organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1266-o1267

Bis(2,4,6-tri­amino­pyrimidin-1-ium) sulfate penta­hydrate

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: yupa.t@psu.ac.th

(Received 29 June 2013; accepted 11 July 2013; online 17 July 2013)

The asymmetric unit of the title salt, 2C4H8N5+·SO42−·5H2O, contains four 2,4,6-tri­amino­pyrimidinium (TAPH+) cations, two sulfate anions and ten lattice water mol­ecules. Each two of the four TAPH+ cations form dimers via N—H⋯N hydrogen bonds between the amino groups and the unprotonated pyrimidine N atoms [graph-set motif R22(8)]. The (TAPH+)2 dimers, in turn, form slightly offset infinite ππ stacks parallel to [010], with centroid–centroid distances between pyrimidine rings of 3.5128 (15) and 3.6288 (16) Å. Other amino H atoms, as well as the pyrimidinium N—H groups, are hydrogen-bonded to sulfate and lattice water O atoms. The SO42− anions and water mol­ecules are inter­connected with each other via O—H⋯O hydrogen bonds. The combination of hydrogen-bonding inter­actions and ππ stacking leads to the formation of a three-dimensional network with alternating columns of TAPH+ cations and channels filled with sulfate anions and water mol­ecules. One of the sulfate anions shows a minor disorder by a ca 37° rotation around one of the S—O bonds [occupancy ratio of the two sets of sites 0.927 (3):0.073 (3)]. One water mol­ecule is disordered over two mutually exclusive positions with an occupancy ratio of 0.64 (7):0.36 (7).

Related literature

For background to melamine, see: Wei & Liu (2012[Wei, Y. & Liu, D. (2012). Toxicol. Ind. Health, 28, 579-582.]); Dobson et al. (2008[Dobson, R. L. M., Motlagh, S., Quijano, M., Cambron, R. T., Baker, T. R., Pullen, A. M., Regg, B. T., Bigalow-Kern, A. S., Vennard, T., Fix, A., Reimschuessel, R., Overmann, G., Shan, Y. & Daston, G. P. (2008). Toxicol. Sci. 106, 251-262.]); Whitesides et al. (1991[Whitesides, G. M., Mathias, J. P. & Seto, C. T. (1991). Science, 254, 1312-1319.]). For pyrimidine–metal complexes, see: Zamora et al. (1997[Zamora, F., Kunsman, M., Sabat, M. & Lippart, B. (1997). Inorg. Chem. 36, 1583-1587.]); Louloudi et al. (1997[Louloudi, M., Deligiannakis, Y., Tuchagues, J. P., Donnadien, B. & Nadjiliadis, N. (1997). Inorg. Chem. 36, 6335-6342.]); Jolibois et al. (1998[Jolibois, F., Cadet, J., Grand, A., Subra, R., Raga, N. & Barone, V. (1998). J. Am. Chem. Soc. 120, 1864-1871.]); Katritzky et al. (1984[Katritzky, A. R., Pees, C. W., Boulton, A. J. & Mckillop, C. (1984). J. Heterocycl. Chem. 3, 57-68.]). For carbon protonation of pyrimidines, see: Demeter & Wéber (2004[Demeter, A. & Wéber, C. (2004). Concepts Magn. Reson. 22A, 12-24.]); Németh et al. (2006[Németh, B., Wéber, C., Veszprémi, T., Gáti, T. & Demeter, Á. (2006). J. Org. Chem. 71, 4910-4918.]). For related structures, see: Hemamalini et al. (2005[Hemamalini, M., Mu­thiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95-o97.]); Krygowski et al. (2005[Krygowski, T. M., Szatyłowicz, H. & Zachara, J. E. (2005). J. Org. Chem. 70, 8859-8865.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H8N5+·SO42−·5H2O

  • Mr = 438.45

  • Triclinic, [P \overline 1]

  • a = 10.6571 (7) Å

  • b = 13.2482 (9) Å

  • c = 15.0132 (10) Å

  • α = 100.843 (2)°

  • β = 110.596 (2)°

  • γ = 92.096 (2)°

  • V = 1936.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.22 × 0.11 × 0.03 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.762, Tmax = 1

