metal-organic compounds
Bis(cyclohexylammonium) tetrachlorido(oxalato)stannate(IV)
aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: diasseam@yahoo.fr, hcattey@u-bourgogne.fr
The title salt, (C6H14N)2[Sn(C2O4)Cl4], was obtained as a by-product from the reaction between 2C6H14N+·C2O42−·1.5H2O and SnCl2·2H2O. The cyclohexylammonium cation has a chair conformation. The complex anion consists of an oxalate anion chelating the SnCl4 moiety, resulting in a distorted octahedral coordination sphere of the SnIV atom with the O atoms in equatorial cis positions. In the crystal, cations and anions are linked through N—H⋯O and N—H⋯Cl interactions into a layered arrangement parallel to (100).
Related literature
For applications of organotin(IV) compounds, see: Evans & Karpel (1985). For background to organotin(IV) chemistry, see: Ballmann et al. (2009); Meriem et al. (1989); Ng & Kumar Das (1997); Yin & Wang (2004); Zhang et al. (2006). For background to halogenidotin(IV) chemistry, see: Sarr & Diop (1990); Qamar-Kane & Diop (2010); Willey et al. (1998); Diallo et al. (2009). For related crystal structures with an oxalatotin(IV) moiety, see: Skapski et al. (1974); Gueye et al. (2012); Sow et al. (2010, 2013).
Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 1998); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813019284/wm2756sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813019284/wm2756Isup2.hkl
Chemicals were purchased from Sigma-Aldrich, and used without further purification. The title compound was obtained by reacting (C6H14N)2(C2O4).1.5H2O (0.09 g, 0.286 mmol) with SnCl2.2H2O (0,20 g, 0.890 mmol) in 25 ml of ethanol (96%). After slow solvent evaporation of the solvent at room temperature, colourless crystals suitable for X-ray
were obtained.All H atoms, on carbon and nitrogen atoms, were placed at calculated positions using a riding model with C—H = 0.97 Å (methylene) or 0.98 Å (methine) and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N).
Data collection: COLLECT (Nonius, 1998); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. A view of the molecular entities of compound (I) with atom labelling. Displacement ellipsoids are draw at the 30% probability level. | |
Fig. 2. The crystal packing of compound (I) viewed approximately along [100]. Hydrogen atoms are omitted for clarity. Intermolecular hydrogen-bonding interactions of the types N—H···O and O—H···O are shown by dotted lines. Displacement ellipsoids are draw at the 30% probability level. Colour code: Sn dark grey, O red, N blue, Cl green, C grey. |
(C6H14N)2[Sn(C2O4)Cl4] | F(000) = 1104 |
Mr = 548.87 | Dx = 1.611 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 41791 reflections |
a = 11.2293 (9) Å | θ = 1.0–27.5° |
b = 15.715 (1) Å | µ = 1.62 mm−1 |
c = 12.8464 (10) Å | T = 115 K |
