organic compounds
Bis(2,4,6-triaminopyrimidin-1-ium) sulfate pentahydrate
aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: yupa.t@psu.ac.th
The 4H8N5+·SO42−·5H2O, contains four 2,4,6-triaminopyrimidinium (TAPH+) cations, two sulfate anions and ten lattice water molecules. Each two of the four TAPH+ cations form dimers via N—H⋯N hydrogen bonds between the amino groups and the unprotonated pyrimidine N atoms [graph-set motif R22(8)]. The (TAPH+)2 dimers, in turn, form slightly offset infinite π–π stacks parallel to [010], with centroid–centroid distances between pyrimidine rings of 3.5128 (15) and 3.6288 (16) Å. Other amino H atoms, as well as the pyrimidinium N—H groups, are hydrogen-bonded to sulfate and lattice water O atoms. The SO42− anions and water molecules are interconnected with each other via O—H⋯O hydrogen bonds. The combination of hydrogen-bonding interactions and π–π stacking leads to the formation of a three-dimensional network with alternating columns of TAPH+ cations and channels filled with sulfate anions and water molecules. One of the sulfate anions shows a minor disorder by a ca 37° rotation around one of the S—O bonds [occupancy ratio of the two sets of sites 0.927 (3):0.073 (3)]. One water molecule is disordered over two mutually exclusive positions with an occupancy ratio of 0.64 (7):0.36 (7).
of the title salt, 2CRelated literature
For background to melamine, see: Wei & Liu (2012); Dobson et al. (2008); Whitesides et al. (1991). For pyrimidine–metal complexes, see: Zamora et al. (1997); Louloudi et al. (1997); Jolibois et al. (1998); Katritzky et al. (1984). For carbon protonation of pyrimidines, see: Demeter & Wéber (2004); Németh et al. (2006). For related structures, see: Hemamalini et al. (2005); Krygowski et al. (2005). For graph-set analysis, see: Etter et al. (1990).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813019223/wm2755sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813019223/wm2755Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813019223/wm2755Isup3.cml
Crystals of the title compound were isolated as an unintended by-product of the reaction of 2,4,6-triaminopyrimidine with phenylisothiocyanate when attempting to synthesize diaminopyrimidinyl-phenylthiourea. 2,4,6-Triaminopyrimidine, TAP, (0.36 g, 2.88 mmol) was dissolved in 40 cm3 of ethanol at 333 K. Phenylisothiocyanate (0.35 ml, 2.93 mmol) was added and the mixture was stirred for 1 h. The resulting clear solution was filtered and left to evaporate at room temperature. The crystalline material that formed upon standing for several days was filtered off and dried in vacuo (yield 0.4 g). A crystal was selected from the material and subjected to single-crystal structure analysis. No attempts were made to further analyze the remainder of the material.
H atoms bonded to C and N atoms were constrained to ride on their parent atoms with C—H bond lengths of 0.93 Å for aryl C—H and N—H bond lengths of 0.86 Å with Uiso(H) = 1.2Ueq(C and N). All H atoms bonded to O atoms were located in a difference Fourier map and were refined isotropically. Uiso values of water hydrogen atoms were constrained to 1.5 times the Ueq value of their oxygen
The structure exhibits two independent types of disorder. One of the sulfate anions (S2) shows minor disorder by a ca 37° rotation around one of the S—O bonds with a refined occupancy ratio of 0.927 (3):0.073 (3). One of the water molecules (O18) shows disorder over two mutually exclusive positions with refined occupancies of 0.64 (7):0.36 (7). For the sulfate ion, minor moiety atoms were constrained to have the same anisotropic displacement parameters, ADP, as their major moiety counterparts. The ADPs of the oxygen atoms of the disordered water molecule were restrained to have similar Uij components (e.s.d. = 0.04 Å2). All O—H bond lengths in water molecules were restrained to a target value of 0.82 (2) Å. For the H atoms of the less prevalent moiety of the disordered water molecule, O···H distances were restrained based on hydrogen bonding considerations (2.10 (2) Å for O2i···H18F and 2.20 (2) Å for O2 i···H18D (symmetry operator (i): 1 + x, +y, +z).Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and publCIF (Westrip, 2010).Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The minor disordered moieties are omitted for clarity. | |
Fig. 2. Part of the crystal structure of (I) showing intermolecular N—H···N hydrogen bonds (blue dashed lines) between TAPH+ cations and π–π-stacks parallel to [010]. | |
Fig. 3. The packing structure of the title complex viewed down [010]. | |
Fig. 4. Part of the crystal structure showing formation of a tightly interconnected three-dimensional network with alternating columns of TAPH cations and channels filled with sulfate anions and water molecules. |
