (6) | 0.01107 (10) | |
O31 | 0.40483 (10) | 0.36277 (7) | 0.34892 (6) | 0.01340 (11) | |
O41 | 0.08681 (9) | 0.42769 (7) | 0.37940 (6) | 0.01131 (10) | |
N1 | 0.55665 (11) | 1.06716 (8) | 0.27967 (7) | 0.01084 (11) | |
N2 | −0.18533 (12) | −0.34891 (8) | 0.25185 (8) | 0.01290 (12) | |
C1 | 0.28334 (12) | 0.60309 (8) | 0.21207 (7) | 0.00932 (12) | |
C2 | 0.24915 (13) | 0.65553 (9) | 0.10570 (8) | 0.01132 (12) | |
H2 | 0.1654 | 0.5862 | 0.0187 | 0.014* | |
C3 | 0.33698 (13) | 0.80825 (9) | 0.12681 (8) | 0.01110 (12) | |
H3 | 0.3144 | 0.8448 | 0.0551 | 0.013* | |
C4 | 0.45900 (12) | 0.90670 (8) | 0.25538 (8) | 0.00970 (12) | |
C5 | 0.49639 (13) | 0.85587 (9) | 0.36171 (8) | 0.01053 (12) | |
H5 | 0.5815 | 0.9255 | 0.4484 | 0.013* | |
C6 | 0.40903 (13) | 0.70311 (9) | 0.34079 (8) | 0.01043 (12) | |
H6 | 0.4341 | 0.6669 | 0.4126 | 0.013* | |
C11 | −0.01420 (12) | 0.07325 (8) | 0.20306 (8) | 0.00914 (11) | |
C21 | −0.14071 (13) | −0.05705 (9) | 0.09256 (8) | 0.01090 (12) | |
H21 | −0.1902 | −0.0492 | 0.0077 | 0.013* | |
C31 | −0.19405 (13) | −0.19754 (9) | 0.10643 (8) | 0.01187 (13) | |
H31 | −0.2790 | −0.2867 | 0.0320 | 0.014* | |
C41 | −0.11984 (13) | −0.20435 (9) | 0.23230 (8) | 0.01057 (12) | |
C51 | 0.00777 (13) | −0.07667 (9) | 0.34263 (8) | 0.01163 (13) | |
H51 | 0.0579 | −0.0854 | 0.4271 | 0.014* | |
C61 | 0.06168 (13) | 0.06395 (9) | 0.32862 (8) | 0.01120 (12) | |
H61 | 0.1489 | 0.1526 | 0.4033 | 0.013* | |
Na | 0.75570 (5) | 1.41177 (4) | 0.39243 (3) | 0.01082 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.00772 (8) | 0.00661 (8) | 0.00894 (8) | 0.00226 (6) | 0.00311 (6) | 0.00274 (6) |
O1 | 0.0212 (3) | 0.0124 (3) | 0.0172 (3) | 0.0056 (2) | 0.0065 (2) | 0.0091 (2) |
O2 | 0.0167 (3) | 0.0091 (2) | 0.0144 (3) | 0.0027 (2) | 0.0032 (2) | 0.0020 (2) |
O3 | 0.0321 (4) | 0.0079 (3) | 0.0231 (3) | 0.0030 (3) | 0.0129 (3) | 0.0025 (2) |
O4 | 0.0225 (3) | 0.0154 (3) | 0.0206 (3) | 0.0075 (2) | 0.0087 (3) | 0.0116 (2) |
O11 | 0.0172 (3) | 0.0066 (2) | 0.0100 (2) | 0.00113 (19) | 0.0046 (2) | 0.00292 (18) |
O21 | 0.0137 (2) | 0.0062 (2) | 0.0103 (2) | 0.00136 (19) | 0.00201 (19) | 0.00335 (18) |
O31 | 0.0084 (2) | 0.0132 (3) | 0.0176 (3) | 0.0045 (2) | 0.0038 (2) | 0.0042 (2) |
O41 | 0.0108 (2) | 0.0121 (2) | 0.0121 (2) | 0.00466 (19) | 0.00572 (19) | 0.00352 (19) |
N1 | 0.0107 (3) | 0.0084 (3) | 0.0147 (3) | 0.0041 (2) | 0.0052 (2) | 0.0049 (2) |