β = 93.238 (2)° | Prism, colourless |
V = 2263.4 (3) Å3 | 0.17 × 0.08 × 0.03 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 4979 independent reflections |
Radiation source: fine-focus sealed tube | 4503 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ϕ scans (κ = 0) + additional ω scans | θmax = 27.5°, θmin = 2.7° |
Absorption correction: multi-scan (Blessing, 1995) | h = −14→10 |
Tmin = 0.770, Tmax = 0.953 | k = −20→12 |
9402 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0196P)2 + 5.6981P] where P = (Fo2 + 2Fc2)/3 |
4979 reflections | (Δ/σ)max = 0.001 |
228 parameters | Δρmax = 1.03 e Å−3 |
0 restraints | Δρmin = −0.99 e Å−3 |
(C6H14N)2[Sn(C2O4)Cl4] | V = 2263.4 (3) Å3 |
Mr = 548.87 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.2293 (9) Å | µ = 1.62 mm−1 |
b = 15.715 (1) Å | T = 115 K |
c = 12.8464 (10) Å | 0.17 × 0.08 × 0.03 mm |
β = 93.238 (2)° |
Nonius KappaCCD diffractometer | 4979 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 4503 reflections with I > 2σ(I) |
Tmin = 0.770, Tmax = 0.953 | Rint = 0.025 |
9402 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.12 | Δρmax = 1.03 e Å−3 |
4979 reflections | Δρmin = −0.99 e Å−3 |
228 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.67656 (2) | 0.922515 (13) | 0.212827 (17) | 0.02314 (7) | |
C1 | 0.5332 (3) | 0.8427 (2) | 0.3693 (2) | 0.0240 (6) | |
C2 | 0.5332 (3) | 0.77851 (19) | 0.2768 (2) | 0.0222 (6) | |
O1 | 0.5778 (2) | 0.91628 (13) | 0.35167 (16) | 0.0231 (5) | |
O2 | 0.5826 (2) | 0.80588 (14) | 0.19492 (17) | 0.0248 (5) | |
O3 | 0.4905 (2) | 0.82201 (15) | 0.45140 (17) | 0.0326 (6) | |
O4 | 0.4875 (2) | 0.70888 (14) | 0.28564 (17) | 0.0282 (5) | |
Cl1 | 0.74421 (8) | 1.05949 (5) | 0.26855 (7) | 0.0349 (2) | |
Cl2 | 0.83254 (8) | 0.84828 (6) | 0.30516 (8) | 0.0403 (2) | |
Cl3 | 0.75536 (10) | 0.91018 (6) | 0.04748 (8) | 0.0428 (2) | |
Cl4 | 0.49591 (7) | 0.98965 (5) | 0.13685 (6) | 0.02334 (16) | |
N1 | 0.5547 (2) | 0.58436 (17) | 0.1384 (2) | 0.0254 (6) | |
H1A | 0.5344 | 0.6179 | 0.1904 | 0.038* | |
H1B | 0.5045 | 0.5406 | 0.1325 | 0.038* | |
H1C | 0.5515 | 0.6138 | 0.0792 | 0.038* | |
C3 | 0.6796 (3) | 0.5518 (2) | 0.1610 (3) | 0.0317 (7) | |
H3 | 0.6778 | 0.5129 | 0.2204 | 0.038* | |
C4 | 0.7205 (3) | 0.5014 (2) | 0.0690 (3) | 0.0305 (7) | |
H4A | 0.7208 | 0.5379 | 0.0081 | 0.037* | |
H4B | 0.6654 | 0.4550 | 0.0536 | 0.037* | |
C5 | 0.8453 (4) | 0.4659 (3) | 0.0929 (3) | 0.0397 (9) | |
H5A | 0.8435 | 0.4252 | 0.1496 | 0.048* | |
H5B | 0.8720 | 0.4365 | 0.0321 | 0.048* | |
C6 | 0.9310 (4) | 0.5365 (3) | 0.1229 (4) | 0.0478 (11) | |
H6A | 0.9388 | 0.5738 | 0.0636 | 0.057* | |
H6B | 1.0088 | 0.5124 | 0.1415 | 0.057* | |
C7 | 0.8886 (4) | 0.5888 (3) | 0.2157 (3) | 0.0439 (10) | |
H7A | 0.8893 | 0.5532 | 0.2774 | 0.053* | |
H7B | 0.9428 | 0.6360 | 0.2299 | 0.053* | |