2C4H8N5+·SO42−·5H2O | Z = 4 |
Mr = 438.45 | F(000) = 928 |
Triclinic, P1 | Dx = 1.504 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.6571 (7) Å | Cell parameters from 1991 reflections |
b = 13.2482 (9) Å | θ = 2.9–22.1° |
c = 15.0132 (10) Å | µ = 0.23 mm−1 |
α = 100.843 (2)° | T = 293 K |
β = 110.596 (2)° | Block, yellow |
γ = 92.096 (2)° | 0.22 × 0.11 × 0.03 mm |
V = 1936.6 (2) Å3 |
Bruker APEX CCD diffractometer | 5782 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.052 |
Phi and ω scans | θmax = 28.1°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −14→14 |
Tmin = 0.762, Tmax = 1 | k = −17→17 |
22960 measured reflections | l = −19→18 |
9354 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.077 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.170 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0614P)2 + 0.4094P] where P = (Fo2 + 2Fc2)/3 |
9354 reflections | (Δ/σ)max < 0.001 |
601 parameters | Δρmax = 0.37 e Å−3 |
40 restraints | Δρmin = −0.28 e Å−3 |
2C4H8N5+·SO42−·5H2O | γ = 92.096 (2)° |
Mr = 438.45 | V = 1936.6 (2) Å3 |
Triclinic, P1 | Z = 4 |
a = 10.6571 (7) Å | Mo Kα radiation |
b = 13.2482 (9) Å | µ = 0.23 mm−1 |
c = 15.0132 (10) Å | T = 293 K |
α = 100.843 (2)° | 0.22 × 0.11 × 0.03 mm |
β = 110.596 (2)° |
Bruker APEX CCD diffractometer | 9354 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 5782 reflections with I > 2σ(I) |
Tmin = 0.762, Tmax = 1 | Rint = 0.052 |
22960 measured reflections |
R[F2 > 2σ(F2)] = 0.077 | 40 restraints |
wR(F2) = 0.170 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.37 e Å−3 |
9354 reflections | Δρmin = −0.28 e Å−3 |
601 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.31694 (8) | 0.31861 (6) | 0.75524 (5) | 0.0316 (2) | |
O1 | 0.3919 (2) | 0.3087 (2) | 0.85473 (16) | 0.0523 (7) | |
O2 | 0.2346 (2) | 0.22044 (18) | 0.69832 (18) | 0.0550 (7) | |
C2C | 0.7573 (3) | 0.3707 (2) | 0.8800 (2) | 0.0293 (7) | |
O3 | 0.2280 (3) | 0.39993 (18) | 0.75571 (17) | 0.0530 (7) | |
O4 | 0.4109 (2) | 0.3429 (2) | 0.70841 (16) | 0.0488 (6) | |
C4C | 0.9531 (3) | 0.3724 (2) | 0.8494 (2) | 0.0315 (7) | |
S2 | 0.7903 (3) | 0.1546 (2) | 0.2933 (2) | 0.0342 (2) | 0.927 (3) |
O5 | 0.8248 (4) | 0.2552 (3) | 0.2780 (3) | 0.0894 (12) | 0.927 (3) |
O6 | 0.7184 (6) | 0.1688 (5) | 0.3602 (4) | 0.0617 (9) | 0.927 (3) |
O7 | 0.9162 (3) | 0.1100 (2) | 0.33715 (18) | 0.0483 (7) | 0.927 (3) |
O8 | 0.7067 (3) | 0.0885 (2) | 0.20102 (19) | 0.0627 (9) | 0.927 (3) |
S2B | 0.790 (3) | 0.150 (2) | 0.293 (3) | 0.0342 (2) | 0.073 (3) |
O5B | 0.743 (4) | 0.205 (3) | 0.214 (3) | 0.0894 (12) | 0.073 (3) |
O6B | 0.717 (6) | 0.177 (6) | 0.358 (5) | 0.0617 (9) | 0.073 (3) |
O7B | 0.935 (3) | 0.181 (3) | 0.345 (2) | 0.0483 (7) | 0.073 (3) |
O8B | 0.765 (3) | 0.040 (2) | 0.253 (2) | 0.0627 (9) | 0.073 (3) |
N3B | 0.2310 (2) | 0.13336 (18) | 0.15229 (17) | 0.0290 (6) | |
C2B | 0.3628 (3) | 0.1343 (2) | 0.1830 (2) | 0.0280 (6) | |
C2A | 0.1864 (3) | 0.3781 (2) | 0.1557 (2) | 0.0306 (7) | |
N3A | 0.2487 (2) | 0.37711 (19) | 0.09404 (17) | 0.0327 (6) | |
C2D | 0.9274 (3) | 0.1235 (2) | 0.9110 (2) | 0.0324 (7) | |
N4B | 0.4275 (3) | 0.1298 (2) | 0.12153 (19) | 0.0406 (7) | |
H4BA | 0.3832 | 0.1262 | 0.0606 | 0.049* | |
H4BB | 0.5138 | 0.1305 | 0.1426 | 0.049* | |
C4B | 0.1731 (3) | 0.1369 (2) | 0.2198 (2) | 0.0290 (7) | |
N4A | 0.0528 (3) | 0.3711 (2) | 0.12353 (19) | 0.0405 (7) | |
H4AA | 0.0074 | 0.3660 | 0.0625 | 0.049* | |
H4AB | 0.0116 | 0.3717 | 0.1636 | 0.049* | |
N3D | 0.8648 (3) | 0.12722 (19) | 0.97309 (18) | 0.0344 (6) | |
N3C | 0.8900 (2) | 0.37463 (18) | 0.91433 (17) | 0.0308 (6) | |
C4A | 0.3854 (3) | 0.3852 (2) | 0.1309 (2) | 0.0335 (7) | |
N5B | 0.0394 (3) | 0.1343 (2) | 0.1869 (2) | 0.0426 (7) | |
H5BA | −0.0049 | 0.1305 | 0.1260 | 0.051* | |
H5BB | −0.0026 | 0.1363 | 0.2266 | 0.051* | |
C5B | 0.2473 (3) | 0.1422 (2) | 0.3185 (2) | 0.0324 (7) | |
H5B | 0.2047 | 0.1442 | 0.3632 | 0.039* | |
N5A | 0.4473 (3) | 0.3823 (2) | 0.0675 (2) | 0.0488 (8) | |
H5AA | 0.4007 | 0.3755 | 0.0065 | 0.059* | |
H5AB | 0.5339 | 0.3871 | 0.0875 | 0.059* | |
C4D | 0.7289 (3) | 0.1243 (2) | 0.9359 (2) | 0.0334 (7) | |
N4D | 1.0610 (3) | 0.1265 (2) | 0.9424 (2) | 0.0458 (7) | |
H4DA | 1.1066 | 0.1308 | 1.0033 | 0.055* | |
H4DB | 1.1018 | 0.1241 | 0.9019 | 0.055* | |
N4C | 0.6882 (3) | 0.3737 (2) | 0.93852 (19) | 0.0380 (6) | |
H4CA | 0.7299 | 0.3783 | 0.9999 | 0.046* | |
H4CB | 0.6017 | 0.3710 | 0.9150 | 0.046* | |
C5A | 0.4596 (3) | 0.3952 (2) | 0.2307 (2) | 0.0353 (7) | |
H5A | 0.5533 | 0.4012 | 0.2544 | 0.042* | |
N1D | 0.8612 (3) | 0.11725 (18) | 0.81367 (18) | 0.0328 (6) | |
H1D | 0.9064 | 0.1151 | 0.7760 | 0.036 (9)* | |
N1C | 0.6842 (3) | 0.36454 (18) | 0.78397 (18) | 0.0328 (6) | |