  • 22960 measured reflections

  • 9354 independent reflections

  • 5782 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.170

  • S = 1.08

  • 9354 reflections

  • 601 parameters

  • 40 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4B—H4BA⋯O17i 0.86 2.15 2.967 (4) 159
N4B—H4BB⋯O8 0.86 2.07 2.905 (4) 162
N4B—H4BB⋯O5B 0.86 2.38 3.19 (4) 157
N4A—H4AA⋯N3Cii 0.86 2.16 3.017 (4) 172
N4A—H4AB⋯O14 0.86 2.56 3.262 (4) 139
N5B—H5BA⋯N3Dii 0.86 2.22 3.074 (4) 174
N5B—H5BB⋯O7iii 0.86 2.20 3.040 (4) 166
N5B—H5BB⋯O7Biii 0.86 2.10 2.93 (3) 163
N5A—H5AA⋯O1i 0.86 2.25 2.993 (3) 145
N5A—H5AB⋯O12 0.86 2.21 3.066 (4) 174
N4D—H4DA⋯N3Biv 0.86 2.16 3.013 (4) 176
N4D—H4DB⋯O17v 0.86 2.57 3.248 (4) 137
N4C—H4CA⋯O12vi 0.86 2.14 2.953 (4) 158
N4C—H4CB⋯O1 0.86 2.16 2.983 (3) 160
N1D—H1D⋯O9v 0.86 1.97 2.826 (4) 170
N1C—H1CB⋯O4 0.86 1.86 2.709 (3) 172
N1B—H1B⋯O6 0.86 1.92 2.757 (6) 166
N1B—H1B⋯O6B 0.86 1.91 2.75 (7) 164
N1A—H1A⋯O14 0.86 1.95 2.793 (4) 166
N5D—H5DA⋯O8vi 0.86 2.31 3.046 (4) 143
N5D—H5DA⋯O5Bvi 0.86 2.23 2.99 (5) 147
N5D—H5DB⋯O17 0.86 2.34 3.193 (4) 173
N5C—H5CA⋯N3Aiv 0.86 2.14 2.990 (4) 172
N5C—H5CB⋯O3v 0.86 2.06 2.905 (3) 169
N6A—H6AA⋯O13 0.86 2.14 2.981 (4) 166
N6A—H6AB⋯O10 0.86 2.02 2.855 (4) 164
O9—H9C⋯O7vii 0.80 (2) 1.98 (2) 2.770 (4) 171 (4)
O9—H9C⋯O8Bvii 0.80 (2) 2.24 (5) 2.84 (3) 133 (3)
N6D—H6DA⋯O16 0.86 2.08 2.937 (4) 179
N6D—H6DB⋯O15 0.86 2.16 3.005 (4) 166
N6C—H6CA⋯O13 0.86 2.14 2.970 (4) 162
N6B—H6BA⋯O6 0.86 2.60 3.284 (5) 137
N6B—H6BA⋯O6B 0.86 2.64 3.31 (4) 135
N6B—H6BA⋯O15 0.86 2.63 3.427 (4) 154
N6B—H6BB⋯O16 0.86 2.10 2.923 (4) 159
O9—H9D⋯O2 0.83 (2) 1.93 (2) 2.759 (4) 173 (4)
O10—H10C⋯O4 0.83 (2) 1.96 (2) 2.780 (4) 172 (6)
O10—H10D⋯O14 0.81 (2) 2.51 (6) 3.026 (5) 123 (6)
O10—H10D⋯O18iii 0.81 (2) 2.09 (5) 2.82 (3) 151 (6)
O11—H11C⋯O18iii 0.86 (2) 2.40 (7) 2.97 (4) 124 (5)
O11—H11C⋯O18Biii 0.86 (2) 2.12 (4) 2.826 (18) 139 (5)
O11—H11D⋯O3 0.85 (2) 1.90 (2) 2.745 (4) 171 (5)
O12—H12A⋯O5 0.82 (2) 1.98 (2) 2.795 (4) 172 (5)
O12—H12A⋯O5B 0.82 (2) 2.05 (4) 2.81 (3) 156 (5)
O12—H12B⋯O3viii 0.82 (2) 2.06 (2) 2.856 (4) 165 (5)
O13—H13C⋯O6 0.82 (2) 2.15 (2) 2.956 (6) 167 (5)
O13—H13C⋯O6B 0.82 (2) 2.06 (7) 2.87 (6) 167 (5)
O13—H13D⋯O11viii 0.81 (2) 2.26 (2) 3.063 (5) 175 (5)
O14—H14C⋯O5iii 0.81 (2) 2.06 (3) 2.792 (4) 152 (5)
O14—H14C⋯O7Biii 0.81 (2) 2.21 (4) 2.98 (4) 159 (5)
O14—H14D⋯O11ix 0.81 (2) 1.95 (2) 2.761 (4) 172 (5)
O15—H15C⋯O9v 0.84 (2) 2.10 (3) 2.894 (4) 158 (5)
O15—H15D⋯O6 0.83 (2) 2.02 (3) 2.808 (7) 158 (5)
O15—H15D⋯O6B 0.83 (2) 2.11 (8) 2.90 (8) 159 (5)
O16—H16C⋯O15vii 0.81 (2) 2.05 (2) 2.855 (5) 171 (5)
O16—H16D⋯O2 0.82 (2) 2.07 (2) 2.882 (4) 175 (5)
O17—H17A⋯O1 0.82 (2) 2.09 (2) 2.878 (4) 162 (4)
O17—H17B⋯O8vii 0.81 (2) 2.07 (2) 2.837 (4) 160 (5)
O17—H17B⋯O8Bvii 0.81 (2) 1.96 (4) 2.74 (3) 163 (5)
O18—H18C⋯O7 0.84 (2) 2.04 (11) 2.78 (2) 147 (18)
O18—H18D⋯O2v 0.84 (2) 2.21 (2) 2.92 (2) 143 (5)
O18B—H18E⋯O7B 0.84 (2) 1.83 (11) 2.49 (4) 134 (13)
O18B—H18F⋯O2v 0.83 (2) 2.10 (2) 2.857 (14) 152 (6)
Symmetry codes: (i) x, y, z-1; (ii) x-1, y, z-1; (iii) x-1, y, z; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y, z+1; (vii) -x+1, -y, -z+1; (viii) -x+1, -y+1, -z+1; (ix) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2013 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrimidine and its derivatives are a class of heteroaromatic compounds with exceptional importance for biology, pharmacology and live sciences. An immensely large number of naturally occurring compounds are based on the pyrimidine skeleton, including three of the four DNA and RNA nucleobases, cytosine, thymine, and uracil. The pyrimidine ring, while less basic than equivalent pyridines, can nonetheless be protonated with relative ease, at either one of the two nitrogen ring atoms (double protonation is hampered by near complete loss of basicity upon the first protonation), or at the ring carbon atom (Demeter & Wéber, 2004; Németh et al., 2006). It can also act as a Lewis base in metal complex formation (Zamora et al., 1997; Louloudi et al., 1997; Jolibois et al., 1998; Katritzky et al., 1984), or as an acceptor for strong hydrogen bonding interactions. These three properties of pyrimidines are the key aspects to the wide range of their biological and pharmacological functionalities, both natural as well as synthetic.

Amino-substituted pyrimidines are of interest due to their similarity to the nucleic acids cytosine, adenine and guanine. Multi-amino substituted derivatives have recently attracted intense attention due to their similarity with melamine, which had been added to dairy products and other food to give a false appearance of a higher protein level. Exposure to high levels of melamine in food can however lead to melamine-induced kidney failure, and adulterated food had been the cause for several severe outbreaks of nephrolithiasis in pets ("2007 pet food recall") and humans ("2008 Chinese milk scandal" with more than 50,000 infant hospitalizations and six deaths) (Wei & Liu, 2012). The cause for the melamine-induced kidney stone formation was found to be a highly insoluble co-crystalline precipitate of melamine and uric acid, a hydrolysis product of melanine itself (Dobson et al., 2008). The insolubility of the melamine-uric acid co-crystal can be largely traced back to dense ππ stacking interactions and the formation of a network of strong N—H···O and N—H···N hydrogen bonds (Whitesides et al., 1991). The propensity of melamine and its derivatives to form tightly hydrogen-bonded insoluble networks is thus of great interest.

One such multi-amino substituted pyrimidine derivative is 2,4,6-triaminopyrimidine, which finds, for example, use as an internal standard in testing for melamine in food. In this communication we present the structure of the sulfate salt of 2,4,6-triaminopyrimidine, in the form of its pentahydrate, (C4H8N5)2+SO42-.5H2O, (I).

The asymmetric unit of compound (I) consists of four mono-protonated 2,4,6-triaminopyrimidine cations (TAPH+), two sulfate anions and ten water molecules (Fig. 1). All four TAPH+ cations are protonated at one of the pyrimidine ring nitrogen atoms (N1 atoms in molecules A, B, C and D). As it is common for pyridyl derivatives, the bond angles at the protonated nitrogen are slightly larger than those at the unprotonated nitrogen atoms (Krygowski et al., 2005). The C—N—C angles range between 120.7 (3)–121.2 (3)° at protonated N1 in the four independent cations. At the unprotonated nitrogen atom the equivalent angles are substantially smaller, with values between 116.7 (3) and 117.3 (3)°. Similar trends are observed for other amino substituted pyrimidine derivative salts such as the hydrogen sulfate salt of 2-amino-4,6-dimethylpyrimidinium, C6H10N3+.HSO4-, with an angle at the protonated nitrogen of 122.3 (1)° and of 117.6 (1)° at the unprotonated nitrogen atom, respectively (Hemamalini et al., 2005). S—O bonds lengths of the tetrahedral sulfate anions are in the range from 1.449 (4) Å to 1.471 (4) Å, indicating delocalized SO bonds rather than distinct single and double bonds. The amino groups, which are not protonated, are sp2 hybridized and the NH2 groups are coplanar with the pyrimidinium rings.

The packing of the molecules is dominated by a mixture of ππ-stacking and hydrogen bonding interactions. The primary packing motif formed by the TAPH+ cations are hydrogen-bonded dimers. Pairs of N—H···N hydrogen bonds between the amino NH2 groups and the unprotonated pyrimidine nitrogen atoms of each two of the four TAPH+ cations form dimers (graph set motif R22(8); Etter et al., 1990). The dimers, formed between cations A and C and B and D, respectively, have local pseudoinversion symmetry. The thus formed (TAPH+)2 dimers are in turn forming slightly offset ππ- stacks that stretch parallel to [010] (Fig. 2). Centroid–centroid distances between individual pyrimidine rings are between 3.5128 (15) and 3.6288 (16) Å. Interplanar distances are, due to the offset between the stacked dimers, substantially shorter and range between 3.2456 (11) and 3.2847 (11) Å.