C8 | 0.7630 (3) | 0.6227 (3) | 0.1914 (3) | 0.0418 (9) | |
H8A | 0.7352 | 0.6516 | 0.2522 | 0.050* | |
H8B | 0.7641 | 0.6637 | 0.1349 | 0.050* | |
N2 | 0.3881 (3) | 0.65674 (19) | 0.4780 (2) | 0.0357 (7) | |
H2A | 0.3940 | 0.6415 | 0.4118 | 0.054* | |
H2B | 0.4276 | 0.6197 | 0.5194 | 0.054* | |
H2C | 0.4191 | 0.7084 | 0.4880 | 0.054* | |
C9 | 0.2600 (3) | 0.6577 (2) | 0.5030 (3) | 0.0305 (7) | |
H9 | 0.2261 | 0.6012 | 0.4884 | 0.037* | |
C10 | 0.1935 (4) | 0.7220 (3) | 0.4339 (3) | 0.0507 (12) | |
H10A | 0.2013 | 0.7073 | 0.3613 | 0.061* | |
H10B | 0.2274 | 0.7781 | 0.4459 | 0.061* | |
C11 | 0.0621 (5) | 0.7226 (4) | 0.4580 (4) | 0.0613 (14) | |
H11A | 0.0208 | 0.7657 | 0.4157 | 0.074* | |
H11B | 0.0271 | 0.6679 | 0.4395 | 0.074* | |
C12 | 0.0451 (4) | 0.7404 (3) | 0.5710 (4) | 0.0463 (10) | |
H12A | −0.0388 | 0.7354 | 0.5841 | 0.056* | |
H12B | 0.0699 | 0.7983 | 0.5871 | 0.056* | |
C13 | 0.1164 (4) | 0.6793 (3) | 0.6413 (4) | 0.0460 (10) | |
H13A | 0.0836 | 0.6225 | 0.6326 | 0.055* | |
H13B | 0.1095 | 0.6960 | 0.7134 | 0.055* | |
C14 | 0.2475 (3) | 0.6780 (3) | 0.6171 (3) | 0.0357 (8) | |
H14A | 0.2831 | 0.7330 | 0.6333 | 0.043* | |
H14B | 0.2892 | 0.6355 | 0.6599 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.02712 (12) | 0.02014 (12) | 0.02230 (12) | 0.00106 (8) | 0.00262 (8) | 0.00254 (8) |
C1 | 0.0337 (17) | 0.0208 (15) | 0.0172 (14) | 0.0033 (13) | 0.0001 (12) | 0.0019 (11) |
C2 | 0.0309 (17) | 0.0183 (14) | 0.0176 (14) | 0.0010 (12) | 0.0023 (12) | −0.0001 (11) |
O1 | 0.0344 (12) | 0.0175 (10) | 0.0173 (10) | 0.0006 (9) | 0.0015 (9) | −0.0013 (8) |
O2 | 0.0372 (13) | 0.0199 (11) | 0.0180 (10) | −0.0011 (9) | 0.0073 (9) | −0.0024 (8) |
O3 | 0.0566 (17) | 0.0251 (12) | 0.0170 (11) | −0.0004 (11) | 0.0104 (11) | −0.0013 (9) |
O4 | 0.0425 (14) | 0.0202 (11) | 0.0227 (11) | −0.0028 (10) | 0.0078 (10) | −0.0031 (9) |
Cl1 | 0.0358 (5) | 0.0249 (4) | 0.0430 (5) | −0.0060 (3) | −0.0077 (4) | 0.0024 (3) |
Cl2 | 0.0355 (5) | 0.0359 (5) | 0.0487 (5) | 0.0104 (4) | −0.0055 (4) | 0.0070 (4) |
Cl3 | 0.0523 (6) | 0.0416 (5) | 0.0369 (5) | 0.0105 (4) | 0.0239 (4) | 0.0083 (4) |
Cl4 | 0.0294 (4) | 0.0237 (4) | 0.0168 (3) | 0.0014 (3) | 0.0000 (3) | 0.0001 (3) |
N1 | 0.0298 (15) | 0.0261 (14) | 0.0206 (13) | 0.0021 (11) | 0.0031 (11) | −0.0023 (10) |
C3 | 0.0303 (18) | 0.0380 (19) | 0.0271 (17) | 0.0054 (15) | 0.0022 (14) | −0.0047 (14) |
C4 | 0.0336 (18) | 0.0315 (18) | 0.0265 (17) | 0.0019 (14) | 0.0022 (14) | −0.0053 (14) |
C5 | 0.037 (2) | 0.039 (2) | 0.043 (2) | 0.0051 (17) | 0.0044 (17) | −0.0049 (17) |
C6 | 0.034 (2) | 0.046 (2) | 0.063 (3) | 0.0009 (18) | 0.004 (2) | −0.015 (2) |
C7 | 0.034 (2) | 0.049 (2) | 0.047 (2) | −0.0044 (18) | −0.0078 (18) | −0.0111 (19) |
C8 | 0.038 (2) | 0.038 (2) | 0.049 (2) | −0.0018 (17) | 0.0006 (18) | −0.0200 (18) |