H1CB | 0.5978 | 0.3625 | 0.7648 | 0.034 (9)* | |
N1B | 0.4407 (3) | 0.14033 (19) | 0.27794 (17) | 0.0326 (6) | |
H1B | 0.5267 | 0.1416 | 0.2946 | 0.034 (9)* | |
N1A | 0.2526 (3) | 0.38643 (18) | 0.25311 (18) | 0.0320 (6) | |
H1A | 0.2073 | 0.3857 | 0.2904 | 0.050 (11)* | |
C6A | 0.3906 (3) | 0.3959 (2) | 0.2921 (2) | 0.0312 (7) | |
C5D | 0.6560 (3) | 0.1176 (2) | 0.8379 (2) | 0.0342 (7) | |
H5D | 0.5625 | 0.1154 | 0.8151 | 0.041* | |
N5D | 0.6668 (3) | 0.1283 (2) | 1.0000 (2) | 0.0488 (8) | |
H5DA | 0.7134 | 0.1324 | 1.0606 | 0.059* | |
H5DB | 0.5805 | 0.1267 | 0.9804 | 0.059* | |
N5C | 1.0869 (3) | 0.3771 (2) | 0.8860 (2) | 0.0480 (8) | |
H5CA | 1.1284 | 0.3813 | 0.9473 | 0.058* | |
H5CB | 1.1319 | 0.3760 | 0.8483 | 0.058* | |
N6A | 0.4492 (3) | 0.4047 (2) | 0.38832 (18) | 0.0436 (7) | |
H6AA | 0.5357 | 0.4104 | 0.4151 | 0.052* | |
H6AB | 0.4004 | 0.4047 | 0.4234 | 0.052* | |
O9 | 0.0270 (3) | 0.0924 (2) | 0.7016 (2) | 0.0576 (7) | |
C6C | 0.7456 (3) | 0.3616 (2) | 0.7173 (2) | 0.0314 (7) | |
C5C | 0.8827 (3) | 0.3658 (2) | 0.7500 (2) | 0.0341 (7) | |
H5C | 0.9284 | 0.3642 | 0.7073 | 0.041* | |
H9C | 0.048 (4) | 0.0364 (17) | 0.687 (3) | 0.051* | |
C6D | 0.7236 (3) | 0.1144 (2) | 0.7752 (2) | 0.0306 (7) | |
N6D | 0.6658 (3) | 0.10910 (19) | 0.68015 (18) | 0.0393 (7) | |
H6DA | 0.5797 | 0.1075 | 0.6538 | 0.047* | |
H6DB | 0.7146 | 0.1073 | 0.6449 | 0.047* | |
N6C | 0.6642 (3) | 0.3551 (2) | 0.62472 (19) | 0.0445 (7) | |
H6CA | 0.6977 | 0.3533 | 0.5801 | 0.053* | |
H6CB | 0.5783 | 0.3528 | 0.6099 | 0.053* | |
C6B | 0.3847 (3) | 0.1444 (2) | 0.3472 (2) | 0.0292 (7) | |
N6B | 0.4690 (3) | 0.1497 (2) | 0.43876 (19) | 0.0444 (7) | |
H6BA | 0.5544 | 0.1503 | 0.4516 | 0.053* | |
H6BB | 0.4379 | 0.1524 | 0.4847 | 0.053* | |
H9D | 0.087 (3) | 0.135 (2) | 0.703 (3) | 0.067* | |
O10 | 0.3179 (3) | 0.3727 (4) | 0.5185 (2) | 0.0917 (11) | |
H10C | 0.340 (6) | 0.359 (5) | 0.573 (2) | 0.138* | |
H10D | 0.241 (3) | 0.345 (4) | 0.495 (4) | 0.138* | |
O11 | 0.0766 (4) | 0.4674 (3) | 0.5928 (2) | 0.0791 (9) | |
H11C | 0.023 (5) | 0.411 (3) | 0.568 (4) | 0.119* | |
H11D | 0.130 (5) | 0.445 (4) | 0.641 (3) | 0.119* | |
O12 | 0.7554 (3) | 0.3892 (2) | 0.14932 (19) | 0.0575 (7) | |
H12A | 0.769 (5) | 0.346 (3) | 0.183 (3) | 0.086* | |
H12B | 0.773 (5) | 0.447 (2) | 0.185 (3) | 0.086* | |
O13 | 0.7446 (3) | 0.3873 (2) | 0.4608 (2) | 0.0624 (8) | |
H13C | 0.750 (5) | 0.329 (2) | 0.434 (3) | 0.094* | |
H13D | 0.795 (4) | 0.426 (3) | 0.450 (4) | 0.094* | |
O14 | 0.0675 (3) | 0.3836 (2) | 0.3461 (2) | 0.0635 (8) | |
H14C | 0.016 (4) | 0.332 (2) | 0.333 (4) | 0.095* | |
H14D | 0.032 (5) | 0.430 (3) | 0.369 (3) | 0.095* | |
O15 | 0.7919 (3) | 0.0860 (3) | 0.5281 (2) | 0.0716 (9) | |
H15C | 0.871 (3) | 0.087 (4) | 0.567 (3) | 0.107* | |
H15D | 0.792 (5) | 0.115 (4) | 0.484 (3) | 0.107* | |
O16 | 0.3718 (3) | 0.1016 (2) | 0.5870 (2) | 0.0604 (7) | |
H16C | 0.327 (4) | 0.047 (2) | 0.560 (3) | 0.091* | |
H16D | 0.338 (4) | 0.136 (3) | 0.621 (3) | 0.091* | |
O17 | 0.3458 (3) | 0.1177 (2) | 0.90904 (19) | 0.0591 (7) | |
H17A | 0.355 (5) | 0.164 (3) | 0.882 (3) | 0.089* | |
H17B | 0.314 (4) | 0.064 (2) | 0.870 (3) | 0.089* | |
O18 | 1.086 (4) | 0.250 (3) | 0.5021 (19) | 0.078 (8) | 0.36 (7) |
H18C | 1.057 (17) | 0.192 (7) | 0.464 (11) | 0.117* | 0.36 (7) |
H18D | 1.138 (15) | 0.220 (10) | 0.542 (2) | 0.117* | 0.36 (7) |
O18B | 1.031 (4) | 0.2505 (15) | 0.5241 (19) | 0.117 (8) | 0.64 (7) |
H18E | 1.001 (13) | 0.198 (7) | 0.478 (7) | 0.175* | 0.64 (7) |
H18F | 1.096 (10) | 0.227 (8) | 0.561 (3) | 0.175* | 0.64 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0261 (4) | 0.0418 (4) | 0.0255 (4) | 0.0006 (3) | 0.0080 (3) | 0.0074 (3) |
O1 | 0.0445 (15) | 0.0786 (18) | 0.0312 (13) | 0.0040 (13) | 0.0073 (11) | 0.0193 (12) |
O2 | 0.0492 (16) | 0.0530 (15) | 0.0542 (16) | −0.0132 (12) | 0.0171 (13) | −0.0020 (12) |
C2C | 0.0329 (17) | 0.0253 (15) | 0.0291 (16) | 0.0034 (13) | 0.0099 (14) | 0.0072 (12) |
O3 | 0.0605 (17) | 0.0584 (16) | 0.0480 (15) | 0.0228 (13) | 0.0249 (13) | 0.0176 (12) |
O4 | 0.0277 (13) | 0.0814 (17) | 0.0383 (14) | −0.0022 (12) | 0.0110 (11) | 0.0190 (12) |
C4C | 0.0313 (17) | 0.0338 (16) | 0.0319 (17) | 0.0028 (13) | 0.0128 (14) | 0.0109 (13) |
S2 | 0.0249 (4) | 0.0470 (5) | 0.0300 (4) | 0.0049 (4) | 0.0083 (3) | 0.0099 (4) |
O5 | 0.066 (2) | 0.076 (2) | 0.121 (3) | −0.0015 (18) | 0.010 (2) | 0.058 (2) |
O6 | 0.0360 (14) | 0.112 (3) | 0.0366 (14) | 0.0129 (15) | 0.0156 (12) | 0.0096 (15) |
O7 | 0.0368 (15) | 0.0607 (19) | 0.0434 (15) | 0.0175 (14) | 0.0090 (12) | 0.0106 (14) |
O8 | 0.0495 (18) | 0.083 (2) | 0.0342 (16) | 0.0150 (16) | −0.0005 (14) | −0.0084 (14) |
S2B | 0.0249 (4) | 0.0470 (5) | 0.0300 (4) | 0.0049 (4) | 0.0083 (3) | 0.0099 (4) |
O5B | 0.066 (2) | 0.076 (2) | 0.121 (3) | −0.0015 (18) | 0.010 (2) | 0.058 (2) |