N2 | 0.0142 (3) | 0.0093 (3) | 0.0190 (3) | 0.0054 (2) | 0.0094 (2) | 0.0063 (2) |
C1 | 0.0102 (3) | 0.0068 (3) | 0.0107 (3) | 0.0024 (2) | 0.0041 (2) | 0.0031 (2) |
C2 | 0.0127 (3) | 0.0092 (3) | 0.0100 (3) | 0.0020 (2) | 0.0031 (2) | 0.0035 (2) |
C3 | 0.0123 (3) | 0.0092 (3) | 0.0111 (3) | 0.0031 (2) | 0.0036 (2) | 0.0044 (2) |
C4 | 0.0101 (3) | 0.0072 (3) | 0.0122 (3) | 0.0031 (2) | 0.0044 (2) | 0.0038 (2) |
C5 | 0.0119 (3) | 0.0078 (3) | 0.0106 (3) | 0.0031 (2) | 0.0035 (2) | 0.0025 (2) |
C6 | 0.0123 (3) | 0.0086 (3) | 0.0097 (3) | 0.0031 (2) | 0.0037 (2) | 0.0035 (2) |
C11 | 0.0094 (3) | 0.0073 (3) | 0.0110 (3) | 0.0029 (2) | 0.0039 (2) | 0.0036 (2) |
C21 | 0.0126 (3) | 0.0084 (3) | 0.0101 (3) | 0.0025 (2) | 0.0036 (2) | 0.0028 (2) |
C31 | 0.0136 (3) | 0.0082 (3) | 0.0124 (3) | 0.0025 (2) | 0.0054 (3) | 0.0024 (2) |
C41 | 0.0121 (3) | 0.0074 (3) | 0.0142 (3) | 0.0040 (2) | 0.0068 (2) | 0.0046 (2) |
C51 | 0.0130 (3) | 0.0104 (3) | 0.0118 (3) | 0.0040 (2) | 0.0040 (2) | 0.0053 (2) |
C61 | 0.0130 (3) | 0.0086 (3) | 0.0099 (3) | 0.0024 (2) | 0.0027 (2) | 0.0031 (2) |
Na | 0.00911 (14) | 0.00915 (14) | 0.01433 (15) | 0.00301 (11) | 0.00447 (12) | 0.00451 (12) |
P1—O31 | 1.4733 (8) | C2—C3 | 1.3861 (12) |
P1—O41 | 1.4834 (7) | C2—H2 | 0.9500 |
P1—O11 | 1.6266 (8) | C3—C4 | 1.3908 (14) |
P1—O21 | 1.6287 (12) | C3—H3 | 0.9500 |
O1—N1 | 1.2282 (10) | C4—C5 | 1.3895 (12) |
O1—Na | 2.9377 (18) | C5—C6 | 1.3867 (12) |
O2—N1 | 1.2399 (12) | C5—H5 | 0.9500 |
O2—Na | 2.4618 (11) | C6—H6 | 0.9500 |
O3—N2 | 1.2288 (12) | C11—C61 | 1.3976 (12) |
O4—N2 | 1.2335 (11) | C11—C21 | 1.3995 (14) |
O4—Nai | 2.3853 (11) | C21—C31 | 1.3857 (12) |
O11—C1 | 1.3663 (11) | C21—H21 | 0.9500 |
O21—C11 | 1.3668 (10) | C31—C41 | 1.3894 (12) |
O31—Naii | 2.2386 (10) | C31—H31 | 0.9500 |
O41—Naiii | 2.3135 (9) | C41—C51 | 1.3862 (14) |
O41—Naiv | 2.4065 (14) | C51—C61 | 1.3877 (12) |
N1—C4 | 1.4552 (12) | C51—H51 | 0.9500 |
N2—C41 | 1.4560 (12) | C61—H61 | 0.9500 |
C1—C2 | 1.3987 (12) | Na—Nav | 3.253 (2) |
C1—C6 | 1.3998 (14) | ||
O31—P1—O41 | 119.67 (5) | C1—C6—H6 | 120.6 |
O31—P1—O11 | 110.86 (4) | O21—C11—C61 | 123.21 (8) |
O41—P1—O11 | 110.02 (4) | O21—C11—C21 | 116.04 (7) |
O31—P1—O21 | 110.48 (5) | C61—C11—C21 | 120.74 (8) |
O41—P1—O21 | 110.21 (4) | C31—C21—C11 | 120.28 (8) |
O11—P1—O21 | 92.20 (4) | C31—C21—H21 | 119.9 |
N1—O1—Na | 83.76 (6) | C11—C21—H21 | 119.9 |
N1—O2—Na | 106.72 (6) | C21—C31—C41 | 118.15 (8) |
N2—O4—Nai | 116.10 (7) | C21—C31—H31 | 120.9 |