N2 | 0.054 (2) | 0.0232 (14) | 0.0315 (15) | 0.0092 (13) | 0.0196 (14) | 0.0088 (12) |
C9 | 0.042 (2) | 0.0235 (16) | 0.0261 (16) | 0.0048 (14) | 0.0021 (15) | 0.0010 (13) |
C10 | 0.071 (3) | 0.057 (3) | 0.0249 (18) | 0.030 (2) | 0.0033 (19) | 0.0093 (18) |
C11 | 0.059 (3) | 0.072 (3) | 0.051 (3) | 0.024 (3) | −0.022 (2) | 0.000 (2) |
C12 | 0.038 (2) | 0.044 (2) | 0.058 (3) | 0.0096 (18) | 0.0054 (19) | 0.005 (2) |
C13 | 0.042 (2) | 0.049 (2) | 0.048 (2) | 0.0089 (19) | 0.0129 (19) | 0.012 (2) |
C14 | 0.039 (2) | 0.045 (2) | 0.0228 (17) | 0.0058 (17) | 0.0025 (15) | 0.0030 (15) |
Sn1—O2 | 2.121 (2) | C7—C8 | 1.524 (6) |
Sn1—O1 | 2.155 (2) | C7—H7A | 0.9700 |
Sn1—Cl3 | 2.3547 (9) | C7—H7B | 0.9700 |
Sn1—Cl2 | 2.3667 (9) | C8—H8A | 0.9700 |
Sn1—Cl1 | 2.3794 (9) | C8—H8B | 0.9700 |
Sn1—Cl4 | 2.4407 (8) | N2—C9 | 1.491 (5) |
C1—O3 | 1.227 (4) | N2—H2A | 0.8900 |
C1—O1 | 1.286 (4) | N2—H2B | 0.8900 |
C1—C2 | 1.559 (4) | N2—H2C | 0.8900 |
C2—O4 | 1.217 (4) | C9—C10 | 1.514 (5) |
C2—O2 | 1.290 (4) | C9—C14 | 1.514 (5) |
N1—C3 | 1.505 (4) | C9—H9 | 0.9800 |
N1—H1A | 0.8900 | C10—C11 | 1.524 (7) |
N1—H1B | 0.8900 | C10—H10A | 0.9700 |
N1—H1C | 0.8900 | C10—H10B | 0.9700 |
C3—C8 | 1.493 (5) | C11—C12 | 1.501 (7) |
C3—C4 | 1.515 (5) | C11—H11A | 0.9700 |
C3—H3 | 0.9800 | C11—H11B | 0.9700 |
C4—C5 | 1.524 (5) | C12—C13 | 1.515 (6) |
C4—H4A | 0.9700 | C12—H12A | 0.9700 |
C4—H4B | 0.9700 | C12—H12B | 0.9700 |
C5—C6 | 1.504 (6) | C13—C14 | 1.521 (5) |
C5—H5A | 0.9700 | C13—H13A | 0.9700 |
C5—H5B | 0.9700 | C13—H13B | 0.9700 |
C6—C7 | 1.544 (6) | C14—H14A | 0.9700 |
C6—H6A | 0.9700 | C14—H14B | 0.9700 |
C6—H6B | 0.9700 | ||
O2—Sn1—O1 | 76.97 (8) | C8—C7—H7A | 109.6 |
O2—Sn1—Cl3 | 92.35 (6) | C6—C7—H7A | 109.6 |
O1—Sn1—Cl3 | 168.53 (7) | C8—C7—H7B | 109.6 |
O2—Sn1—Cl2 | 88.73 (7) | C6—C7—H7B | 109.6 |
O1—Sn1—Cl2 | 87.92 (6) | H7A—C7—H7B | 108.1 |
Cl3—Sn1—Cl2 | 96.10 (4) | C3—C8—C7 | 110.6 (3) |
O2—Sn1—Cl1 | 164.34 (6) | C3—C8—H8A | 109.5 |
O1—Sn1—Cl1 | 87.86 (6) | C7—C8—H8A | 109.5 |
Cl3—Sn1—Cl1 | 102.47 (4) | C3—C8—H8B | 109.5 |
Cl2—Sn1—Cl1 | 94.62 (3) | C7—C8—H8B | 109.5 |
O2—Sn1—Cl4 | 86.17 (7) | H8A—C8—H8B | 108.1 |
O1—Sn1—Cl4 | 84.01 (6) | C9—N2—H2A | 109.5 |
Cl3—Sn1—Cl4 | 91.21 (3) | C9—N2—H2B | 109.5 |
Cl2—Sn1—Cl4 | 171.25 (3) | H2A—N2—H2B | 109.5 |
Cl1—Sn1—Cl4 | 88.47 (3) | C9—N2—H2C | 109.5 |
O3—C1—O1 | 124.4 (3) | H2A—N2—H2C | 109.5 |
O3—C1—C2 | 120.1 (3) | H2B—N2—H2C | 109.5 |
O1—C1—C2 | 115.5 (3) | N2—C9—C10 | 109.3 (3) |
O4—C2—O2 | 125.4 (3) | N2—C9—C14 | 110.7 (3) |
O4—C2—C1 | 119.5 (3) | C10—C9—C14 | 110.9 (3) |
O2—C2—C1 | 115.1 (3) | N2—C9—H9 | 108.6 |
C1—O1—Sn1 | 114.25 (19) | C10—C9—H9 | 108.6 |
C2—O2—Sn1 | 115.71 (19) | C14—C9—H9 | 108.6 |
C3—N1—H1A | 109.5 | C9—C10—C11 | 109.7 (4) |
C3—N1—H1B | 109.5 | C9—C10—H10A | 109.7 |
H1A—N1—H1B | 109.5 | C11—C10—H10A | 109.7 |
C3—N1—H1C | 109.5 | C9—C10—H10B | 109.7 |