O6B | 0.0360 (14) | 0.112 (3) | 0.0366 (14) | 0.0129 (15) | 0.0156 (12) | 0.0096 (15) |
O7B | 0.0368 (15) | 0.0607 (19) | 0.0434 (15) | 0.0175 (14) | 0.0090 (12) | 0.0106 (14) |
O8B | 0.0495 (18) | 0.083 (2) | 0.0342 (16) | 0.0150 (16) | −0.0005 (14) | −0.0084 (14) |
N3B | 0.0254 (14) | 0.0342 (14) | 0.0264 (13) | 0.0032 (11) | 0.0085 (11) | 0.0059 (11) |
C2B | 0.0278 (16) | 0.0286 (15) | 0.0258 (15) | 0.0013 (12) | 0.0086 (13) | 0.0047 (12) |
C2A | 0.0333 (18) | 0.0265 (15) | 0.0300 (17) | 0.0010 (13) | 0.0092 (14) | 0.0065 (12) |
N3A | 0.0299 (15) | 0.0394 (15) | 0.0262 (14) | 0.0021 (12) | 0.0066 (12) | 0.0081 (11) |
C2D | 0.0339 (18) | 0.0295 (16) | 0.0289 (17) | 0.0006 (13) | 0.0062 (14) | 0.0055 (13) |
N4B | 0.0296 (15) | 0.0653 (19) | 0.0290 (14) | 0.0063 (13) | 0.0115 (12) | 0.0132 (13) |
C4B | 0.0270 (16) | 0.0278 (15) | 0.0323 (17) | 0.0035 (12) | 0.0107 (14) | 0.0064 (13) |
N4A | 0.0290 (15) | 0.0587 (18) | 0.0313 (15) | 0.0011 (13) | 0.0086 (12) | 0.0092 (13) |
N3D | 0.0366 (15) | 0.0377 (14) | 0.0267 (14) | 0.0009 (12) | 0.0089 (12) | 0.0078 (11) |
N3C | 0.0268 (14) | 0.0371 (14) | 0.0276 (13) | 0.0025 (11) | 0.0079 (11) | 0.0088 (11) |
C4A | 0.0328 (18) | 0.0368 (17) | 0.0315 (17) | 0.0076 (14) | 0.0117 (15) | 0.0082 (14) |
N5B | 0.0251 (15) | 0.0682 (19) | 0.0378 (16) | 0.0084 (13) | 0.0135 (13) | 0.0151 (14) |
C5B | 0.0281 (17) | 0.0400 (17) | 0.0302 (17) | 0.0011 (14) | 0.0130 (14) | 0.0063 (13) |
N5A | 0.0343 (16) | 0.083 (2) | 0.0296 (15) | 0.0075 (15) | 0.0110 (13) | 0.0155 (15) |
C4D | 0.0343 (18) | 0.0340 (17) | 0.0318 (17) | 0.0015 (14) | 0.0111 (15) | 0.0095 (13) |
N4D | 0.0305 (16) | 0.072 (2) | 0.0323 (15) | 0.0026 (14) | 0.0081 (13) | 0.0125 (14) |
N4C | 0.0272 (14) | 0.0567 (17) | 0.0313 (15) | 0.0043 (13) | 0.0108 (12) | 0.0120 (13) |
C5A | 0.0278 (17) | 0.0456 (19) | 0.0311 (17) | 0.0024 (14) | 0.0081 (14) | 0.0103 (14) |
N1D | 0.0328 (15) | 0.0397 (15) | 0.0274 (14) | 0.0041 (12) | 0.0126 (12) | 0.0077 (11) |
N1C | 0.0250 (15) | 0.0385 (15) | 0.0326 (15) | 0.0026 (11) | 0.0068 (12) | 0.0097 (11) |
N1B | 0.0224 (14) | 0.0432 (15) | 0.0297 (14) | 0.0029 (11) | 0.0078 (11) | 0.0055 (11) |
N1A | 0.0342 (15) | 0.0360 (14) | 0.0265 (13) | 0.0005 (11) | 0.0123 (12) | 0.0069 (11) |
C6A | 0.0349 (18) | 0.0291 (16) | 0.0254 (16) | 0.0030 (13) | 0.0070 (14) | 0.0043 (12) |
C5D | 0.0318 (17) | 0.0385 (17) | 0.0312 (17) | 0.0036 (14) | 0.0084 (14) | 0.0108 (14) |
N5D | 0.0394 (17) | 0.078 (2) | 0.0328 (16) | 0.0070 (16) | 0.0145 (14) | 0.0170 (15) |
N5C | 0.0271 (15) | 0.087 (2) | 0.0361 (16) | 0.0097 (15) | 0.0136 (13) | 0.0226 (15) |
N6A | 0.0393 (16) | 0.0636 (19) | 0.0244 (14) | 0.0059 (14) | 0.0079 (13) | 0.0080 (13) |
O9 | 0.0556 (18) | 0.0478 (16) | 0.082 (2) | 0.0062 (14) | 0.0410 (16) | 0.0139 (16) |
C6C | 0.0383 (19) | 0.0264 (15) | 0.0272 (16) | 0.0030 (14) | 0.0093 (14) | 0.0054 (12) |
C5C | 0.0335 (18) | 0.0437 (18) | 0.0284 (17) | 0.0058 (14) | 0.0140 (14) | 0.0104 (14) |
C6D | 0.0349 (18) | 0.0231 (15) | 0.0301 (16) | 0.0026 (13) | 0.0078 (14) | 0.0054 (12) |
N6D | 0.0400 (16) | 0.0504 (17) | 0.0263 (14) | 0.0070 (13) | 0.0088 (13) | 0.0113 (12) |
N6C | 0.0390 (17) | 0.0605 (18) | 0.0306 (15) | 0.0060 (14) | 0.0082 (13) | 0.0107 (13) |
C6B | 0.0315 (17) | 0.0306 (16) | 0.0239 (15) | 0.0032 (13) | 0.0081 (13) | 0.0058 (12) |
N6B | 0.0312 (15) | 0.072 (2) | 0.0280 (15) | 0.0078 (14) | 0.0077 (13) | 0.0110 (14) |
O10 | 0.063 (2) | 0.162 (3) | 0.057 (2) | −0.007 (2) | 0.0246 (18) | 0.038 (2) |
O11 | 0.086 (3) | 0.085 (2) | 0.058 (2) | 0.0325 (19) | 0.0139 (18) | 0.0153 (18) |
O12 | 0.0738 (19) | 0.0545 (17) | 0.0404 (16) | 0.0049 (16) | 0.0163 (15) | 0.0102 (12) |
O13 | 0.065 (2) | 0.0629 (19) | 0.0613 (19) | 0.0083 (16) | 0.0290 (16) | 0.0058 (15) |
O14 | 0.0565 (19) | 0.0651 (19) | 0.081 (2) | 0.0056 (15) | 0.0421 (17) | 0.0123 (17) |
O15 | 0.0555 (18) | 0.104 (2) | 0.060 (2) | −0.0010 (18) | 0.0215 (16) | 0.0299 (18) |
O16 | 0.0509 (18) | 0.0678 (19) | 0.0597 (19) | 0.0098 (14) | 0.0239 (15) | −0.0009 (15) |
O17 | 0.085 (2) | 0.0526 (17) | 0.0372 (15) | −0.0002 (16) | 0.0191 (15) | 0.0127 (12) |
O18 | 0.077 (13) | 0.081 (10) | 0.052 (9) | −0.021 (8) | −0.009 (8) | 0.025 (7) |
O18B | 0.117 (14) | 0.095 (6) | 0.077 (8) | 0.010 (8) | −0.028 (9) | −0.002 (5) |
S1—O1 | 1.459 (2) | C5A—H5A | 0.9300 |
S1—O3 | 1.461 (2) | N1D—C6D | 1.371 (4) |
S1—O4 | 1.469 (2) | N1D—H1D | 0.8600 |
S1—O2 | 1.471 (2) | N1C—C6C | 1.372 (4) |
C2C—N3C | 1.319 (4) | N1C—H1CB | 0.8600 |
C2C—N4C | 1.327 (4) | N1B—C6B | 1.363 (4) |
C2C—N1C | 1.362 (4) | N1B—H1B | 0.8600 |
C4C—N5C | 1.330 (4) | N1A—C6A | 1.368 (4) |
C4C—N3C | 1.361 (4) | N1A—H1A | 0.8600 |
C4C—C5C | 1.399 (4) | C6A—N6A | 1.337 (4) |
S2—O8 | 1.449 (4) | C5D—C6D | 1.368 (4) |