The thus formed columns of TAPH+ cations make up about half of the unit cell volume (Fig. 3). The remainder of the volume is taken up by the sulfate anions and lattice water molecules. The H atoms of amino groups that are not engaged in N—H···N hydrogen bonds as well as the pyrimidine N—H groups of the TAPH+ cations are hydrogen-bonded through N—H···O hydrogen bonds to oxygen atoms of sulfate anions and water molecules. The SO42- tetrahedra and H2O molecules are in turn interconnected with each other via O—H···O hydrogen bonds.

The combination of π-stacking interactions and hydrogen bonding leads to the formation of a tightly interconnected three-dimensional network with alternating columns of TAPH+ cations and channels filled with sulfate anions and water molecules (Fig. 4).

Related literature top

For background to melamine, see: Wei & Liu (2012); Dobson et al. (2008); Whitesides et al. (1991). For pyrimidine–metal complexes, see: Zamora et al. (1997); Louloudi et al. (1997); Jolibois et al. (1998); Katritzky et al. (1984). For carbon protonation of pyrimidines, see: Demeter & Wéber (2004); Németh et al. (2006). For related structures, see: Hemamalini et al. (2005); Krygowski et al. (2005). For graph-set analysis, see Etter et al. (1990).

Experimental top

Crystals of the title compound were isolated as an unintended by-product of the reaction of 2,4,6-triaminopyrimidine with phenylisothiocyanate when attempting to synthesize diaminopyrimidinyl-phenylthiourea. 2,4,6-Triaminopyrimidine, TAP, (0.36 g, 2.88 mmol) was dissolved in 40 cm3 of ethanol at 333 K. Phenylisothiocyanate (0.35 ml, 2.93 mmol) was added and the mixture was stirred for 1 h. The resulting clear solution was filtered and left to evaporate at room temperature. The crystalline material that formed upon standing for several days was filtered off and dried in vacuo (yield 0.4 g). A crystal was selected from the material and subjected to single-crystal structure analysis. No attempts were made to further analyze the remainder of the material.