H1A—N1—H1C | 109.5 | C11—C10—H10B | 109.7 |
H1B—N1—H1C | 109.5 | H10A—C10—H10B | 108.2 |
C8—C3—N1 | 111.1 (3) | C12—C11—C10 | 112.0 (4) |
C8—C3—C4 | 112.4 (3) | C12—C11—H11A | 109.2 |
N1—C3—C4 | 110.4 (3) | C10—C11—H11A | 109.2 |
C8—C3—H3 | 107.6 | C12—C11—H11B | 109.2 |
N1—C3—H3 | 107.6 | C10—C11—H11B | 109.2 |
C4—C3—H3 | 107.6 | H11A—C11—H11B | 107.9 |
C3—C4—C5 | 110.5 (3) | C11—C12—C13 | 111.5 (4) |
C3—C4—H4A | 109.6 | C11—C12—H12A | 109.3 |
C5—C4—H4A | 109.6 | C13—C12—H12A | 109.3 |
C3—C4—H4B | 109.6 | C11—C12—H12B | 109.3 |
C5—C4—H4B | 109.6 | C13—C12—H12B | 109.3 |
H4A—C4—H4B | 108.1 | H12A—C12—H12B | 108.0 |
C6—C5—C4 | 110.4 (3) | C12—C13—C14 | 111.8 (3) |
C6—C5—H5A | 109.6 | C12—C13—H13A | 109.3 |
C4—C5—H5A | 109.6 | C14—C13—H13A | 109.3 |
C6—C5—H5B | 109.6 | C12—C13—H13B | 109.3 |
C4—C5—H5B | 109.6 | C14—C13—H13B | 109.3 |
H5A—C5—H5B | 108.1 | H13A—C13—H13B | 107.9 |
C5—C6—C7 | 111.7 (4) | C9—C14—C13 | 110.2 (3) |
C5—C6—H6A | 109.3 | C9—C14—H14A | 109.6 |
C7—C6—H6A | 109.3 | C13—C14—H14A | 109.6 |
C5—C6—H6B | 109.3 | C9—C14—H14B | 109.6 |
C7—C6—H6B | 109.3 | C13—C14—H14B | 109.6 |
H6A—C6—H6B | 107.9 | H14A—C14—H14B | 108.1 |
C8—C7—C6 | 110.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.89 | 1.97 | 2.853 (3) | 169 |
N1—H1B···O1i | 0.89 | 2.18 | 3.038 (4) | 163 |
N1—H1C···O3ii | 0.89 | 2.01 | 2.875 (4) | 162 |
N2—H2A···O4 | 0.89 | 2.25 | 2.887 (4) | 129 |
N2—H2A···Cl4i | 0.89 | 2.78 | 3.315 (3) | 120 |
N2—H2B···Cl4iii | 0.89 | 2.38 | 3.262 (3) | 169 |
N2—H2C···O3 | 0.89 | 2.02 | 2.869 (4) | 158 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2. |
Sn1—O2 | 2.121 (2) | Sn1—Cl2 | 2.3667 (9) |
Sn1—O1 | 2.155 (2) | Sn1—Cl1 | 2.3794 (9) |
Sn1—Cl3 | 2.3547 (9) | Sn1—Cl4 | 2.4407 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.89 | 1.97 | 2.853 (3) | 169.4 |
N1—H1B···O1i | 0.89 | 2.18 | 3.038 (4) | 163.0 |
N1—H1C···O3ii | 0.89 | 2.01 | 2.875 (4) | 162.4 |
N2—H2A···O4 | 0.89 | 2.25 | 2.887 (4) | 128.8 |
N2—H2A···Cl4i | 0.89 | 2.78 | 3.315 (3) | 120.3 |
N2—H2B···Cl4iii | 0.89 | 2.38 | 3.262 (3) | 168.8 |
N2—H2C···O3 | 0.89 | 2.02 | 2.869 (4) | 158.2 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) x, −y+3/2, z+1/2. |
Acknowledgements
The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Ballmann, J., Fuchs, M. G. G., Dechert, S., John, M. & Meyer, F. (2009). Inorg. Chem. 48, 90–99. Web of Science CSD CrossRef PubMed CAS Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Diallo, W., Diassé-Sarr, A. D., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok-Köhn, G. & Molloy, K. C. (2009). St. Cerc. St. CICBIA, 10, 207–212. CAS Google Scholar
Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854–m855. CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Meriem, A., Gielen, M. & Willem, R. (1989). J. Organomet. Chem. 365, 91–101. CrossRef CAS Web of Science Google Scholar