C1—O11—P1 | 123.69 (6) | C41—C31—H31 | 120.9 |
C11—O21—P1 | 123.67 (6) | C51—C41—C31 | 122.37 (8) |
P1—O31—Naii | 157.93 (4) | C51—C41—N2 | 117.95 (8) |
P1—O41—Naiii | 143.20 (5) | C31—C41—N2 | 119.61 (8) |
P1—O41—Naiv | 129.49 (4) | C41—C51—C61 | 119.45 (8) |
Naiii—O41—Naiv | 87.11 (4) | C41—C51—H51 | 120.3 |
O1—N1—O2 | 122.74 (7) | C61—C51—H51 | 120.3 |
O1—N1—C4 | 119.12 (8) | C51—C61—C11 | 119.01 (8) |
O2—N1—C4 | 118.13 (8) | C51—C61—H61 | 120.5 |
O1—N1—Na | 72.71 (6) | C11—C61—H61 | 120.5 |
O2—N1—Na | 50.43 (5) | O31vi—Na—O41vii | 165.08 (3) |
C4—N1—Na | 167.00 (5) | O31vi—Na—O4viii | 99.55 (4) |
O3—N2—O4 | 123.14 (8) | O41vii—Na—O4viii | 81.55 (4) |
O3—N2—C41 | 119.25 (8) | O31vi—Na—O41iv | 101.98 (5) |
O4—N2—C41 | 117.59 (8) | O41vii—Na—O41iv | 92.89 (4) |
O11—C1—C2 | 115.91 (8) | O4viii—Na—O41iv | 80.28 (4) |
O11—C1—C6 | 123.34 (8) | O31vi—Na—O2 | 84.38 (4) |
C2—C1—C6 | 120.75 (7) | O41vii—Na—O2 | 92.94 (4) |
C3—C2—C1 | 120.25 (8) | O4viii—Na—O2 | 172.26 (3) |
C3—C2—H2 | 119.9 | O41iv—Na—O2 | 105.55 (4) |
C1—C2—H2 | 119.9 | O31vi—Na—O1 | 74.29 (5) |
C2—C3—C4 | 118.44 (8) | O41vii—Na—O1 | 93.25 (4) |
C2—C3—H3 | 120.8 | O4viii—Na—O1 | 128.23 (3) |
C4—C3—H3 | 120.8 | O41iv—Na—O1 | 151.44 (3) |
C5—C4—C3 | 121.88 (8) | O2—Na—O1 | 46.28 (3) |
C5—C4—N1 | 118.65 (8) | O31vi—Na—N1 | 76.99 (4) |
C3—C4—N1 | 119.43 (8) | O41vii—Na—N1 | 94.92 (4) |
C6—C5—C4 | 119.77 (8) | O4viii—Na—N1 | 151.70 (3) |
C6—C5—H5 | 120.1 | O41iv—Na—N1 | 128.02 (4) |
C4—C5—H5 | 120.1 | O2—Na—N1 | 22.85 (2) |
C5—C6—C1 | 118.90 (8) | O1—Na—N1 | 23.53 (2) |
C5—C6—H6 | 120.6 | ||
O31—P1—O11—C1 | −74.91 (8) | C4—C5—C6—C1 | −0.33 (12) |
O41—P1—O11—C1 | 59.73 (8) | O11—C1—C6—C5 | −179.42 (7) |
O21—P1—O11—C1 | 172.18 (6) | C2—C1—C6—C5 | 1.12 (12) |
O31—P1—O21—C11 | 53.96 (7) | P1—O21—C11—C61 | 8.66 (11) |
O41—P1—O21—C11 | −80.51 (7) | P1—O21—C11—C21 | −172.40 (6) |
O11—P1—O21—C11 | 167.21 (6) | O21—C11—C21—C31 | −178.45 (7) |
P1—O11—C1—C2 | −174.63 (6) | C61—C11—C21—C31 | 0.52 (12) |
P1—O11—C1—C6 | 5.90 (11) | C11—C21—C31—C41 | 0.45 (12) |
O11—C1—C2—C3 | 179.50 (7) | C21—C31—C41—C51 | −1.26 (12) |
C6—C1—C2—C3 | −1.01 (12) | C21—C31—C41—N2 | 175.67 (7) |
C1—C2—C3—C4 | 0.09 (12) | O3—N2—C41—C51 | −174.72 (8) |
C2—C3—C4—C5 | 0.72 (12) | O4—N2—C41—C51 | 6.77 (11) |
C2—C3—C4—N1 | 178.70 (7) | O3—N2—C41—C31 | 8.22 (12) |
O1—N1—C4—C5 | 177.82 (7) | O4—N2—C41—C31 | −170.30 (8) |
O2—N1—C4—C5 | −1.43 (11) | C31—C41—C51—C61 | 1.08 (12) |