Refinement top

H atoms bonded to C and N atoms were constrained to ride on their parent atoms with C—H bond lengths of 0.93 Å for aryl C—H and N—H bond lengths of 0.86 Å with Uiso(H) = 1.2Ueq(C and N). All H atoms bonded to O atoms were located in a difference Fourier map and were refined isotropically. Uiso values of water hydrogen atoms were constrained to 1.5 times the Ueq value of their oxygen carrier atom. The structure exhibits two independent types of disorder. One of the sulfate anions (S2) shows minor disorder by a ca 37° rotation around one of the S—O bonds with a refined occupancy ratio of 0.927 (3):0.073 (3). One of the water molecules (O18) shows disorder over two mutually exclusive positions with refined occupancies of 0.64 (7):0.36 (7). For the sulfate ion, minor moiety atoms were constrained to have the same anisotropic displacement parameters, ADP, as their major moiety counterparts. The ADPs of the oxygen atoms of the disordered water molecule were restrained to have similar Uij components (e.s.d. = 0.04 Å2). All O—H bond lengths in water molecules were restrained to a target value of 0.82 (2) Å. For the H atoms of the less prevalent moiety of the disordered water molecule, O···H distances were restrained based on hydrogen bonding considerations (2.10 (2) Å for O2i···H18F and 2.20 (2) Å for O2 i···H18D (symmetry operator (i): 1 + x, +y, +z).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The minor disordered moieties are omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing intermolecular N—H···N hydrogen bonds (blue dashed lines) between TAPH+ cations and ππ-stacks parallel to [010].
[Figure 3] Fig. 3. The packing structure of the title complex viewed down [010].
[Figure 4] Fig. 4. Part of the crystal structure showing formation of a tightly interconnected three-dimensional network with alternating columns of TAPH cations and channels filled with sulfate anions and water molecules.
Bis(2,4,6-triaminopyrimidin-1-ium) sulfate pentahydrate top
Crystal data top
2C4H8N5+·SO42·5H2OZ = 4
Mr = 438.45F(000) = 928
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6571 (7) ÅCell parameters from 1991 reflections
b = 13.2482 (9) Åθ = 2.9–22.1°
c = 15.0132 (10) ŵ = 0.23 mm1
α = 100.843 (2)°T = 293 K
β = 110.596 (2)°Block, yellow
γ = 92.096 (2)°0.22 × 0.11 × 0.03 mm
V = 1936.6 (2) Å3
Data collection top
Bruker APEX CCD
diffractometer
5782 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.052
Phi and ω scansθmax = 28.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.762, Tmax = 1k = 1717
22960 measured reflectionsl = 1918
9354 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.4094P]
where P = (Fo2 + 2Fc2)/3
9354 reflections(Δ/σ)max < 0.001
601 parametersΔρmax = 0.37 e Å3
40 restraintsΔρmin = 0.28 e Å3
Crystal data top
2C4H8N5+·SO42·5H2Oγ = 92.096 (2)°
Mr = 438.45V = 1936.6 (2) Å3
Triclinic, P1Z = 4
a = 10.6571 (7) ÅMo Kα radiation
b = 13.2482 (9) ŵ = 0.23 mm1
c = 15.0132 (10) ÅT = 293 K
α = 100.843 (2)°0.22 × 0.11 × 0.03 mm
β = 110.596 (2)°
Data collection top
Bruker APEX CCD
diffractometer
9354 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
5782 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 1Rint = 0.052
22960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07740 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.37 e Å3
9354 reflectionsΔρmin = 0.28 e Å3
601 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.31694 (8)0.31861 (6)0.75524 (5)0.0316 (2)
O10.3919 (2)0.3087 (2)0.85473 (16)0.0523 (7)
O20.2346 (2)0.22044 (18)0.69832 (18)0.0550 (7)
C2C0.7573 (3)0.3707 (2)0.8800 (2)0.0293 (7)
O30.2280 (3)0.39993 (18)0.75571 (17)0.0530 (7)
O40.4109 (2)0.3429 (2)0.70841 (16)0.0488 (6)
C4C0.9531 (3)0.3724 (2)0.8494 (2)0.0315 (7)
S20.7903 (3)0.1546 (2)0.2933 (2)0.0342 (2)0.927 (3)
O50.8248 (4)0.2552 (3)0.2780 (3)0.0894 (12)0.927 (3)
O60.7184 (6)0.1688 (5)0.3602 (4)0.0617 (9)0.927 (3)
O70.9162 (3)0.1100 (2)0.33715 (18)0.0483 (7)0.927 (3)
O80.7067 (3)0.0885 (2)0.20102 (19)0.0627 (9)0.927 (3)
S2B0.790 (3)0.150 (2)0.293 (3)0.0342 (2)0.073 (3)
O5B0.743 (4)0.205 (3)0.214 (3)0.0894 (12)0.073 (3)
O6B0.717 (6)0.177 (6)0.358 (5)0.0617 (9)0.073 (3)
O7B0.935 (3)0.181 (3)0.345 (2)0.0483 (7)0.073 (3)
O8B0.765 (3)0.040 (2)0.253 (2)0.0627 (9)0.073 (3)
N3B0.2310 (2)0.13336 (18)0.15229 (17)0.0290 (6)
C2B0.3628 (3)0.1343 (2)0.1830 (2)0.0280 (6)
C2A0.1864 (3)0.3781 (2)0.1557 (2)0.0306 (7)
N3A0.2487 (2)0.37711 (19)0.09404 (17)0.0327 (6)
C2D0.9274 (3)0.1235 (2)0.9110 (2)0.0324 (7)
N4B0.4275 (3)0.1298 (2)0.12153 (19)0.0406 (7)
H4BA0.38320.12620.06060.049*
H4BB0.51380.13050.14260.049*
C4B0.1731 (3)0.1369 (2)0.2198 (2)0.0290 (7)
N4A0.0528 (3)0.3711 (2)0.12353 (19)0.0405 (7)
H4AA0.00740.36600.06250.049*
H4AB0.01160.37170.16360.049*
N3D0.8648 (3)0.12722 (19)0.97309 (18)0.0344 (6)
N3C0.8900 (2)0.37463 (18)0.91433 (17)0.0308 (6)
C4A0.3854 (3)0.3852 (2)0.1309 (2)0.0335 (7)
N5B0.0394 (3)0.1343 (2)0.1869 (2)0.0426 (7)
H5BA0.00490.13050.12600.051*
H5BB0.00260.13630.22660.051*
C5B0.2473 (3)0.1422 (2)0.3185 (2)0.0324 (7)
H5B0.20470.14420.36320.039*
N5A0.4473 (3)0.3823 (2)0.0675 (2)0.0488 (8)
H5AA0.40070.37550.00650.059*
H5AB0.53390.38710.08750.059*
C4D0.7289 (3)0.1243 (2)0.9359 (2)0.0334 (7)
N4D1.0610 (3)0.1265 (2)0.9424 (2)0.0458 (7)
H4DA1.10660.13081.00330.055*
H4DB1.10180.12410.90190.055*
N4C0.6882 (3)0.3737 (2)0.93852 (19)0.0380 (6)
H4CA0.72990.37830.99990.046*
H4CB0.60170.37100.91500.046*
C5A0.4596 (3)0.3952 (2)0.2307 (2)0.0353 (7)
H5A0.55330.40120.25440.042*
N1D0.8612 (3)0.11725 (18)0.81367 (18)0.0328 (6)
H1D0.90640.11510.77600.036 (9)*
N1C0.6842 (3)0.36454 (18)0.78397 (18)0.0328 (6)
H1CB0.59780.36250.76480.034 (9)*
N1B0.4407 (3)0.14033 (19)0.27794 (17)0.0326 (6)
H1B0.52670.14160.29460.034 (9)*
N1A0.2526 (3)0.38643 (18)0.25311 (18)0.0320 (6)
H1A0.20730.38570.29040.050 (11)*
C6A0.3906 (3)0.3959 (2)0.2921 (2)0.0312 (7)