Ng, S. W. & Kumar Das, V. G. (1997). Acta Cryst. C53, 1034–1036. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Qamar-Kane, H. & Diop, L. (2010). St. Cerc. St. CICBIA, 11, 389–392. Google Scholar
Sarr, O. & Diop, L. (1990). Spectrochim. Acta Part A, 46, 1239–1244. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C Chim. 278, 1377–1379. CAS Google Scholar
Sow, Y., Diop, L., Kociok-Köhn, G. & Molloy, K. C. (2010). Main Group Met. Chem. 33, 205–208. CSD CrossRef CAS Google Scholar
Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106–m107. CSD CrossRef CAS IUCr Journals Google Scholar
Willey, G. R., Woodman, T. J., Deeth, R. J. & Errington, W. (1998). Main Group Met. Chem. 21, 583–591. CrossRef CAS Google Scholar
Yin, H.-D. & Wang, C.-H. (2004). Appl. Organomet. Chem. 18, 411–412. Web of Science CSD CrossRef CAS Google Scholar
Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460–m461. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Various applications of organotin(IV) compounds exist in many fields, e.g. related to agriculture, medicine, anti-fouling paints and wood preservatives (Evans & Karpel, 1985). Therefore new organotin compounds have been the research subject of many groups (Ballmann et al., 2009; Meriem et al., 1989; Ng & Kumar Das, 1997; Zhang et al., 2006). Our group has previously reported several halogenidotin(IV) derivatives (Diallo et al., 2009; Qamar-Kane & Diop, 2010). In this work, we report the results of the reaction between (C6H14N)2(C2O4).1.5H2O with SnCl2.2H2O leading to the formation of the title compound, (C6H14N)2[Sn(C2O4)Cl4], (I).
The asymmetric unit of (I) consists of an oxalate anion chelating a SnCl4 moiety (Fig. 1). The C—O distances in the oxalate anion [C1—O3 = 1.227 (4) Å; C2—O4 = 1.217 (4) Å; C1—O1 = 1.286 (4) Å; C2—O2 = 1.290 (4) Å] indicate double and single bonds, respectively. The Sn—O distances [Sn1—O1 = 2.155 (2) Å; Sn1—O2 = 2.121 (2) Å] and the Sn—Cl distances [Sn1—Cl1 = 2.3794 (9) Å; Sn1—Cl2 = 2.3667 (9) Å, Sn1—Cl3 = 2.3547 (9) Å and Sn1—Cl4 = 2.4407 (8) Å] (Table 1) are in good agreement with those of previously reported Sn—O and Sn—Cl bonds of related compounds (Willey et al.,1998; Skapski et al., 1974; Sow et al., 2010, 2013). The coordination sphere around the SnIV atom can be described as a slightly distorted octahedron with the O atoms of the oxalate ligand occupying equatorial cis-positions. The greatest deviation from the ideal octahedral geometry is manifested in the contraction of the Cl2—Sn1—Cl4 angle to 171.25 (3) °.
The stannate(IV) anion interacts with the two distinct cyclohexylammonium cations (both with chair conformation) through N—H···O and N—H···Cl hydrogen bonds (Table 2), leading to a two-dimensional network extending parallel to (100) (Fig. 2).