O1—N1—C4—C3 | −0.23 (11) | N2—C41—C51—C61 | −175.90 (7) |
O2—N1—C4—C3 | −179.48 (7) | C41—C51—C61—C11 | −0.07 (12) |
C3—C4—C5—C6 | −0.60 (12) | O21—C11—C61—C51 | 178.18 (7) |
N1—C4—C5—C6 | −178.60 (7) | C21—C11—C61—C51 | −0.71 (12) |
Symmetry codes: (i) x−1, y−2, z; (ii) x, y−1, z; (iii) x−1, y−1, z; (iv) −x+1, −y+2, −z+1; (v) −x+2, −y+3, −z+1; (vi) x, y+1, z; (vii) x+1, y+1, z; (viii) x+1, y+2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O3ix | 0.95 | 2.50 | 3.1865 (15) | 129 |
C21—H21···O1x | 0.95 | 2.53 | 3.3337 (18) | 142 |
Symmetry codes: (ix) −x, −y, −z; (x) −x, −y+1, −z. |
P1—O31 | 1.4733 (8) | O2—Na | 2.4618 (11) |
P1—O41 | 1.4834 (7) | O4—Nai | 2.3853 (11) |
P1—O11 | 1.6266 (8) | O31—Naii | 2.2386 (10) |
P1—O21 | 1.6287 (12) | O41—Naiii | 2.3135 (9) |
O1—Na | 2.9377 (18) | O41—Naiv | 2.4065 (14) |
O31—P1—O41 | 119.67 (5) | O31—P1—O21 | 110.48 (5) |
O31—P1—O11 | 110.86 (4) | O41—P1—O21 | 110.21 (4) |
O41—P1—O11 | 110.02 (4) | O11—P1—O21 | 92.20 (4) |
Symmetry codes: (i) x−1, y−2, z; (ii) x, y−1, z; (iii) x−1, y−1, z; (iv) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O3v | 0.95 | 2.50 | 3.1865 (15) | 129.4 |
C21—H21···O1vi | 0.95 | 2.53 | 3.3337 (18) | 142.3 |
Symmetry codes: (v) −x, −y, −z; (vi) −x, −y+1, −z. |
Acknowledgements
We thank Professor Dr Jerzy Lisowski for helpful discussions during preparation of this article.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bazzicalupi, C., Bencini, A., Berni, E., Bianchi, A., Fornasari, P., Giorgi, C. & Valtancoli, B. (2004). Inorg. Chem. 43, 6255–6265. Web of Science CSD CrossRef PubMed CAS Google Scholar
Belousoff, M. J., Ung, P., Forsyth, C. M., Tor, Y., Spiccia, L. & Graham, B. (2009). J. Am. Chem. Soc. 131, 1106–1114. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bond, D. R., Modro, T. A. & Nassimbeni, L. R. (1985). J. Org. Chem. 50, 2281–2287. CSD CrossRef CAS Web of Science Google Scholar
Branum, M. E., Tipton, A. K., Zhu, S. & Que, L. (2001). J. Am. Chem. Soc. 123, 1898–1904. Web of Science CrossRef PubMed CAS Google Scholar
Chang, C. A., Wu, B. H. & Hsiao, C.-H. (2009). Eur. J. Inorg. Chem. pp. 1339–1346. Web of Science CrossRef Google Scholar
Fry, F. H., Jensen, P., Kepert, C. M. & Spiccia, L. (2003). Inorg. Chem. 42, 5637–5644. Web of Science CSD CrossRef PubMed CAS Google Scholar
Jurek, P. E. & Martell, A. E. (1999). Inorg. Chem. 38, 6003–6007. Web of Science CSD CrossRef PubMed CAS Google Scholar