C5D0.6560 (3)0.1176 (2)0.8379 (2)0.0342 (7)
H5D0.56250.11540.81510.041*
N5D0.6668 (3)0.1283 (2)1.0000 (2)0.0488 (8)
H5DA0.71340.13241.06060.059*
H5DB0.58050.12670.98040.059*
N5C1.0869 (3)0.3771 (2)0.8860 (2)0.0480 (8)
H5CA1.12840.38130.94730.058*
H5CB1.13190.37600.84830.058*
N6A0.4492 (3)0.4047 (2)0.38832 (18)0.0436 (7)
H6AA0.53570.41040.41510.052*
H6AB0.40040.40470.42340.052*
O90.0270 (3)0.0924 (2)0.7016 (2)0.0576 (7)
C6C0.7456 (3)0.3616 (2)0.7173 (2)0.0314 (7)
C5C0.8827 (3)0.3658 (2)0.7500 (2)0.0341 (7)
H5C0.92840.36420.70730.041*
H9C0.048 (4)0.0364 (17)0.687 (3)0.051*
C6D0.7236 (3)0.1144 (2)0.7752 (2)0.0306 (7)
N6D0.6658 (3)0.10910 (19)0.68015 (18)0.0393 (7)
H6DA0.57970.10750.65380.047*
H6DB0.71460.10730.64490.047*
N6C0.6642 (3)0.3551 (2)0.62472 (19)0.0445 (7)
H6CA0.69770.35330.58010.053*
H6CB0.57830.35280.60990.053*
C6B0.3847 (3)0.1444 (2)0.3472 (2)0.0292 (7)
N6B0.4690 (3)0.1497 (2)0.43876 (19)0.0444 (7)
H6BA0.55440.15030.45160.053*
H6BB0.43790.15240.48470.053*
H9D0.087 (3)0.135 (2)0.703 (3)0.067*
O100.3179 (3)0.3727 (4)0.5185 (2)0.0917 (11)
H10C0.340 (6)0.359 (5)0.573 (2)0.138*
H10D0.241 (3)0.345 (4)0.495 (4)0.138*
O110.0766 (4)0.4674 (3)0.5928 (2)0.0791 (9)
H11C0.023 (5)0.411 (3)0.568 (4)0.119*
H11D0.130 (5)0.445 (4)0.641 (3)0.119*
O120.7554 (3)0.3892 (2)0.14932 (19)0.0575 (7)
H12A0.769 (5)0.346 (3)0.183 (3)0.086*
H12B0.773 (5)0.447 (2)0.185 (3)0.086*
O130.7446 (3)0.3873 (2)0.4608 (2)0.0624 (8)
H13C0.750 (5)0.329 (2)0.434 (3)0.094*
H13D0.795 (4)0.426 (3)0.450 (4)0.094*
O140.0675 (3)0.3836 (2)0.3461 (2)0.0635 (8)
H14C0.016 (4)0.332 (2)0.333 (4)0.095*
H14D0.032 (5)0.430 (3)0.369 (3)0.095*
O150.7919 (3)0.0860 (3)0.5281 (2)0.0716 (9)
H15C0.871 (3)0.087 (4)0.567 (3)0.107*
H15D0.792 (5)0.115 (4)0.484 (3)0.107*
O160.3718 (3)0.1016 (2)0.5870 (2)0.0604 (7)
H16C0.327 (4)0.047 (2)0.560 (3)0.091*
H16D0.338 (4)0.136 (3)0.621 (3)0.091*
O170.3458 (3)0.1177 (2)0.90904 (19)0.0591 (7)
H17A0.355 (5)0.164 (3)0.882 (3)0.089*
H17B0.314 (4)0.064 (2)0.870 (3)0.089*
O181.086 (4)0.250 (3)0.5021 (19)0.078 (8)0.36 (7)
H18C1.057 (17)0.192 (7)0.464 (11)0.117*0.36 (7)
H18D1.138 (15)0.220 (10)0.542 (2)0.117*0.36 (7)
O18B1.031 (4)0.2505 (15)0.5241 (19)0.117 (8)0.64 (7)
H18E1.001 (13)0.198 (7)0.478 (7)0.175*0.64 (7)
H18F1.096 (10)0.227 (8)0.561 (3)0.175*0.64 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0261 (4)0.0418 (4)0.0255 (4)0.0006 (3)0.0080 (3)0.0074 (3)
O10.0445 (15)0.0786 (18)0.0312 (13)0.0040 (13)0.0073 (11)0.0193 (12)
O20.0492 (16)0.0530 (15)0.0542 (16)0.0132 (12)0.0171 (13)0.0020 (12)
C2C0.0329 (17)0.0253 (15)0.0291 (16)0.0034 (13)0.0099 (14)0.0072 (12)
O30.0605 (17)0.0584 (16)0.0480 (15)0.0228 (13)0.0249 (13)0.0176 (12)
O40.0277 (13)0.0814 (17)0.0383 (14)0.0022 (12)0.0110 (11)0.0190 (12)
C4C0.0313 (17)0.0338 (16)0.0319 (17)0.0028 (13)0.0128 (14)0.0109 (13)
S20.0249 (4)0.0470 (5)0.0300 (4)0.0049 (4)0.0083 (3)0.0099 (4)
O50.066 (2)0.076 (2)0.121 (3)0.0015 (18)0.010 (2)0.058 (2)
O60.0360 (14)0.112 (3)0.0366 (14)0.0129 (15)0.0156 (12)0.0096 (15)
O70.0368 (15)0.0607 (19)0.0434 (15)0.0175 (14)0.0090 (12)0.0106 (14)
O80.0495 (18)0.083 (2)0.0342 (16)0.0150 (16)0.0005 (14)0.0084 (14)
S2B0.0249 (4)0.0470 (5)0.0300 (4)0.0049 (4)0.0083 (3)0.0099 (4)
O5B0.066 (2)0.076 (2)0.121 (3)0.0015 (18)0.010 (2)0.058 (2)
O6B0.0360 (14)0.112 (3)0.0366 (14)0.0129 (15)0.0156 (12)0.0096 (15)
O7B0.0368 (15)0.0607 (19)0.0434 (15)0.0175 (14)0.0090 (12)0.0106 (14)
O8B0.0495 (18)0.083 (2)0.0342 (16)0.0150 (16)0.0005 (14)0.0084 (14)
N3B0.0254 (14)0.0342 (14)0.0264 (13)0.0032 (11)0.0085 (11)0.0059 (11)
C2B0.0278 (16)0.0286 (15)0.0258 (15)0.0013 (12)0.0086 (13)0.0047 (12)
C2A0.0333 (18)0.0265 (15)0.0300 (17)0.0010 (13)0.0092 (14)0.0065 (12)
N3A0.0299 (15)0.0394 (15)0.0262 (14)0.0021 (12)0.0066 (12)0.0081 (11)
C2D0.0339 (18)0.0295 (16)0.0289 (17)0.0006 (13)0.0062 (14)0.0055 (13)
N4B0.0296 (15)0.0653 (19)0.0290 (14)0.0063 (13)0.0115 (12)0.0132 (13)
C4B0.0270 (16)0.0278 (15)0.0323 (17)0.0035 (12)0.0107 (14)0.0064 (13)
N4A0.0290 (15)0.0587 (18)0.0313 (15)0.0011 (13)0.0086 (12)0.0092 (13)
N3D0.0366 (15)0.0377 (14)0.0267 (14)0.0009 (12)0.0089 (12)0.0078 (11)
N3C0.0268 (14)0.0371 (14)0.0276 (13)0.0025 (11)0.0079 (11)0.0088 (11)
C4A0.0328 (18)0.0368 (17)0.0315 (17)0.0076 (14)0.0117 (15)0.0082 (14)
N5B0.0251 (15)0.0682 (19)0.0378 (16)0.0084 (13)0.0135 (13)0.0151 (14)
C5B0.0281 (17)0.0400 (17)0.0302 (17)0.0011 (14)0.0130 (14)0.0063 (13)
N5A0.0343 (16)0.083 (2)0.0296 (15)0.0075 (15)0.0110 (13)0.0155 (15)
C4D0.0343 (18)0.0340 (17)0.0318 (17)0.0015 (14)0.0111 (15)0.0095 (13)
N4D0.0305 (16)0.072 (2)0.0323 (15)0.0026 (14)0.0081 (13)0.0125 (14)
N4C0.0272 (14)0.0567 (17)0.0313 (15)0.0043 (13)0.0108 (12)0.0120 (13)
C5A0.0278 (17)0.0456 (19)0.0311 (17)0.0024 (14)0.0081 (14)0.0103 (14)
N1D0.0328 (15)0.0397 (15)0.0274 (14)0.0041 (12)0.0126 (12)0.0077 (11)
N1C0.0250 (15)0.0385 (15)0.0326 (15)0.0026 (11)0.0068 (12)0.0097 (11)
N1B0.0224 (14)0.0432 (15)0.0297 (14)0.0029 (11)0.0078 (11)0.0055 (11)
N1A0.0342 (15)0.0360 (14)0.0265 (13)0.0005 (11)0.0123 (12)0.0069 (11)
C6A0.0349 (18)0.0291 (16)0.0254 (16)0.0030 (13)0.0070 (14)0.0043 (12)
C5D0.0318 (17)0.0385 (17)0.0312 (17)0.0036 (14)0.0084 (14)0.0108 (14)
N5D0.0394 (17)0.078 (2)0.0328 (16)0.0070 (16)0.0145 (14)0.0170 (15)
N5C0.0271 (15)0.087 (2)0.0361 (16)0.0097 (15)0.0136 (13)0.0226 (15)
N6A0.0393 (16)0.0636 (19)0.0244 (14)0.0059 (14)0.0079 (13)0.0080 (13)
O90.0556 (18)0.0478 (16)0.082 (2)0.0062 (14)0.0410 (16)0.0139 (16)
C6C0.0383 (19)0.0264 (15)0.0272 (16)0.0030 (14)0.0093 (14)0.0054 (12)
C5C0.0335 (18)0.0437 (18)0.0284 (17)0.0058 (14)0.0140 (14)0.0104 (14)
C6D0.0349 (18)0.0231 (15)0.0301 (16)0.0026 (13)0.0078 (14)0.0054 (12)
N6D0.0400 (16)0.0504 (17)0.0263 (14)0.0070 (13)0.0088 (13)0.0113 (12)
N6C0.0390 (17)0.0605 (18)0.0306 (15)0.0060 (14)0.0082 (13)0.0107 (13)
C6B0.0315 (17)0.0306 (16)0.0239 (15)0.0032 (13)0.0081 (13)0.0058 (12)