S2—O5 | 1.450 (4) | C5D—H5D | 0.9300 |
S2—O6 | 1.453 (3) | N5D—H5DA | 0.8600 |
S2—O7 | 1.471 (3) | N5D—H5DB | 0.8600 |
S2B—O8B | 1.447 (18) | N5C—H5CA | 0.8600 |
S2B—O5B | 1.449 (19) | N5C—H5CB | 0.8600 |
S2B—O6B | 1.452 (18) | N6A—H6AA | 0.8600 |
S2B—O7B | 1.469 (18) | N6A—H6AB | 0.8600 |
N3B—C2B | 1.315 (4) | O9—H9C | 0.797 (18) |
N3B—C4B | 1.354 (4) | O9—H9D | 0.829 (19) |
C2B—N4B | 1.326 (4) | C6C—N6C | 1.339 (4) |
C2B—N1B | 1.360 (4) | C6C—C5C | 1.364 (4) |
C2A—N3A | 1.314 (4) | C5C—H5C | 0.9300 |
C2A—N4A | 1.326 (4) | C6D—N6D | 1.327 (4) |
C2A—N1A | 1.362 (4) | N6D—H6DA | 0.8600 |
N3A—C4A | 1.356 (4) | N6D—H6DB | 0.8600 |
C2D—N3D | 1.319 (4) | N6C—H6CA | 0.8600 |
C2D—N4D | 1.329 (4) | N6C—H6CB | 0.8600 |
C2D—N1D | 1.366 (4) | C6B—N6B | 1.339 (4) |
N4B—H4BA | 0.8600 | N6B—H6BA | 0.8600 |
N4B—H4BB | 0.8600 | N6B—H6BB | 0.8600 |
C4B—N5B | 1.330 (4) | O10—H10C | 0.826 (19) |
C4B—C5B | 1.400 (4) | O10—H10D | 0.81 (2) |
N4A—H4AA | 0.8600 | O11—H11C | 0.856 (19) |
N4A—H4AB | 0.8600 | O11—H11D | 0.854 (19) |
N3D—C4D | 1.353 (4) | O12—H12A | 0.821 (19) |
C4A—N5A | 1.332 (4) | O12—H12B | 0.819 (19) |
C4A—C5A | 1.404 (4) | O13—H13C | 0.821 (19) |
N5B—H5BA | 0.8600 | O13—H13D | 0.808 (19) |
N5B—H5BB | 0.8600 | O14—H14C | 0.807 (19) |
C5B—C6B | 1.371 (4) | O14—H14D | 0.813 (19) |
C5B—H5B | 0.9300 | O15—H15C | 0.836 (19) |
N5A—H5AA | 0.8600 | O15—H15D | 0.830 (19) |
N5A—H5AB | 0.8600 | O16—H16C | 0.808 (19) |
C4D—N5D | 1.341 (4) | O16—H16D | 0.816 (19) |
C4D—C5D | 1.384 (4) | O17—H17A | 0.820 (19) |
N4D—H4DA | 0.8600 | O17—H17B | 0.807 (19) |
N4D—H4DB | 0.8600 | O18—H18C | 0.84 (2) |
N4C—H4CA | 0.8600 | O18—H18D | 0.84 (2) |
N4C—H4CB | 0.8600 | O18B—H18E | 0.84 (2) |
C5A—C6A | 1.366 (4) | O18B—H18F | 0.83 (2) |
O1—S1—O3 | 110.02 (14) | C2C—N4C—H4CB | 120.0 |
O1—S1—O4 | 110.02 (14) | H4CA—N4C—H4CB | 120.0 |
O3—S1—O4 | 109.89 (15) | C6A—C5A—C4A | 118.4 (3) |
O1—S1—O2 | 109.83 (15) | C6A—C5A—H5A | 120.8 |
O3—S1—O2 | 108.84 (15) | C4A—C5A—H5A | 120.8 |
O4—S1—O2 | 108.21 (14) | C2D—N1D—C6D | 120.9 (3) |
N3C—C2C—N4C | 121.1 (3) | C2D—N1D—H1D | 119.6 |
N3C—C2C—N1C | 122.5 (3) | C6D—N1D—H1D | 119.6 |
N4C—C2C—N1C | 116.4 (3) | C2C—N1C—C6C | 121.2 (3) |
N5C—C4C—N3C | 116.1 (3) | C2C—N1C—H1CB | 119.4 |
N5C—C4C—C5C | 121.3 (3) | C6C—N1C—H1CB | 119.4 |
N3C—C4C—C5C | 122.6 (3) | C2B—N1B—C6B | 121.1 (3) |
O8—S2—O5 | 109.5 (3) | C2B—N1B—H1B | 119.4 |
O8—S2—O6 | 110.5 (3) | C6B—N1B—H1B | 119.4 |
O5—S2—O6 | 108.3 (3) | C2A—N1A—C6A | 120.7 (3) |
O8—S2—O7 | 110.7 (2) | C2A—N1A—H1A | 119.7 |
O5—S2—O7 | 108.3 (2) | C6A—N1A—H1A | 119.7 |
O6—S2—O7 | 109.5 (3) | N6A—C6A—C5A | 124.1 (3) |
O8B—S2B—O5B | 109 (2) | N6A—C6A—N1A | 117.6 (3) |
O8B—S2B—O6B | 110 (3) | C5A—C6A—N1A | 118.3 (3) |
O5B—S2B—O6B | 109 (3) | C6D—C5D—C4D | 119.0 (3) |
O8B—S2B—O7B | 110 (2) | C6D—C5D—H5D | 120.5 |
O5B—S2B—O7B | 108 (2) | C4D—C5D—H5D | 120.5 |
O6B—S2B—O7B | 110 (3) | C4D—N5D—H5DA | 120.0 |
C2B—N3B—C4B | 117.1 (3) | C4D—N5D—H5DB | 120.0 |
N3B—C2B—N4B | 121.0 (3) | H5DA—N5D—H5DB | 120.0 |
N3B—C2B—N1B | 122.8 (3) | C4C—N5C—H5CA | 120.0 |
N4B—C2B—N1B | 116.2 (3) | C4C—N5C—H5CB | 120.0 |
N3A—C2A—N4A | 119.7 (3) | H5CA—N5C—H5CB | 120.0 |
N3A—C2A—N1A | 123.1 (3) | C6A—N6A—H6AA | 120.0 |
N4A—C2A—N1A | 117.2 (3) | C6A—N6A—H6AB | 120.0 |
C2A—N3A—C4A | 117.3 (3) | H6AA—N6A—H6AB | 120.0 |
N3D—C2D—N4D | 120.0 (3) | H9C—O9—H9D | 107 (4) |
N3D—C2D—N1D | 122.9 (3) | N6C—C6C—C5C | 125.6 (3) |
N4D—C2D—N1D | 117.0 (3) | N6C—C6C—N1C | 116.4 (3) |
C2B—N4B—H4BA | 120.0 | C5C—C6C—N1C | 118.0 (3) |
C2B—N4B—H4BB | 120.0 | C6C—C5C—C4C | 118.4 (3) |
H4BA—N4B—H4BB | 120.0 | C6C—C5C—H5C | 120.8 |
N5B—C4B—N3B | 116.1 (3) | C4C—C5C—H5C | 120.8 |
N5B—C4B—C5B | 121.0 (3) | N6D—C6D—C5D | 124.9 (3) |
N3B—C4B—C5B | 122.9 (3) | N6D—C6D—N1D | 117.7 (3) |
C2A—N4A—H4AA | 120.0 | C5D—C6D—N1D | 117.4 (3) |
C2A—N4A—H4AB | 120.0 | C6D—N6D—H6DA | 120.0 |
H4AA—N4A—H4AB | 120.0 | C6D—N6D—H6DB | 120.0 |
C2D—N3D—C4D | 116.7 (3) | H6DA—N6D—H6DB | 120.0 |
C2C—N3C—C4C | 117.3 (3) | C6C—N6C—H6CA | 120.0 |
N5A—C4A—N3A | 116.7 (3) | C6C—N6C—H6CB | 120.0 |
N5A—C4A—C5A | 120.9 (3) | H6CA—N6C—H6CB | 120.0 |
N3A—C4A—C5A | 122.3 (3) | N6B—C6B—N1B | 117.0 (3) |
C4B—N5B—H5BA | 120.0 | N6B—C6B—C5B | 124.8 (3) |
C4B—N5B—H5BB | 120.0 | N1B—C6B—C5B | 118.2 (3) |
H5BA—N5B—H5BB | 120.0 | C6B—N6B—H6BA | 120.0 |
C6B—C5B—C4B | 117.9 (3) | C6B—N6B—H6BB | 120.0 |
C6B—C5B—H5B | 121.1 | H6BA—N6B—H6BB | 120.0 |
C4B—C5B—H5B | 121.1 | H10C—O10—H10D | 99 (6) |
C4A—N5A—H5AA | 120.0 | H11C—O11—H11D | 96 (5) |
C4A—N5A—H5AB | 120.0 | H12A—O12—H12B | 109 (4) |
H5AA—N5A—H5AB | 120.0 | H13C—O13—H13D | 106 (5) |
N5D—C4D—N3D | 115.9 (3) | H14C—O14—H14D | 105 (5) |
N5D—C4D—C5D | 121.0 (3) | H15C—O15—H15D | 110 (5) |
N3D—C4D—C5D | 123.1 (3) | H16C—O16—H16D | 110 (5) |
C2D—N4D—H4DA | 120.0 | H17A—O17—H17B | 110 (5) |