Král, V., Lang, K., Králová, J., Dvorák, M., Martásek, P., Chin, A. O., Andrievsky, A., Lynch, V. & Sessler, J. L. (2006). J. Am. Chem. Soc. 128, 432–437. Web of Science PubMed Google Scholar
Liu, C., Wang, M., Zhang, T. & Sun, H. (2004). Coord. Chem. Rev. 248, 147–168. Web of Science CrossRef CAS Google Scholar
Mancin, F., Scrimin, P., Tecilla, P. & Tonellato, U. (2005). Chem. Commun. pp. 2540–2548. Web of Science CrossRef Google Scholar
Oh, S. J., Song, K. H., Whang, D., Kim, K., Yoon, T. H., Moon, H. & Park, J. W. (1996). Inorg. Chem. 35, 3780–3785. CSD CrossRef PubMed CAS Web of Science Google Scholar
Pletcher, J., Sax, M. & Yoo, C. S. (1972). Acta Cryst. B28, 378–387. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sax, M., Pletcher, J. & Gustaffson, B. (1970). Acta Cryst. B26, 114–124. CSD CrossRef CAS IUCr Journals Google Scholar
Sax, M., Pletcher, J., Yoo, C. S. & Stewart, J. M. (1971). Acta Cryst. B27, 1635–1644. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sredhera, A. & Cowan, J. A. (2001). J. Biol. Inorg. Chem. 6, 337–347. Web of Science PubMed Google Scholar
Warden, A. C., Warren, M., Hearn, M. T. W. & Spiccia, L. (2005). Cryst. Growth Des. 5, 713–720. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yoo, C. S., Abola, E., Wood, M. K., Sax, M. & Pletcher, J. (1975). Acta Cryst. B31, 1354–1360. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phosphate diester hydrolysis is a reaction of continuing interest since such process is of fundamental biological importance. Currently, there is much interest in developing artificial nucleases that hydrolyze the phosphate diester bonds in RNA and DNA (Sredhera & Cowan, 2001; Belousoff et al., 2009; Branum et al., 2001). Thus, there have been numerous model studies devoted to understanding how metalloenzymes hydrolyze phosphate diesters (Mancin et al., 2005; Liu et al., 2004). In most cases the substrate of choice is the "activated" phosphate diester bis(p-nitrophenyl)phosphate (BNPP). It is considered as an activated phosphate diester because the p-nitro groups draw electron density away from the phosphorus atom as well as help to stabilize the negatively charged leaving group (Jurek & Martell, 1999). For this reason the bis(p-nitrophenyl)phosphate anion is a popular model substrate for kinetic studies of the hydrolytic cleavage of the phosphodiester bond similar to DNA (Chang et al., 2009; Oh et al., 1996).