N6B0.0312 (15)0.072 (2)0.0280 (15)0.0078 (14)0.0077 (13)0.0110 (14)
O100.063 (2)0.162 (3)0.057 (2)0.007 (2)0.0246 (18)0.038 (2)
O110.086 (3)0.085 (2)0.058 (2)0.0325 (19)0.0139 (18)0.0153 (18)
O120.0738 (19)0.0545 (17)0.0404 (16)0.0049 (16)0.0163 (15)0.0102 (12)
O130.065 (2)0.0629 (19)0.0613 (19)0.0083 (16)0.0290 (16)0.0058 (15)
O140.0565 (19)0.0651 (19)0.081 (2)0.0056 (15)0.0421 (17)0.0123 (17)
O150.0555 (18)0.104 (2)0.060 (2)0.0010 (18)0.0215 (16)0.0299 (18)
O160.0509 (18)0.0678 (19)0.0597 (19)0.0098 (14)0.0239 (15)0.0009 (15)
O170.085 (2)0.0526 (17)0.0372 (15)0.0002 (16)0.0191 (15)0.0127 (12)
O180.077 (13)0.081 (10)0.052 (9)0.021 (8)0.009 (8)0.025 (7)
O18B0.117 (14)0.095 (6)0.077 (8)0.010 (8)0.028 (9)0.002 (5)
Geometric parameters (Å, º) top
S1—O11.459 (2)C5A—H5A0.9300
S1—O31.461 (2)N1D—C6D1.371 (4)
S1—O41.469 (2)N1D—H1D0.8600
S1—O21.471 (2)N1C—C6C1.372 (4)
C2C—N3C1.319 (4)N1C—H1CB0.8600
C2C—N4C1.327 (4)N1B—C6B1.363 (4)
C2C—N1C1.362 (4)N1B—H1B0.8600
C4C—N5C1.330 (4)N1A—C6A1.368 (4)
C4C—N3C1.361 (4)N1A—H1A0.8600
C4C—C5C1.399 (4)C6A—N6A1.337 (4)
S2—O81.449 (4)C5D—C6D1.368 (4)
S2—O51.450 (4)C5D—H5D0.9300
S2—O61.453 (3)N5D—H5DA0.8600
S2—O71.471 (3)N5D—H5DB0.8600
S2B—O8B1.447 (18)N5C—H5CA0.8600
S2B—O5B1.449 (19)N5C—H5CB0.8600
S2B—O6B1.452 (18)N6A—H6AA0.8600
S2B—O7B1.469 (18)N6A—H6AB0.8600
N3B—C2B1.315 (4)O9—H9C0.797 (18)
N3B—C4B1.354 (4)O9—H9D0.829 (19)
C2B—N4B1.326 (4)C6C—N6C1.339 (4)
C2B—N1B1.360 (4)C6C—C5C1.364 (4)
C2A—N3A1.314 (4)C5C—H5C0.9300
C2A—N4A1.326 (4)C6D—N6D1.327 (4)
C2A—N1A1.362 (4)N6D—H6DA0.8600
N3A—C4A1.356 (4)N6D—H6DB0.8600
C2D—N3D1.319 (4)N6C—H6CA0.8600
C2D—N4D1.329 (4)N6C—H6CB0.8600
C2D—N1D1.366 (4)C6B—N6B1.339 (4)
N4B—H4BA0.8600N6B—H6BA0.8600
N4B—H4BB0.8600N6B—H6BB0.8600
C4B—N5B1.330 (4)O10—H10C0.826 (19)
C4B—C5B1.400 (4)O10—H10D0.81 (2)
N4A—H4AA0.8600O11—H11C0.856 (19)
N4A—H4AB0.8600O11—H11D0.854 (19)
N3D—C4D1.353 (4)O12—H12A0.821 (19)
C4A—N5A1.332 (4)O12—H12B0.819 (19)
C4A—C5A1.404 (4)O13—H13C0.821 (19)
N5B—H5BA0.8600O13—H13D0.808 (19)
N5B—H5BB0.8600O14—H14C0.807 (19)
C5B—C6B1.371 (4)O14—H14D0.813 (19)
C5B—H5B0.9300O15—H15C0.836 (19)
N5A—H5AA0.8600O15—H15D0.830 (19)
N5A—H5AB0.8600O16—H16C0.808 (19)
C4D—N5D1.341 (4)O16—H16D0.816 (19)
C4D—C5D1.384 (4)O17—H17A0.820 (19)
N4D—H4DA0.8600O17—H17B0.807 (19)
N4D—H4DB0.8600O18—H18C0.84 (2)
N4C—H4CA0.8600O18—H18D0.84 (2)
N4C—H4CB0.8600O18B—H18E0.84 (2)
C5A—C6A1.366 (4)O18B—H18F0.83 (2)
O1—S1—O3110.02 (14)C2C—N4C—H4CB120.0
O1—S1—O4110.02 (14)H4CA—N4C—H4CB120.0
O3—S1—O4109.89 (15)C6A—C5A—C4A118.4 (3)
O1—S1—O2109.83 (15)C6A—C5A—H5A120.8
O3—S1—O2108.84 (15)C4A—C5A—H5A120.8
O4—S1—O2108.21 (14)C2D—N1D—C6D120.9 (3)
N3C—C2C—N4C121.1 (3)C2D—N1D—H1D119.6
N3C—C2C—N1C122.5 (3)C6D—N1D—H1D119.6
N4C—C2C—N1C116.4 (3)C2C—N1C—C6C121.2 (3)
N5C—C4C—N3C116.1 (3)C2C—N1C—H1CB119.4
N5C—C4C—C5C121.3 (3)C6C—N1C—H1CB119.4
N3C—C4C—C5C122.6 (3)C2B—N1B—C6B121.1 (3)
O8—S2—O5109.5 (3)C2B—N1B—H1B119.4
O8—S2—O6110.5 (3)C6B—N1B—H1B119.4
O5—S2—O6108.3 (3)C2A—N1A—C6A120.7 (3)
O8—S2—O7110.7 (2)C2A—N1A—H1A119.7
O5—S2—O7108.3 (2)C6A—N1A—H1A119.7
O6—S2—O7109.5 (3)N6A—C6A—C5A124.1 (3)
O8B—S2B—O5B109 (2)N6A—C6A—N1A117.6 (3)
O8B—S2B—O6B110 (3)C5A—C6A—N1A118.3 (3)
O5B—S2B—O6B109 (3)C6D—C5D—C4D119.0 (3)
O8B—S2B—O7B110 (2)C6D—C5D—H5D120.5
O5B—S2B—O7B108 (2)C4D—C5D—H5D120.5
O6B—S2B—O7B110 (3)C4D—N5D—H5DA120.0
C2B—N3B—C4B117.1 (3)C4D—N5D—H5DB120.0
N3B—C2B—N4B121.0 (3)H5DA—N5D—H5DB120.0
N3B—C2B—N1B122.8 (3)C4C—N5C—H5CA120.0
N4B—C2B—N1B116.2 (3)C4C—N5C—H5CB120.0
N3A—C2A—N4A119.7 (3)H5CA—N5C—H5CB120.0
N3A—C2A—N1A123.1 (3)C6A—N6A—H6AA120.0
N4A—C2A—N1A117.2 (3)C6A—N6A—H6AB120.0
C2A—N3A—C4A117.3 (3)H6AA—N6A—H6AB120.0
N3D—C2D—N4D120.0 (3)H9C—O9—H9D107 (4)
N3D—C2D—N1D122.9 (3)N6C—C6C—C5C125.6 (3)
N4D—C2D—N1D117.0 (3)N6C—C6C—N1C116.4 (3)
C2B—N4B—H4BA120.0C5C—C6C—N1C118.0 (3)
C2B—N4B—H4BB120.0C6C—C5C—C4C118.4 (3)
H4BA—N4B—H4BB120.0C6C—C5C—H5C120.8
N5B—C4B—N3B116.1 (3)C4C—C5C—H5C120.8
N5B—C4B—C5B121.0 (3)N6D—C6D—C5D124.9 (3)
N3B—C4B—C5B122.9 (3)N6D—C6D—N1D117.7 (3)
C2A—N4A—H4AA120.0C5D—C6D—N1D117.4 (3)
C2A—N4A—H4AB120.0C6D—N6D—H6DA120.0
H4AA—N4A—H4AB120.0C6D—N6D—H6DB120.0
C2D—N3D—C4D116.7 (3)H6DA—N6D—H6DB120.0
C2C—N3C—C4C117.3 (3)C6C—N6C—H6CA120.0
N5A—C4A—N3A116.7 (3)C6C—N6C—H6CB120.0
N5A—C4A—C5A120.9 (3)H6CA—N6C—H6CB120.0
N3A—C4A—C5A122.3 (3)N6B—C6B—N1B117.0 (3)
C4B—N5B—H5BA120.0N6B—C6B—C5B124.8 (3)
C4B—N5B—H5BB120.0N1B—C6B—C5B118.2 (3)
H5BA—N5B—H5BB120.0C6B—N6B—H6BA120.0
C6B—C5B—C4B117.9 (3)C6B—N6B—H6BB120.0
C6B—C5B—H5B121.1H6BA—N6B—H6BB120.0
C4B—C5B—H5B121.1H10C—O10—H10D99 (6)
C4A—N5A—H5AA120.0H11C—O11—H11D96 (5)
C4A—N5A—H5AB120.0H12A—O12—H12B109 (4)
H5AA—N5A—H5AB120.0H13C—O13—H13D106 (5)
N5D—C4D—N3D115.9 (3)H14C—O14—H14D105 (5)
N5D—C4D—C5D121.0 (3)H15C—O15—H15D110 (5)
N3D—C4D—C5D123.1 (3)H16C—O16—H16D110 (5)
C2D—N4D—H4DA120.0H17A—O17—H17B110 (5)
C2D—N4D—H4DB120.0H18C—O18—H18D88 (10)
H4DA—N4D—H4DB120.0H18E—O18B—H18F99 (10)
C2C—N4C—H4CA120.0
C4B—N3B—C2B—N4B179.2 (3)N3B—C2B—N1B—C6B0.9 (4)
C4B—N3B—C2B—N1B1.1 (4)N4B—C2B—N1B—C6B179.4 (3)
N4A—C2A—N3A—C4A179.5 (3)N3A—C2A—N1A—C6A1.0 (4)
N1A—C2A—N3A—C4A0.2 (4)N4A—C2A—N1A—C6A178.8 (3)
C2B—N3B—C4B—N5B179.0 (3)C4A—C5A—C6A—N6A179.8 (3)
C2B—N3B—C4B—C5B0.5 (4)C4A—C5A—C6A—N1A0.3 (4)
N4D—C2D—N3D—C4D179.8 (3)C2A—N1A—C6A—N6A179.4 (3)
N1D—C2D—N3D—C4D0.1 (4)C2A—N1A—C6A—C5A1.0 (4)
N4C—C2C—N3C—C4C179.2 (3)N5D—C4D—C5D—C6D179.6 (3)
N1C—C2C—N3C—C4C0.1 (4)N3D—C4D—C5D—C6D0.4 (5)
N5C—C4C—N3C—C2C179.6 (3)C2C—N1C—C6C—N6C179.8 (3)
C5C—C4C—N3C—C2C0.3 (4)C2C—N1C—C6C—C5C0.5 (4)
C2A—N3A—C4A—N5A178.8 (3)N6C—C6C—C5C—C4C180.0 (3)
C2A—N3A—C4A—C5A0.5 (4)N1C—C6C—C5C—C4C0.2 (4)
N5B—C4B—C5B—C6B179.8 (3)N5C—C4C—C5C—C6C179.8 (3)
N3B—C4B—C5B—C6B0.3 (4)N3C—C4C—C5C—C6C0.2 (5)
C2D—N3D—C4D—N5D179.9 (3)C4D—C5D—C6D—N6D179.3 (3)
C2D—N3D—C4D—C5D0.1 (4)C4D—C5D—C6D—N1D0.4 (4)
N5A—C4A—C5A—C6A178.8 (3)C2D—N1D—C6D—N6D179.5 (3)
N3A—C4A—C5A—C6A0.5 (5)C2D—N1D—C6D—C5D0.2 (4)
N3D—C2D—N1D—C6D0.0 (4)C2B—N1B—C6B—N6B179.6 (3)
N4D—C2D—N1D—C6D179.7 (3)C2B—N1B—C6B—C5B0.0 (4)