C2D—N4D—H4DB | 120.0 | H18C—O18—H18D | 88 (10) |
H4DA—N4D—H4DB | 120.0 | H18E—O18B—H18F | 99 (10) |
C2C—N4C—H4CA | 120.0 | ||
C4B—N3B—C2B—N4B | 179.2 (3) | N3B—C2B—N1B—C6B | 0.9 (4) |
C4B—N3B—C2B—N1B | −1.1 (4) | N4B—C2B—N1B—C6B | −179.4 (3) |
N4A—C2A—N3A—C4A | 179.5 (3) | N3A—C2A—N1A—C6A | 1.0 (4) |
N1A—C2A—N3A—C4A | −0.2 (4) | N4A—C2A—N1A—C6A | −178.8 (3) |
C2B—N3B—C4B—N5B | −179.0 (3) | C4A—C5A—C6A—N6A | 179.8 (3) |
C2B—N3B—C4B—C5B | 0.5 (4) | C4A—C5A—C6A—N1A | 0.3 (4) |
N4D—C2D—N3D—C4D | 179.8 (3) | C2A—N1A—C6A—N6A | 179.4 (3) |
N1D—C2D—N3D—C4D | 0.1 (4) | C2A—N1A—C6A—C5A | −1.0 (4) |
N4C—C2C—N3C—C4C | −179.2 (3) | N5D—C4D—C5D—C6D | 179.6 (3) |
N1C—C2C—N3C—C4C | 0.1 (4) | N3D—C4D—C5D—C6D | −0.4 (5) |
N5C—C4C—N3C—C2C | 179.6 (3) | C2C—N1C—C6C—N6C | 179.8 (3) |
C5C—C4C—N3C—C2C | −0.3 (4) | C2C—N1C—C6C—C5C | −0.5 (4) |
C2A—N3A—C4A—N5A | 178.8 (3) | N6C—C6C—C5C—C4C | 180.0 (3) |
C2A—N3A—C4A—C5A | −0.5 (4) | N1C—C6C—C5C—C4C | 0.2 (4) |
N5B—C4B—C5B—C6B | 179.8 (3) | N5C—C4C—C5C—C6C | −179.8 (3) |
N3B—C4B—C5B—C6B | 0.3 (4) | N3C—C4C—C5C—C6C | 0.2 (5) |
C2D—N3D—C4D—N5D | −179.9 (3) | C4D—C5D—C6D—N6D | −179.3 (3) |
C2D—N3D—C4D—C5D | 0.1 (4) | C4D—C5D—C6D—N1D | 0.4 (4) |
N5A—C4A—C5A—C6A | −178.8 (3) | C2D—N1D—C6D—N6D | 179.5 (3) |
N3A—C4A—C5A—C6A | 0.5 (5) | C2D—N1D—C6D—C5D | −0.2 (4) |
N3D—C2D—N1D—C6D | 0.0 (4) | C2B—N1B—C6B—N6B | 179.6 (3) |
N4D—C2D—N1D—C6D | −179.7 (3) | C2B—N1B—C6B—C5B | 0.0 (4) |
N3C—C2C—N1C—C6C | 0.3 (4) | C4B—C5B—C6B—N6B | 179.8 (3) |
N4C—C2C—N1C—C6C | 179.6 (3) | C4B—C5B—C6B—N1B | −0.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4B—H4BA···O17i | 0.86 | 2.15 | 2.967 (4) | 159 |
N4B—H4BB···O8 | 0.86 | 2.07 | 2.905 (4) | 162 |
N4B—H4BB···O5B | 0.86 | 2.38 | 3.19 (4) | 157 |
N4A—H4AA···N3Cii | 0.86 | 2.16 | 3.017 (4) | 172 |
N4A—H4AB···O14 | 0.86 | 2.56 | 3.262 (4) | 139 |
N5B—H5BA···N3Dii | 0.86 | 2.22 | 3.074 (4) | 174 |
N5B—H5BB···O7iii | 0.86 | 2.20 | 3.040 (4) | 166 |
N5B—H5BB···O7Biii | 0.86 | 2.10 | 2.93 (3) | 163 |
N5A—H5AA···O1i | 0.86 | 2.25 | 2.993 (3) | 145 |
N5A—H5AB···O12 | 0.86 | 2.21 | 3.066 (4) | 174 |
N4D—H4DA···N3Biv | 0.86 | 2.16 | 3.013 (4) | 176 |
N4D—H4DB···O17v | 0.86 | 2.57 | 3.248 (4) | 137 |
N4C—H4CA···O12vi | 0.86 | 2.14 | 2.953 (4) | 158 |
N4C—H4CB···O1 | 0.86 | 2.16 | 2.983 (3) | 160 |
N1D—H1D···O9v | 0.86 | 1.97 | 2.826 (4) | 170 |
N1C—H1CB···O4 | 0.86 | 1.86 | 2.709 (3) | 172 |
N1B—H1B···O6 | 0.86 | 1.92 | 2.757 (6) | 166 |
N1B—H1B···O6B | 0.86 | 1.91 | 2.75 (7) | 164 |
N1A—H1A···O14 | 0.86 | 1.95 | 2.793 (4) | 166 |
N5D—H5DA···O8vi | 0.86 | 2.31 | 3.046 (4) | 143 |
N5D—H5DA···O5Bvi | 0.86 | 2.23 | 2.99 (5) | 147 |
N5D—H5DB···O17 | 0.86 | 2.34 | 3.193 (4) | 173 |
N5C—H5CA···N3Aiv | 0.86 | 2.14 | 2.990 (4) | 172 |
N5C—H5CB···O3v | 0.86 | 2.06 | 2.905 (3) | 169 |
N6A—H6AA···O13 | 0.86 | 2.14 | 2.981 (4) | 166 |
N6A—H6AB···O10 | 0.86 | 2.02 | 2.855 (4) | 164 |
O9—H9C···O7vii | 0.80 (2) | 1.98 (2) | 2.770 (4) | 171 (4) |
O9—H9C···O8Bvii | 0.80 (2) | 2.24 (5) | 2.84 (3) | 133 (3) |
N6D—H6DA···O16 | 0.86 | 2.08 | 2.937 (4) | 179 |
N6D—H6DB···O15 | 0.86 | 2.16 | 3.005 (4) | 166 |
N6C—H6CA···O13 | 0.86 | 2.14 | 2.970 (4) | 162 |
N6B—H6BA···O6 | 0.86 | 2.60 | 3.284 (5) | 137 |
N6B—H6BA···O6B | 0.86 | 2.64 | 3.31 (4) | 135 |
N6B—H6BA···O15 | 0.86 | 2.63 | 3.427 (4) | 154 |
N6B—H6BB···O16 | 0.86 | 2.10 | 2.923 (4) | 159 |
O9—H9D···O2 | 0.83 (2) | 1.93 (2) | 2.759 (4) | 173 (4) |
O10—H10C···O4 | 0.83 (2) | 1.96 (2) | 2.780 (4) | 172 (6) |
O10—H10D···O14 | 0.81 (2) | 2.51 (6) | 3.026 (5) | 123 (6) |
O10—H10D···O18iii | 0.81 (2) | 2.09 (5) | 2.82 (3) | 151 (6) |
O11—H11C···O18iii | 0.86 (2) | 2.40 (7) | 2.97 (4) | 124 (5) |
O11—H11C···O18Biii | 0.86 (2) | 2.12 (4) | 2.826 (18) | 139 (5) |
O11—H11D···O3 | 0.85 (2) | 1.90 (2) | 2.745 (4) | 171 (5) |
O12—H12A···O5 | 0.82 (2) | 1.98 (2) | 2.795 (4) | 172 (5) |
O12—H12A···O5B | 0.82 (2) | 2.05 (4) | 2.81 (3) | 156 (5) |
O12—H12B···O3viii | 0.82 (2) | 2.06 (2) | 2.856 (4) | 165 (5) |
O13—H13C···O6 | 0.82 (2) | 2.15 (2) | 2.956 (6) | 167 (5) |
O13—H13C···O6B | 0.82 (2) | 2.06 (7) | 2.87 (6) | 167 (5) |
O13—H13D···O11viii | 0.81 (2) | 2.26 (2) | 3.063 (5) | 175 (5) |
O14—H14C···O5iii | 0.81 (2) | 2.06 (3) | 2.792 (4) | 152 (5) |
O14—H14C···O7Biii | 0.81 (2) | 2.21 (4) | 2.98 (4) | 159 (5) |
O14—H14D···O11ix | 0.81 (2) | 1.95 (2) | 2.761 (4) | 172 (5) |
O15—H15C···O9v | 0.84 (2) | 2.10 (3) | 2.894 (4) | 158 (5) |
O15—H15D···O6 | 0.83 (2) | 2.02 (3) | 2.808 (7) | 158 (5) |
O15—H15D···O6B | 0.83 (2) | 2.11 (8) | 2.90 (8) | 159 (5) |
O16—H16C···O15vii | 0.81 (2) | 2.05 (2) | 2.855 (5) | 171 (5) |
O16—H16D···O2 | 0.82 (2) | 2.07 (2) | 2.882 (4) | 175 (5) |
O17—H17A···O1 | 0.82 (2) | 2.09 (2) | 2.878 (4) | 162 (4) |
O17—H17B···O8vii | 0.81 (2) | 2.07 (2) | 2.837 (4) | 160 (5) |