BNPP is commercially available as a sodium salt. There are many references concerning solid state studies of BNPP acting as a ligand in complexes or as an anion in salts. The first publications referring to BNPP describe salts of local anesthetics (Sax et al., 1970, 1971; Pletcher et al., 1972; Yoo et al., 1975). The structure of BNPP has been observed also in many macrocyclic complexes (Král et al., 2006; Bazzicalupi et al., 2004; Fry et al., 2003; Warden et al., 2005). Here we report the structure of BNPP as a sodium salt, [Na(C12H8N2O8P)], (I).
Compound (I) crystallizes with one bis(p-nitrophenyl)phosphate anion (Fig. 1) and one sodium cation in the asymmetric unit. The phenyl rings are almost coplanar. The interplanar angle between two phenyl rings amounts to 2.36 (3)°. The nitro group O1—N1—O2 is rotated 2.00 (4)° from the phenyl ring C1—C6 and the second nitro group O3—N2—O4 is rotated 9.01 (4)° from the phenyl ring C11—C61. The phosphate group is highly distorted from the ideal tetrahedral geometry (Table 1). In the anion there are two shorter P—O bonds of 1.4733 (8) Å and 1.4834 (7) Å, and two longer P—O ester bonds lengths of 1.6266 (8) Å and 1.6287 (12) Å. The shortest bond is P–O31. A little longer than the P–O31 bond is the P–O41 bond, bridging Na+ ions. Both O11 and O21 atoms involved in longer ester bonds are attached to aryl rings. The average P—O distance is 1.55 Å, but individual P—O bonds in the structure of compound (I) show how much the phosphate group is deformed. In previous reports containing BNPP anions the most similar deviations for P—O ester bond length in the phosphate group has been observed for these four examples (Sax et al., 1970, 1971; Pletcher et al., 1972; Yoo et al., 1975).
The bond angles in the phosphate group distinctly deviate from the ideal value of 109.5°. The average value for the O–P–O angle is 108.9°, however, individual angles show considerable deviations. The smallest angle is 92.20 (4)° for O11—P1—O21, that is ArO—P—OAr. This deviation can be correlated with the corresponding bond lengths. Such a small angle has not been observed in any previous report of a BNPP structure. The most comparabler value of an O—P—O angle is 95.3 (2)° (Bond et al., 1985). The largest angle is 119.67 (5)° for O31—P—O41, and the four remaining angles are about 110°.
In (I), the coordination geometry of Na+ ion is irregular, with an overall coordination number of six [5 + 1] . The Na+ ion is coordinated by five symmetry-related BNPP anions via oxygen atoms. It is chelated by one anion in a bidentate mode (via O1 and O2), and coordinated by four anions in a monodentate manner (via O31iv, O4iii, O41v and O41vi) (Fig. 2). The Na—O distances are in the range 2.2386 (10) to 2.9377 (18) Å (Table 2). In the structure there is also a short Na···Na distance of 3.253 (2) Å, and two sodium cations are bridged by two O atoms (denoted as O41 in Fig. 2), forming a dimeric sub-structure with a four-membered ring (Figs. 2 and 4). The cations and anions are arranged in double layers parallel to (001) (Figs. 3 and 4). Adjacent layers are linked through weak C—H···O hydrogen bonds existing between H atoms of the aromatic rings and nitro O atoms (Fig. 3, Table 2).