N3C—C2C—N1C—C6C0.3 (4)C4B—C5B—C6B—N6B179.8 (3)
N4C—C2C—N1C—C6C179.6 (3)C4B—C5B—C6B—N1B0.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4B—H4BA···O17i0.862.152.967 (4)159
N4B—H4BB···O80.862.072.905 (4)162
N4B—H4BB···O5B0.862.383.19 (4)157
N4A—H4AA···N3Cii0.862.163.017 (4)172
N4A—H4AB···O140.862.563.262 (4)139
N5B—H5BA···N3Dii0.862.223.074 (4)174
N5B—H5BB···O7iii0.862.203.040 (4)166
N5B—H5BB···O7Biii0.862.102.93 (3)163
N5A—H5AA···O1i0.862.252.993 (3)145
N5A—H5AB···O120.862.213.066 (4)174
N4D—H4DA···N3Biv0.862.163.013 (4)176
N4D—H4DB···O17v0.862.573.248 (4)137
N4C—H4CA···O12vi0.862.142.953 (4)158
N4C—H4CB···O10.862.162.983 (3)160
N1D—H1D···O9v0.861.972.826 (4)170
N1C—H1CB···O40.861.862.709 (3)172
N1B—H1B···O60.861.922.757 (6)166
N1B—H1B···O6B0.861.912.75 (7)164
N1A—H1A···O140.861.952.793 (4)166
N5D—H5DA···O8vi0.862.313.046 (4)143
N5D—H5DA···O5Bvi0.862.232.99 (5)147
N5D—H5DB···O170.862.343.193 (4)173
N5C—H5CA···N3Aiv0.862.142.990 (4)172
N5C—H5CB···O3v0.862.062.905 (3)169
N6A—H6AA···O130.862.142.981 (4)166
N6A—H6AB···O100.862.022.855 (4)164
O9—H9C···O7vii0.80 (2)1.98 (2)2.770 (4)171 (4)
O9—H9C···O8Bvii0.80 (2)2.24 (5)2.84 (3)133 (3)
N6D—H6DA···O160.862.082.937 (4)179
N6D—H6DB···O150.862.163.005 (4)166
N6C—H6CA···O130.862.142.970 (4)162
N6B—H6BA···O60.862.603.284 (5)137
N6B—H6BA···O6B0.862.643.31 (4)135
N6B—H6BA···O150.862.633.427 (4)154
N6B—H6BB···O160.862.102.923 (4)159
O9—H9D···O20.83 (2)1.93 (2)2.759 (4)173 (4)
O10—H10C···O40.83 (2)1.96 (2)2.780 (4)172 (6)
O10—H10D···O140.81 (2)2.51 (6)3.026 (5)123 (6)
O10—H10D···O18iii0.81 (2)2.09 (5)2.82 (3)151 (6)
O11—H11C···O18iii0.86 (2)2.40 (7)2.97 (4)124 (5)
O11—H11C···O18Biii0.86 (2)2.12 (4)2.826 (18)139 (5)
O11—H11D···O30.85 (2)1.90 (2)2.745 (4)171 (5)
O12—H12A···O50.82 (2)1.98 (2)2.795 (4)172 (5)
O12—H12A···O5B0.82 (2)2.05 (4)2.81 (3)156 (5)
O12—H12B···O3viii0.82 (2)2.06 (2)2.856 (4)165 (5)
O13—H13C···O60.82 (2)2.15 (2)2.956 (6)167 (5)
O13—H13C···O6B0.82 (2)2.06 (7)2.87 (6)167 (5)
O13—H13D···O11viii0.81 (2)2.26 (2)3.063 (5)175 (5)
O14—H14C···O5iii0.81 (2)2.06 (3)2.792 (4)152 (5)
O14—H14C···O7Biii0.81 (2)2.21 (4)2.98 (4)159 (5)
O14—H14D···O11ix0.81 (2)1.95 (2)2.761 (4)172 (5)
O15—H15C···O9v0.84 (2)2.10 (3)2.894 (4)158 (5)
O15—H15D···O60.83 (2)2.02 (3)2.808 (7)158 (5)
O15—H15D···O6B0.83 (2)2.11 (8)2.90 (8)159 (5)
O16—H16C···O15vii0.81 (2)2.05 (2)2.855 (5)171 (5)
O16—H16D···O20.82 (2)2.07 (2)2.882 (4)175 (5)
O17—H17A···O10.82 (2)2.09 (2)2.878 (4)162 (4)
O17—H17B···O8vii0.81 (2)2.07 (2)2.837 (4)160 (5)
O17—H17B···O8Bvii0.81 (2)1.96 (4)2.74 (3)163 (5)
O18—H18C···O70.84 (2)2.04 (11)2.78 (2)147 (18)
O18—H18D···O2v0.84 (2)2.21 (2)2.92 (2)143 (5)
O18B—H18E···O7B0.84 (2)1.83 (11)2.49 (4)134 (13)
O18B—H18F···O2v0.83 (2)2.10 (2)2.857 (14)152 (6)
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x1, y, z; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y, z+1; (vii) x+1, y, z+1; (viii) x+1, y+1, z+1; (ix) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4B—H4BA···O17i0.862.152.967 (4)159.1
N4B—H4BB···O80.862.072.905 (4)162.4
N4B—H4BB···O5B0.862.383.19 (4)156.7
N4A—H4AA···N3Cii0.862.163.017 (4)172.4
N4A—H4AB···O140.862.563.262 (4)139.1
N5B—H5BA···N3Dii0.862.223.074 (4)174.4
N5B—H5BB···O7iii0.862.203.040 (4)166.3
N5B—H5BB···O7Biii0.862.102.93 (3)162.9
N5A—H5AA···O1i0.862.252.993 (3)144.6
N5A—H5AB···O120.862.213.066 (4)174.1
N4D—H4DA···N3Biv0.862.163.013 (4)175.5
N4D—H4DB···O17v0.862.573.248 (4)136.5
N4C—H4CA···O12vi0.862.142.953 (4)158.0
N4C—H4CB···O10.862.162.983 (3)160.2
N1D—H1D···O9v0.861.972.826 (4)170.1
N1C—H1CB···O40.861.862.709 (3)171.7
N1B—H1B···O60.861.922.757 (6)165.5
N1B—H1B···O6B0.861.912.75 (7)164.0
N1A—H1A···O140.861.952.793 (4)166.1
N5D—H5DA···O8vi0.862.313.046 (4)143.3
N5D—H5DA···O5Bvi0.862.232.99 (5)146.5
N5D—H5DB···O170.862.343.193 (4)173.4
N5C—H5CA···N3Aiv0.862.142.990 (4)172.2
N5C—H5CB···O3v0.862.062.905 (3)169.4
N6A—H6AA···O130.862.142.981 (4)166.0
N6A—H6AB···O100.862.022.855 (4)163.7
O9—H9C···O7vii0.797 (18)1.982 (19)2.770 (4)171 (4)
O9—H9C···O8Bvii0.797 (18)2.24 (5)2.84 (3)133 (3)
N6D—H6DA···O160.862.082.937 (4)178.6
N6D—H6DB···O150.862.163.005 (4)166.1
N6C—H6CA···O130.862.142.970 (4)162.3
N6B—H6BA···O60.862.603.284 (5)136.7
N6B—H6BA···O6B0.862.643.31 (4)135.4
N6B—H6BA···O150.862.633.427 (4)153.9
N6B—H6BB···O160.862.102.923 (4)159.0
O9—H9D···O20.829 (19)1.934 (19)2.759 (4)173 (4)
O10—H10C···O40.826 (19)1.96 (2)2.780 (4)172 (6)
O10—H10D···O140.81 (2)2.51 (6)3.026 (5)123 (6)
O10—H10D···O18iii0.81 (2)2.09 (5)2.82 (3)151 (6)
O11—H11C···O18iii0.856 (19)2.40 (7)2.97 (4)124 (5)
O11—H11C···O18Biii0.856 (19)2.12 (4)2.826 (18)139 (5)
O11—H11D···O30.854 (19)1.90 (2)2.745 (4)171 (5)
O12—H12A···O50.821 (19)1.98 (2)2.795 (4)172 (5)
O12—H12A···O5B0.821 (19)2.05 (4)2.81 (3)156 (5)
O12—H12B···O3viii0.819 (19)2.06 (2)2.856 (4)165 (5)
O13—H13C···O60.821 (19)2.15 (2)2.956 (6)167 (5)
O13—H13C···O6B0.821 (19)2.06 (7)2.87 (6)167 (5)
O13—H13D···O11viii0.808 (19)2.26 (2)3.063 (5)175 (5)
O14—H14C···O5iii0.807 (19)2.06 (3)2.792 (4)152 (5)
O14—H14C···O7Biii0.807 (19)2.21 (4)2.98 (4)159 (5)
O14—H14D···O11ix0.813 (19)1.95 (2)2.761 (4)172 (5)
O15—H15C···O9v0.836 (19)2.10 (3)2.894 (4)158 (5)
O15—H15D···O60.830 (19)2.02 (3)2.808 (7)158 (5)
O15—H15D···O6B0.830 (19)2.11 (8)2.90 (8)159 (5)
O16—H16C···O15vii0.808 (19)2.05 (2)2.855 (5)171 (5)
O16—H16D···O20.816 (19)2.07 (2)2.882 (4)175 (5)
O17—H17A···O10.820 (19)2.09 (2)2.878 (4)162 (4)
O17—H17B···O8vii0.807 (19)2.07 (2)2.837 (4)160 (5)
O17—H17B···O8Bvii0.807 (19)1.96 (4)2.74 (3)163 (5)
O18—H18C···O70.84 (2)2.04 (11)2.78 (2)147 (18)
O18—H18D···O2v0.84 (2)2.21 (2)2.92 (2)143 (5)
O18B—H18E···O7B0.84 (2)1.83 (11)2.49 (4)134 (13)
O18B—H18F···O2v0.83 (2)2.10 (2)2.857 (14)152 (6)
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x1, y, z; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y, z+1; (vii) x+1, y, z+1; (viii) x+1, y+1, z+1; (ix) x, y+1, z+1.
 