O17—H17B···O8Bvii | 0.81 (2) | 1.96 (4) | 2.74 (3) | 163 (5) |
O18—H18C···O7 | 0.84 (2) | 2.04 (11) | 2.78 (2) | 147 (18) |
O18—H18D···O2v | 0.84 (2) | 2.21 (2) | 2.92 (2) | 143 (5) |
O18B—H18E···O7B | 0.84 (2) | 1.83 (11) | 2.49 (4) | 134 (13) |
O18B—H18F···O2v | 0.83 (2) | 2.10 (2) | 2.857 (14) | 152 (6) |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z−1; (iii) x−1, y, z; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y, z+1; (vii) −x+1, −y, −z+1; (viii) −x+1, −y+1, −z+1; (ix) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4B—H4BA···O17i | 0.86 | 2.15 | 2.967 (4) | 159.1 |
N4B—H4BB···O8 | 0.86 | 2.07 | 2.905 (4) | 162.4 |
N4B—H4BB···O5B | 0.86 | 2.38 | 3.19 (4) | 156.7 |
N4A—H4AA···N3Cii | 0.86 | 2.16 | 3.017 (4) | 172.4 |
N4A—H4AB···O14 | 0.86 | 2.56 | 3.262 (4) | 139.1 |
N5B—H5BA···N3Dii | 0.86 | 2.22 | 3.074 (4) | 174.4 |
N5B—H5BB···O7iii | 0.86 | 2.20 | 3.040 (4) | 166.3 |
N5B—H5BB···O7Biii | 0.86 | 2.10 | 2.93 (3) | 162.9 |
N5A—H5AA···O1i | 0.86 | 2.25 | 2.993 (3) | 144.6 |
N5A—H5AB···O12 | 0.86 | 2.21 | 3.066 (4) | 174.1 |
N4D—H4DA···N3Biv | 0.86 | 2.16 | 3.013 (4) | 175.5 |
N4D—H4DB···O17v | 0.86 | 2.57 | 3.248 (4) | 136.5 |
N4C—H4CA···O12vi | 0.86 | 2.14 | 2.953 (4) | 158.0 |
N4C—H4CB···O1 | 0.86 | 2.16 | 2.983 (3) | 160.2 |
N1D—H1D···O9v | 0.86 | 1.97 | 2.826 (4) | 170.1 |
N1C—H1CB···O4 | 0.86 | 1.86 | 2.709 (3) | 171.7 |
N1B—H1B···O6 | 0.86 | 1.92 | 2.757 (6) | 165.5 |
N1B—H1B···O6B | 0.86 | 1.91 | 2.75 (7) | 164.0 |
N1A—H1A···O14 | 0.86 | 1.95 | 2.793 (4) | 166.1 |
N5D—H5DA···O8vi | 0.86 | 2.31 | 3.046 (4) | 143.3 |
N5D—H5DA···O5Bvi | 0.86 | 2.23 | 2.99 (5) | 146.5 |
N5D—H5DB···O17 | 0.86 | 2.34 | 3.193 (4) | 173.4 |
N5C—H5CA···N3Aiv | 0.86 | 2.14 | 2.990 (4) | 172.2 |
N5C—H5CB···O3v | 0.86 | 2.06 | 2.905 (3) | 169.4 |
N6A—H6AA···O13 | 0.86 | 2.14 | 2.981 (4) | 166.0 |
N6A—H6AB···O10 | 0.86 | 2.02 | 2.855 (4) | 163.7 |
O9—H9C···O7vii | 0.797 (18) | 1.982 (19) | 2.770 (4) | 171 (4) |
O9—H9C···O8Bvii | 0.797 (18) | 2.24 (5) | 2.84 (3) | 133 (3) |
N6D—H6DA···O16 | 0.86 | 2.08 | 2.937 (4) | 178.6 |
N6D—H6DB···O15 | 0.86 | 2.16 | 3.005 (4) | 166.1 |
N6C—H6CA···O13 | 0.86 | 2.14 | 2.970 (4) | 162.3 |
N6B—H6BA···O6 | 0.86 | 2.60 | 3.284 (5) | 136.7 |
N6B—H6BA···O6B | 0.86 | 2.64 | 3.31 (4) | 135.4 |
N6B—H6BA···O15 | 0.86 | 2.63 | 3.427 (4) | 153.9 |
N6B—H6BB···O16 | 0.86 | 2.10 | 2.923 (4) | 159.0 |
O9—H9D···O2 | 0.829 (19) | 1.934 (19) | 2.759 (4) | 173 (4) |
O10—H10C···O4 | 0.826 (19) | 1.96 (2) | 2.780 (4) | 172 (6) |
O10—H10D···O14 | 0.81 (2) | 2.51 (6) | 3.026 (5) | 123 (6) |
O10—H10D···O18iii | 0.81 (2) | 2.09 (5) | 2.82 (3) | 151 (6) |
O11—H11C···O18iii | 0.856 (19) | 2.40 (7) | 2.97 (4) | 124 (5) |
O11—H11C···O18Biii | 0.856 (19) | 2.12 (4) | 2.826 (18) | 139 (5) |
O11—H11D···O3 | 0.854 (19) | 1.90 (2) | 2.745 (4) | 171 (5) |
O12—H12A···O5 | 0.821 (19) | 1.98 (2) | 2.795 (4) | 172 (5) |
O12—H12A···O5B | 0.821 (19) | 2.05 (4) | 2.81 (3) | 156 (5) |
O12—H12B···O3viii | 0.819 (19) | 2.06 (2) | 2.856 (4) | 165 (5) |
O13—H13C···O6 | 0.821 (19) | 2.15 (2) | 2.956 (6) | 167 (5) |
O13—H13C···O6B | 0.821 (19) | 2.06 (7) | 2.87 (6) | 167 (5) |
O13—H13D···O11viii | 0.808 (19) | 2.26 (2) | 3.063 (5) | 175 (5) |
O14—H14C···O5iii | 0.807 (19) | 2.06 (3) | 2.792 (4) | 152 (5) |
O14—H14C···O7Biii | 0.807 (19) | 2.21 (4) | 2.98 (4) | 159 (5) |
O14—H14D···O11ix | 0.813 (19) | 1.95 (2) | 2.761 (4) | 172 (5) |
O15—H15C···O9v | 0.836 (19) | 2.10 (3) | 2.894 (4) | 158 (5) |
O15—H15D···O6 | 0.830 (19) | 2.02 (3) | 2.808 (7) | 158 (5) |
O15—H15D···O6B | 0.830 (19) | 2.11 (8) | 2.90 (8) | 159 (5) |
O16—H16C···O15vii | 0.808 (19) | 2.05 (2) | 2.855 (5) | 171 (5) |
O16—H16D···O2 | 0.816 (19) | 2.07 (2) | 2.882 (4) | 175 (5) |
O17—H17A···O1 | 0.820 (19) | 2.09 (2) | 2.878 (4) | 162 (4) |
O17—H17B···O8vii | 0.807 (19) | 2.07 (2) | 2.837 (4) | 160 (5) |
O17—H17B···O8Bvii | 0.807 (19) | 1.96 (4) | 2.74 (3) | 163 (5) |
O18—H18C···O7 | 0.84 (2) | 2.04 (11) | 2.78 (2) | 147 (18) |
O18—H18D···O2v | 0.84 (2) | 2.21 (2) | 2.92 (2) | 143 (5) |
O18B—H18E···O7B | 0.84 (2) | 1.83 (11) | 2.49 (4) | 134 (13) |
O18B—H18F···O2v | 0.83 (2) | 2.10 (2) | 2.857 (14) | 152 (6) |
Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z−1; (iii) x−1, y, z; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y, z+1; (vii) −x+1, −y, −z+1; (viii) −x+1, −y+1, −z+1; (ix) −x, −y+1, −z+1. |
Acknowledgements
Financial support from the Center of Excellence for Innovation in Chemistry (PERCH–CIC), the Office of the Higher Education Commission, Ministry of Education and Department of Chemistry, Prince of Songkla University, is gratefully acknowledged. RN would like to thank Dr Matthias Zeller of Youngstown State University, Ohio, United States, for valuable suggestions and assistance with the X-ray structure refinement.
References
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Demeter, A. & Wéber, C. (2004). Concepts Magn. Reson. 22A, 12–24. Web of Science CrossRef CAS Google Scholar
Dobson, R. L. M., Motlagh, S., Quijano, M., Cambron, R. T., Baker, T. R., Pullen, A. M., Regg, B. T., Bigalow-Kern, A. S., Vennard, T., Fix, A., Reimschuessel, R., Overmann, G., Shan, Y. & Daston, G. P. (2008). Toxicol. Sci. 106, 251–262. Web of Science CrossRef PubMed CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hemamalini, M., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95–o97. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jolibois, F., Cadet, J., Grand, A., Subra, R., Raga, N. & Barone, V. (1998). J. Am. Chem. Soc. 120, 1864–1871. Web of Science CrossRef CAS Google Scholar
Katritzky, A. R., Pees, C. W., Boulton, A. J. & Mckillop, C. (1984). J. Heterocycl. Chem. 3, 57–68. Google Scholar
Krygowski, T. M., Szatyłowicz, H. & Zachara, J. E. (2005). J. Org. Chem. 70, 8859–8865. Web of Science CrossRef PubMed CAS Google Scholar
Louloudi, M., Deligiannakis, Y., Tuchagues, J. P., Donnadien, B. & Nadjiliadis, N. (1997). Inorg. Chem. 36, 6335–6342. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Németh, B., Wéber, C., Veszprémi, T., Gáti, T. & Demeter, Á. (2006). J. Org. Chem. 71, 4910–4918. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wei, Y. & Liu, D. (2012). Toxicol. Ind. Health, 28, 579–582. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Whitesides, G. M., Mathias, J. P. & Seto, C. T. (1991). Science, 254, 1312–1319. CrossRef PubMed CAS Web of Science Google Scholar
Zamora, F., Kunsman, M., Sabat, M. & Lippart, B. (1997). Inorg. Chem. 36, 1583–1587. CSD CrossRef PubMed CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrimidine and its derivatives are a class of heteroaromatic compounds with exceptional importance for biology, pharmacology and live sciences. An immensely large number of naturally occurring compounds are based on the pyrimidine skeleton, including three of the four DNA and RNA nucleobases, cytosine, thymine, and uracil. The pyrimidine ring, while less basic than equivalent pyridines, can nonetheless be protonated with relative ease, at either one of the two nitrogen ring atoms (double protonation is hampered by near complete loss of basicity upon the first protonation), or at the ring carbon atom (Demeter & Wéber, 2004; Németh et al., 2006). It can also act as a Lewis base in metal complex formation (Zamora et al., 1997; Louloudi et al., 1997; Jolibois et al., 1998; Katritzky et al., 1984), or as an acceptor for strong hydrogen bonding interactions. These three properties of pyrimidines are the key aspects to the wide range of their biological and pharmacological functionalities, both natural as well as synthetic.
Amino-substituted pyrimidines are of interest due to their similarity to the nucleic acids cytosine, adenine and guanine. Multi-amino substituted derivatives have recently attracted intense attention due to their similarity with melamine, which had been added to dairy products and other food to give a false appearance of a higher protein level. Exposure to high levels of melamine in food can however lead to melamine-induced kidney failure, and adulterated food had been the cause for several severe outbreaks of nephrolithiasis in pets ("2007 pet food recall") and humans ("2008 Chinese milk scandal" with more than 50,000 infant hospitalizations and six deaths) (Wei & Liu, 2012). The cause for the melamine-induced kidney stone formation was found to be a highly insoluble co-crystalline precipitate of melamine and uric acid, a hydrolysis product of melanine itself (Dobson et al., 2008). The insolubility of the melamine-uric acid co-crystal can be largely traced back to dense π–π stacking interactions and the formation of a network of strong N—H···O and N—H···N hydrogen bonds (Whitesides et al., 1991). The propensity of melamine and its derivatives to form tightly hydrogen-bonded insoluble networks is thus of great interest.
One such multi-amino substituted pyrimidine derivative is 2,4,6-triaminopyrimidine, which finds, for example, use as an internal standard in testing for melamine in food. In this communication we present the structure of the sulfate salt of 2,4,6-triaminopyrimidine, in the form of its pentahydrate, (C4H8N5)2+SO42-.5H2O, (I).
The asymmetric unit of compound (I) consists of four mono-protonated 2,4,6-triaminopyrimidine cations (TAPH+), two sulfate anions and ten water molecules (Fig. 1). All four TAPH+ cations are protonated at one of the pyrimidine ring nitrogen atoms (N1 atoms in molecules A, B, C and D). As it is common for pyridyl derivatives, the bond angles at the protonated nitrogen are slightly larger than those at the unprotonated nitrogen atoms (Krygowski et al., 2005). The C—N—C angles range between 120.7 (3)–121.2 (3)° at protonated N1 in the four independent cations. At the unprotonated nitrogen atom the equivalent angles are substantially smaller, with values between 116.7 (3) and 117.3 (3)°. Similar trends are observed for other amino substituted pyrimidine derivative salts such as the hydrogen sulfate salt of 2-amino-4,6-dimethylpyrimidinium, C6H10N3+.HSO4-, with an angle at the protonated nitrogen of 122.3 (1)° and of 117.6 (1)° at the unprotonated nitrogen atom, respectively (Hemamalini et al., 2005). S—O bonds lengths of the tetrahedral sulfate anions are in the range from 1.449 (4) Å to 1.471 (4) Å, indicating delocalized S≐O bonds rather than distinct single and double bonds. The amino groups, which are not protonated, are sp2 hybridized and the NH2 groups are coplanar with the pyrimidinium rings.
The packing of the molecules is dominated by a mixture of π–π-stacking and hydrogen bonding interactions. The primary packing motif formed by the TAPH+ cations are hydrogen-bonded dimers. Pairs of N—H···N hydrogen bonds between the amino NH2 groups and the unprotonated pyrimidine nitrogen atoms of each two of the four TAPH+ cations form dimers (graph set motif R22(8); Etter et al., 1990). The dimers, formed between cations A and C and B and D, respectively, have local pseudoinversion symmetry. The thus formed (TAPH+)2 dimers are in turn forming slightly offset π–π- stacks that stretch parallel to [010] (Fig. 2). Centroid–centroid distances between individual pyrimidine rings are between 3.5128 (15) and 3.6288 (16) Å. Interplanar distances are, due to the offset between the stacked dimers, substantially shorter and range between 3.2456 (11) and 3.2847 (11) Å.
The thus formed columns of TAPH+ cations make up about half of the unit cell volume (Fig. 3). The remainder of the volume is taken up by the sulfate anions and lattice water molecules. The H atoms of amino groups that are not engaged in N—H···N hydrogen bonds as well as the pyrimidine N—H groups of the TAPH+ cations are hydrogen-bonded through N—H···O hydrogen bonds to oxygen atoms of sulfate anions and water molecules. The SO42- tetrahedra and H2O molecules are in turn interconnected with each other via O—H···O hydrogen bonds.
The combination of π-stacking interactions and hydrogen bonding leads to the formation of a tightly interconnected three-dimensional network with alternating columns of TAPH+ cations and channels filled with sulfate anions and water molecules (Fig. 4).