Acknowledgements

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH–CIC), the Office of the Higher Education Commission, Ministry of Education and Department of Chemistry, Prince of Songkla University, is gratefully acknowledged. RN would like to thank Dr Matthias Zeller of Youngstown State University, Ohio, United States, for valuable suggestions and assistance with the X-ray structure refinement.

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemeter, A. & Wéber, C. (2004). Concepts Magn. Reson. 22A, 12–24.  Web of Science CrossRef CAS Google Scholar
First citationDobson, R. L. M., Motlagh, S., Quijano, M., Cambron, R. T., Baker, T. R., Pullen, A. M., Regg, B. T., Bigalow-Kern, A. S., Vennard, T., Fix, A., Reimschuessel, R., Overmann, G., Shan, Y. & Daston, G. P. (2008). Toxicol. Sci. 106, 251–262.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M., Mu­thiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95–o97.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJolibois, F., Cadet, J., Grand, A., Subra, R., Raga, N. & Barone, V. (1998). J. Am. Chem. Soc. 120, 1864–1871.  Web of Science CrossRef CAS Google Scholar
First citationKatritzky, A. R., Pees, C. W., Boulton, A. J. & Mckillop, C. (1984). J. Heterocycl. Chem. 3, 57–68.  Google Scholar
First citationKrygowski, T. M., Szatyłowicz, H. & Zachara, J. E. (2005). J. Org. Chem. 70, 8859–8865.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLouloudi, M., Deligiannakis, Y., Tuchagues, J. P., Donnadien, B. & Nadjiliadis, N. (1997). Inorg. Chem. 36, 6335–6342.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNémeth, B., Wéber, C., Veszprémi, T., Gáti, T. & Demeter, Á. (2006). J. Org. Chem. 71, 4910–4918.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y. & Liu, D. (2012). Toxicol. Ind. Health, 28, 579–582.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhitesides, G. M., Mathias, J. P. & Seto, C. T. (1991). Science, 254, 1312–1319.  CrossRef PubMed CAS Web of Science Google Scholar
First citationZamora, F., Kunsman, M., Sabat, M. & Lippart, B. (1997). Inorg. Chem. 36, 1583–1587.  CSD CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1266-o1267
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds