metal-organic compounds
Dichloridobis[3-(4-methoxyphenyl)-2-methyl-5-(piperidin-1-yl)-2,3-dihydro-1,2,4-oxadiazole-κN4]platinum(II)
aDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and bO.O. Bohomolets National Medical University, Department of General Chemistry, Shevchenko blvd. 13, 01004 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net
In title compound, [PtCl2(C15H21N3O2)2], the PtII cation, located on an inversion center, is coordinated by two Cl− anions and two 3-(4-methoxyphenyl)-2-methyl-5-(piperidin-1-yl)-2,3-dihydro-1,2,4-oxadiazole ligands in a distorted Cl2N2 square-planar geometry. The dihydrooxadiazole and piperidine rings display envelope (with the non-coordinating N atom as the flap atom) and chair conformations, respectively. In the crystal, weak C—H⋯Cl hydrogen bonds link the molecules into supramolecular chains running along the b axis. The piperidine ring is disordered over two positions with the occupancy ratio of 0.528 (4):0.472 (4).
Related literature
For applications of platinum species bearing N-bound 2,3-dihydro-1,2,4-oxadiazoles, see: Coley et al. (2008); Wagner et al. (2010). For the synthesis of platinum complexes bearing 2,3-dihydro-1,2,4-oxadiazole ligands, see: Kritchenkov et al. (2011). For related structures, see: Bokach & Kukushkin (2006); Bokach et al. (2011); Fritsky et al. (2006); Penkova et al. (2009). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536813018059/xu5715sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813018059/xu5715Isup2.hkl
Title compound was synthesized and isolated as pure solid by the described method (Kritchenkov et al., 2011). The crystal was obtained by a slow evaporation of chloroform (RT) solution of the title compound. Hexane was added to the solution for improvement of crystallization of the complex.
The piperidine ring was found to be disordered over two positions, the occupancies were refined to 0.528 (4)/0.472 (4). H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and included in the
in the riding model approximation, Uiso(H) set to 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. View to the C30H42Cl2N6O4Pt complex in the structure of 1. Thermal ellipsoids are drawn at the 50% probability level. |
[PtCl2(C15H21N3O2)2] | F(000) = 816 |
Mr = 816.69 | Dx = 1.645 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6284 reflections |
a = 12.77795 (19) Å | θ = 2.7–31.7° |
b = 8.57581 (15) Å | µ = 4.46 mm−1 |
c = 15.1086 (3) Å | T = 100 K |
β = 95.0717 (17)° | Prizm, light-yellow |
V = 1649.13 (5) Å3 | 0.22 × 0.18 × 0.15 mm |
Z = 2 |
Agilent Xcalibur Eos diffractometer | 5072 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3997 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 16.2096 pixels mm-1 | θmax = 31.8°, θmin = 2.7° |
ω scans | h = −18→17 |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | k = −11→11 |
Tmin = 0.617, Tmax = 1.000 | l = −21→21 |
13705 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.042 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0128P)2] where P = (Fo2 + 2Fc2)/3 |
5072 reflections | (Δ/σ)max = 0.001 |
253 parameters | Δρmax = 1.00 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
[PtCl2(C15H21N3O2)2] | V = 1649.13 (5) Å3 |
Mr = 816.69 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.77795 (19) Å | µ = 4.46 mm−1 |
b = 8.57581 (15) Å | T = 100 K |
c = 15.1086 (3) Å | 0.22 × 0.18 × 0.15 mm |
β = 95.0717 (17)° |
Agilent Xcalibur Eos diffractometer | 5072 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 3997 reflections with I > 2σ(I) |
Tmin = 0.617, Tmax = 1.000 | Rint = 0.026 |
13705 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.042 | H-atom parameters constrained |
S = 1.05 | Δρmax = 1.00 e Å−3 |
5072 reflections | Δρmin = −0.64 e Å−3 |
253 parameters |
Experimental. The piperidine ring was found to be disordered over two positions with the occupancies 0.528/0.472. The non-hydrogen atoms were refined anisotropically. Carbon- and nitrogen-bonded H atoms were placed in calculated positions and were included in the refinement in the "riding" model approximation, with Uiso(H) set to 1.5Ueq(C) and C—H 0.96 Å for the methyl groups, 1.2Ueq(C) and C—H 0.98 Å for the tertiary CH groups, 1.2Ueq(C) and C—H 0.93 Å for the carbon atoms of the benzene rings, and 1.2Ueq(N) and N—H 0.91 Å for the tertiary NH groups. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1 | 0.0000 | 0.5000 | 0.0000 | 0.01251 (3) | |
Cl1 | −0.01009 (4) | 0.73071 (6) | 0.07781 (3) | 0.02001 (11) | |
N3 | 0.13951 (13) | 0.4505 (2) | 0.06907 (11) | 0.0160 (4) | |
N5 | 0.24273 (14) | 0.3416 (2) | 0.18442 (12) | 0.0217 (4) | |
O1 | 0.30566 (12) | 0.4436 (2) | 0.12999 (11) | 0.0321 (4) | |
O13 | −0.17565 (13) | 0.0800 (2) | 0.31245 (12) | 0.0383 (4) | |
C2 | 0.23174 (17) | 0.5175 (3) | 0.07460 (16) | 0.0246 (5) | |
C4 | 0.15295 (15) | 0.3037 (2) | 0.11921 (13) | 0.0177 (4) | |
H4 | 0.1726 | 0.2199 | 0.0798 | 0.021* | |
C6 | 0.31081 (18) | 0.2079 (3) | 0.20773 (16) | 0.0315 (6) | |
H6A | 0.2708 | 0.1275 | 0.2334 | 0.047* | |
H6B | 0.3674 | 0.2397 | 0.2499 | 0.047* | |
H6C | 0.3389 | 0.1687 | 0.1552 | 0.047* | |
C7 | 0.06220 (15) | 0.2522 (2) | 0.16910 (13) | 0.0164 (4) | |
C8 | 0.04130 (17) | 0.0942 (3) | 0.17501 (14) | 0.0215 (5) | |
H8 | 0.0805 | 0.0232 | 0.1451 | 0.026* | |
C9 | −0.03721 (18) | 0.0406 (3) | 0.22485 (16) | 0.0251 (5) | |
H9 | −0.0492 | −0.0659 | 0.2295 | 0.030* | |
C10 | −0.09774 (17) | 0.1454 (3) | 0.26766 (14) | 0.0239 (5) | |
C11 | −0.07848 (17) | 0.3051 (3) | 0.26166 (13) | 0.0229 (5) | |
H11 | −0.1193 | 0.3761 | 0.2899 | 0.027* | |
C12 | 0.00224 (17) | 0.3571 (3) | 0.21309 (13) | 0.0201 (5) | |
H12 | 0.0162 | 0.4633 | 0.2100 | 0.024* | |
C14 | −0.2437 (2) | 0.1821 (4) | 0.3538 (2) | 0.0573 (9) | |
H14A | −0.2750 | 0.2542 | 0.3106 | 0.086* | |
H14B | −0.2043 | 0.2386 | 0.4004 | 0.086* | |
H14C | −0.2978 | 0.1226 | 0.3783 | 0.086* | |
N1A | 0.2753 (9) | 0.6289 (16) | 0.0262 (9) | 0.024 (2) | 0.528 (4) |
C16A | 0.2130 (12) | 0.7065 (14) | −0.0497 (9) | 0.0144 (16) | 0.528 (4) |
H16A | 0.1405 | 0.6719 | −0.0531 | 0.017* | 0.528 (4) |
H16B | 0.2417 | 0.6808 | −0.1052 | 0.017* | 0.528 (4) |
C17A | 0.2194 (3) | 0.8876 (5) | −0.0328 (3) | 0.0284 (12) | 0.528 (4) |
H17A | 0.1838 | 0.9418 | −0.0832 | 0.034* | 0.528 (4) |
H17B | 0.1837 | 0.9130 | 0.0194 | 0.034* | 0.528 (4) |
C18A | 0.3334 (4) | 0.9427 (6) | −0.0193 (3) | 0.0326 (13) | 0.528 (4) |
H18A | 0.3667 | 0.9297 | −0.0740 | 0.039* | 0.528 (4) |
H18B | 0.3353 | 1.0526 | −0.0040 | 0.039* | 0.528 (4) |
C19A | 0.3931 (5) | 0.8491 (7) | 0.0547 (4) | 0.0465 (18) | 0.528 (4) |
H19A | 0.4664 | 0.8797 | 0.0595 | 0.056* | 0.528 (4) |
H19B | 0.3650 | 0.8729 | 0.1107 | 0.056* | 0.528 (4) |
C20A | 0.3849 (4) | 0.6741 (7) | 0.0376 (4) | 0.0412 (16) | 0.528 (4) |
H20A | 0.4188 | 0.6479 | −0.0154 | 0.049* | 0.528 (4) |
H20B | 0.4202 | 0.6178 | 0.0873 | 0.049* | 0.528 (4) |
N1B | 0.2575 (10) | 0.6571 (17) | 0.0444 (10) | 0.0193 (18) | 0.472 (4) |
C16B | 0.2104 (14) | 0.7419 (16) | −0.0325 (10) | 0.022 (2) | 0.472 (4) |
H16C | 0.1836 | 0.8409 | −0.0133 | 0.026* | 0.472 (4) |
H16D | 0.1518 | 0.6825 | −0.0602 | 0.026* | 0.472 (4) |
C17B | 0.2883 (4) | 0.7704 (7) | −0.0991 (3) | 0.0319 (14) | 0.472 (4) |
H17C | 0.2550 | 0.8296 | −0.1485 | 0.038* | 0.472 (4) |
H17D | 0.3109 | 0.6714 | −0.1219 | 0.038* | 0.472 (4) |
C18B | 0.3841 (4) | 0.8600 (7) | −0.0579 (4) | 0.0354 (15) | 0.472 (4) |
H18C | 0.3632 | 0.9635 | −0.0406 | 0.043* | 0.472 (4) |
H18D | 0.4355 | 0.8707 | −0.1010 | 0.043* | 0.472 (4) |
C19B | 0.4330 (5) | 0.7707 (9) | 0.0244 (4) | 0.0401 (17) | 0.472 (4) |
H19C | 0.4602 | 0.6712 | 0.0062 | 0.048* | 0.472 (4) |
H19D | 0.4910 | 0.8302 | 0.0531 | 0.048* | 0.472 (4) |
C20B | 0.3518 (4) | 0.7444 (7) | 0.0884 (4) | 0.0313 (15) | 0.472 (4) |
H20C | 0.3290 | 0.8440 | 0.1102 | 0.038* | 0.472 (4) |
H20D | 0.3823 | 0.6848 | 0.1388 | 0.038* | 0.472 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.00901 (5) | 0.01308 (6) | 0.01504 (5) | −0.00236 (4) | −0.00124 (3) | −0.00214 (5) |
Cl1 | 0.0188 (2) | 0.0172 (3) | 0.0235 (2) | −0.00130 (19) | −0.00079 (19) | −0.0069 (2) |
N3 | 0.0136 (8) | 0.0151 (8) | 0.0185 (9) | −0.0028 (6) | −0.0025 (7) | 0.0011 (7) |
N5 | 0.0157 (9) | 0.0199 (10) | 0.0283 (10) | −0.0044 (7) | −0.0048 (8) | 0.0064 (8) |
O1 | 0.0148 (8) | 0.0358 (9) | 0.0435 (10) | −0.0079 (7) | −0.0099 (7) | 0.0215 (8) |
O13 | 0.0265 (10) | 0.0429 (11) | 0.0482 (11) | −0.0006 (8) | 0.0184 (8) | 0.0072 (9) |
C2 | 0.0170 (10) | 0.0261 (13) | 0.0292 (12) | −0.0034 (9) | −0.0059 (9) | 0.0084 (10) |
C4 | 0.0147 (10) | 0.0155 (11) | 0.0223 (11) | 0.0003 (8) | −0.0016 (8) | −0.0010 (8) |
C6 | 0.0219 (12) | 0.0269 (13) | 0.0441 (15) | 0.0002 (10) | −0.0059 (11) | 0.0114 (11) |
C7 | 0.0116 (9) | 0.0200 (11) | 0.0166 (10) | −0.0031 (8) | −0.0033 (7) | 0.0008 (8) |
C8 | 0.0200 (11) | 0.0199 (12) | 0.0249 (11) | −0.0012 (9) | 0.0038 (9) | −0.0053 (9) |
C9 | 0.0225 (12) | 0.0213 (12) | 0.0318 (13) | −0.0069 (9) | 0.0037 (10) | −0.0019 (9) |
C10 | 0.0182 (11) | 0.0328 (14) | 0.0207 (11) | −0.0034 (9) | 0.0028 (9) | 0.0021 (10) |
C11 | 0.0215 (11) | 0.0296 (13) | 0.0176 (10) | 0.0065 (9) | 0.0023 (9) | −0.0039 (9) |
C12 | 0.0229 (11) | 0.0172 (11) | 0.0189 (11) | −0.0002 (8) | −0.0047 (9) | −0.0023 (9) |
C14 | 0.0452 (19) | 0.067 (2) | 0.065 (2) | 0.0210 (16) | 0.0385 (16) | 0.0228 (17) |
N1A | 0.005 (3) | 0.029 (5) | 0.038 (6) | 0.001 (2) | −0.001 (3) | 0.013 (4) |
C16A | 0.015 (2) | 0.011 (4) | 0.016 (4) | −0.006 (3) | −0.007 (3) | −0.002 (3) |
C17A | 0.025 (2) | 0.027 (3) | 0.033 (3) | −0.0048 (18) | 0.0040 (19) | 0.004 (2) |
C18A | 0.033 (3) | 0.029 (3) | 0.033 (3) | −0.018 (2) | −0.008 (2) | 0.009 (2) |
C19A | 0.039 (4) | 0.048 (4) | 0.047 (4) | −0.029 (3) | −0.025 (3) | 0.023 (3) |
C20A | 0.018 (2) | 0.047 (4) | 0.056 (4) | −0.010 (2) | −0.010 (2) | 0.031 (3) |
N1B | 0.006 (4) | 0.023 (5) | 0.029 (5) | −0.007 (3) | −0.002 (3) | 0.006 (3) |
C16B | 0.019 (3) | 0.021 (7) | 0.026 (6) | −0.010 (4) | −0.005 (4) | −0.002 (4) |
C17B | 0.025 (3) | 0.045 (3) | 0.025 (3) | −0.014 (2) | −0.004 (2) | 0.010 (2) |
C18B | 0.023 (3) | 0.042 (4) | 0.041 (3) | −0.019 (2) | −0.002 (2) | 0.009 (3) |
C19B | 0.026 (3) | 0.054 (5) | 0.038 (4) | −0.020 (3) | −0.011 (3) | 0.016 (3) |
C20B | 0.033 (3) | 0.030 (3) | 0.028 (3) | −0.022 (2) | −0.014 (2) | 0.008 (2) |
Pt1—N3i | 2.0293 (16) | N1A—C20A | 1.449 (14) |
Pt1—N3 | 2.0293 (16) | N1A—C16A | 1.49 (2) |
Pt1—Cl1i | 2.3108 (5) | C16A—C17A | 1.574 (11) |
Pt1—Cl1 | 2.3108 (5) | C16A—H16A | 0.9700 |
N3—C2 | 1.307 (3) | C16A—H16B | 0.9700 |
N3—C4 | 1.471 (3) | C17A—C18A | 1.528 (6) |
N5—C6 | 1.463 (3) | C17A—H17A | 0.9700 |
N5—C4 | 1.481 (2) | C17A—H17B | 0.9700 |
N5—O1 | 1.485 (2) | C18A—C19A | 1.525 (7) |
O1—C2 | 1.362 (2) | C18A—H18A | 0.9700 |
O13—C10 | 1.372 (3) | C18A—H18B | 0.9700 |
O13—C14 | 1.417 (3) | C19A—C20A | 1.525 (9) |
C2—N1B | 1.333 (17) | C19A—H19A | 0.9700 |
C2—N1A | 1.353 (16) | C19A—H19B | 0.9700 |
C4—C7 | 1.504 (3) | C20A—H20A | 0.9700 |
C4—H4 | 0.9800 | C20A—H20B | 0.9700 |
C6—H6A | 0.9600 | N1B—C16B | 1.45 (2) |
C6—H6B | 0.9600 | N1B—C20B | 1.520 (16) |
C6—H6C | 0.9600 | C16B—C17B | 1.496 (18) |
C7—C8 | 1.386 (3) | C16B—H16C | 0.9700 |
C7—C12 | 1.389 (3) | C16B—H16D | 0.9700 |
C8—C9 | 1.385 (3) | C17B—C18B | 1.530 (6) |
C8—H8 | 0.9300 | C17B—H17C | 0.9700 |
C9—C10 | 1.383 (3) | C17B—H17D | 0.9700 |
C9—H9 | 0.9300 | C18B—C19B | 1.544 (8) |
C10—C11 | 1.395 (3) | C18B—H18C | 0.9700 |
C11—C12 | 1.391 (3) | C18B—H18D | 0.9700 |
C11—H11 | 0.9300 | C19B—C20B | 1.497 (10) |
C12—H12 | 0.9300 | C19B—H19C | 0.9700 |
C14—H14A | 0.9600 | C19B—H19D | 0.9700 |
C14—H14B | 0.9600 | C20B—H20C | 0.9700 |
C14—H14C | 0.9600 | C20B—H20D | 0.9700 |
N3i—Pt1—N3 | 180.0 | C17A—C16A—H16A | 110.2 |
N3i—Pt1—Cl1i | 90.20 (5) | N1A—C16A—H16B | 110.2 |
N3—Pt1—Cl1i | 89.80 (5) | C17A—C16A—H16B | 110.2 |
N3i—Pt1—Cl1 | 89.80 (5) | H16A—C16A—H16B | 108.5 |
N3—Pt1—Cl1 | 90.20 (5) | C18A—C17A—C16A | 111.2 (7) |
Cl1i—Pt1—Cl1 | 180.0 | C18A—C17A—H17A | 109.4 |
C2—N3—C4 | 106.24 (16) | C16A—C17A—H17A | 109.4 |
C2—N3—Pt1 | 133.39 (15) | C18A—C17A—H17B | 109.4 |
C4—N3—Pt1 | 120.06 (12) | C16A—C17A—H17B | 109.4 |
C6—N5—C4 | 113.41 (17) | H17A—C17A—H17B | 108.0 |
C6—N5—O1 | 104.81 (17) | C19A—C18A—C17A | 110.2 (4) |
C4—N5—O1 | 100.75 (14) | C19A—C18A—H18A | 109.6 |
C2—O1—N5 | 103.55 (16) | C17A—C18A—H18A | 109.6 |
C10—O13—C14 | 117.7 (2) | C19A—C18A—H18B | 109.6 |
N3—C2—N1B | 128.4 (6) | C17A—C18A—H18B | 109.6 |
N3—C2—N1A | 133.4 (6) | H18A—C18A—H18B | 108.1 |
N1B—C2—N1A | 19.0 (6) | C20A—C19A—C18A | 111.8 (4) |
N3—C2—O1 | 114.03 (19) | C20A—C19A—H19A | 109.3 |
N1B—C2—O1 | 116.7 (6) | C18A—C19A—H19A | 109.3 |
N1A—C2—O1 | 111.4 (6) | C20A—C19A—H19B | 109.3 |
N3—C4—N5 | 101.72 (15) | C18A—C19A—H19B | 109.3 |
N3—C4—C7 | 116.68 (17) | H19A—C19A—H19B | 107.9 |
N5—C4—C7 | 108.50 (16) | N1A—C20A—C19A | 109.5 (7) |
N3—C4—H4 | 109.8 | N1A—C20A—H20A | 109.8 |
N5—C4—H4 | 109.8 | C19A—C20A—H20A | 109.8 |
C7—C4—H4 | 109.8 | N1A—C20A—H20B | 109.8 |
N5—C6—H6A | 109.5 | C19A—C20A—H20B | 109.8 |
N5—C6—H6B | 109.5 | H20A—C20A—H20B | 108.2 |
H6A—C6—H6B | 109.5 | C2—N1B—C16B | 128.7 (13) |
N5—C6—H6C | 109.5 | C2—N1B—C20B | 120.2 (12) |
H6A—C6—H6C | 109.5 | C16B—N1B—C20B | 111.1 (12) |
H6B—C6—H6C | 109.5 | N1B—C16B—C17B | 111.5 (12) |
C8—C7—C12 | 119.0 (2) | N1B—C16B—H16C | 109.3 |
C8—C7—C4 | 118.74 (19) | C17B—C16B—H16C | 109.3 |
C12—C7—C4 | 122.15 (19) | N1B—C16B—H16D | 109.3 |
C9—C8—C7 | 120.8 (2) | C17B—C16B—H16D | 109.3 |
C9—C8—H8 | 119.6 | H16C—C16B—H16D | 108.0 |
C7—C8—H8 | 119.6 | C16B—C17B—C18B | 111.4 (6) |
C10—C9—C8 | 120.0 (2) | C16B—C17B—H17C | 109.4 |
C10—C9—H9 | 120.0 | C18B—C17B—H17C | 109.4 |
C8—C9—H9 | 120.0 | C16B—C17B—H17D | 109.4 |
O13—C10—C9 | 115.2 (2) | C18B—C17B—H17D | 109.4 |
O13—C10—C11 | 125.0 (2) | H17C—C17B—H17D | 108.0 |
C9—C10—C11 | 119.9 (2) | C17B—C18B—C19B | 109.3 (4) |
C12—C11—C10 | 119.5 (2) | C17B—C18B—H18C | 109.8 |
C12—C11—H11 | 120.2 | C19B—C18B—H18C | 109.8 |
C10—C11—H11 | 120.2 | C17B—C18B—H18D | 109.8 |
C7—C12—C11 | 120.7 (2) | C19B—C18B—H18D | 109.8 |
C7—C12—H12 | 119.6 | H18C—C18B—H18D | 108.3 |
C11—C12—H12 | 119.6 | C20B—C19B—C18B | 109.9 (5) |
O13—C14—H14A | 109.5 | C20B—C19B—H19C | 109.7 |
O13—C14—H14B | 109.5 | C18B—C19B—H19C | 109.7 |
H14A—C14—H14B | 109.5 | C20B—C19B—H19D | 109.7 |
O13—C14—H14C | 109.5 | C18B—C19B—H19D | 109.7 |
H14A—C14—H14C | 109.5 | H19C—C19B—H19D | 108.2 |
H14B—C14—H14C | 109.5 | C19B—C20B—N1B | 111.0 (7) |
C2—N1A—C20A | 124.3 (11) | C19B—C20B—H20C | 109.4 |
C2—N1A—C16A | 120.9 (11) | N1B—C20B—H20C | 109.4 |
C20A—N1A—C16A | 114.6 (12) | C19B—C20B—H20D | 109.4 |
N1A—C16A—C17A | 107.4 (8) | N1B—C20B—H20D | 109.4 |
N1A—C16A—H16A | 110.2 | H20C—C20B—H20D | 108.0 |
N3i—Pt1—N3—C2 | −49 (15) | C8—C9—C10—C11 | −1.0 (3) |
Cl1i—Pt1—N3—C2 | 116.2 (2) | O13—C10—C11—C12 | −179.11 (19) |
Cl1—Pt1—N3—C2 | −63.8 (2) | C9—C10—C11—C12 | −0.5 (3) |
N3i—Pt1—N3—C4 | 138 (15) | C8—C7—C12—C11 | −0.7 (3) |
Cl1i—Pt1—N3—C4 | −56.47 (15) | C4—C7—C12—C11 | −177.36 (17) |
Cl1—Pt1—N3—C4 | 123.53 (15) | C10—C11—C12—C7 | 1.4 (3) |
C6—N5—O1—C2 | 150.49 (18) | N3—C2—N1A—C20A | −172.2 (6) |
C4—N5—O1—C2 | 32.6 (2) | N1B—C2—N1A—C20A | 105 (4) |
C4—N3—C2—N1B | −175.5 (7) | O1—C2—N1A—C20A | −5.4 (10) |
Pt1—N3—C2—N1B | 11.1 (8) | N3—C2—N1A—C16A | 2.7 (12) |
C4—N3—C2—N1A | 160.1 (6) | N1B—C2—N1A—C16A | −80 (4) |
Pt1—N3—C2—N1A | −13.3 (7) | O1—C2—N1A—C16A | 169.5 (7) |
C4—N3—C2—O1 | −6.4 (3) | C2—N1A—C16A—C17A | 125.3 (10) |
Pt1—N3—C2—O1 | −179.78 (15) | C20A—N1A—C16A—C17A | −59.3 (12) |
N5—O1—C2—N3 | −17.2 (3) | N1A—C16A—C17A—C18A | 55.0 (11) |
N5—O1—C2—N1B | 153.3 (5) | C16A—C17A—C18A—C19A | −54.4 (8) |
N5—O1—C2—N1A | 173.3 (5) | C17A—C18A—C19A—C20A | 54.6 (8) |
C2—N3—C4—N5 | 27.1 (2) | C2—N1A—C20A—C19A | −124.4 (8) |
Pt1—N3—C4—N5 | −158.46 (13) | C16A—N1A—C20A—C19A | 60.3 (10) |
C2—N3—C4—C7 | 144.93 (19) | C18A—C19A—C20A—N1A | −56.2 (9) |
Pt1—N3—C4—C7 | −40.6 (2) | N3—C2—N1B—C16B | −30.5 (13) |
C6—N5—C4—N3 | −146.99 (18) | N1A—C2—N1B—C16B | 83 (4) |
O1—N5—C4—N3 | −35.54 (19) | O1—C2—N1B—C16B | 160.6 (9) |
C6—N5—C4—C7 | 89.4 (2) | N3—C2—N1B—C20B | 153.6 (5) |
O1—N5—C4—C7 | −159.12 (16) | N1A—C2—N1B—C20B | −93 (4) |
N3—C4—C7—C8 | 144.73 (18) | O1—C2—N1B—C20B | −15.2 (9) |
N5—C4—C7—C8 | −101.2 (2) | C2—N1B—C16B—C17B | −118.6 (11) |
N3—C4—C7—C12 | −38.6 (3) | C20B—N1B—C16B—C17B | 57.6 (10) |
N5—C4—C7—C12 | 75.5 (2) | N1B—C16B—C17B—C18B | −57.4 (11) |
C12—C7—C8—C9 | −0.8 (3) | C16B—C17B—C18B—C19B | 55.5 (9) |
C4—C7—C8—C9 | 175.95 (18) | C17B—C18B—C19B—C20B | −55.6 (7) |
C7—C8—C9—C10 | 1.7 (3) | C18B—C19B—C20B—N1B | 56.9 (9) |
C14—O13—C10—C9 | −176.8 (2) | C2—N1B—C20B—C19B | 118.3 (8) |
C14—O13—C10—C11 | 1.8 (3) | C16B—N1B—C20B—C19B | −58.2 (10) |
C8—C9—C10—O13 | 177.74 (19) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14C···Cl1ii | 0.96 | 2.76 | 3.423 (3) | 127 |
Symmetry code: (ii) −x−1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [PtCl2(C15H21N3O2)2] |
Mr | 816.69 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 12.77795 (19), 8.57581 (15), 15.1086 (3) |
β (°) | 95.0717 (17) |
V (Å3) | 1649.13 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.46 |
Crystal size (mm) | 0.22 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.617, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13705, 5072, 3997 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.742 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.042, 1.05 |
No. of reflections | 5072 |
No. of parameters | 253 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.00, −0.64 |
Computer programs: CrysAlis PRO (Agilent, 2012), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14C···Cl1i | 0.96 | 2.76 | 3.423 (3) | 127 |
Symmetry code: (i) −x−1/2, y−1/2, −z+1/2. |
Acknowledgements
This work was supported by a Saint Petersburg State University research grant (2013–2015, 12.38.781.2013) and the RFBR 12–03–33071. The XRD study was performed at the X-ray Diffraction Centre of Saint Petersburg State University.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bokach, N. A., Balova, I. A., Haukka, M. & Kukushkin, V. Y. (2011). Organometallics, 30, 595–602. Web of Science CSD CrossRef CAS Google Scholar
Bokach, N. A. & Kukushkin, V. Y. (2006). Russ. Chem. Bull. 55, 1869–1882. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2009). Diamond. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Coley, H. M., Sarju, J. & Wagner, G. (2008). J. Med. Chem. 51, 135–141. Web of Science CrossRef PubMed CAS Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Kritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Y. (2011). Dalton Trans. 40, 4175–4182. Web of Science CSD CrossRef CAS PubMed Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wagner, G., Marchant, A. & Sayer, J. (2010). Dalton Trans. 39, 7747–7759. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past decade, a great attention has been paid to metal-mediated cycloaddition (CA) of dipoles to nitriles because the activation of nitrile substrates by a suitable metal center often results in promotion of CAs, which are not feasible in so-called pure organic chemistry (Coley et al., 2008, Wagner et al., 2010). Thus, the metal-mediated CA represents an efficient route to free and/or coordinated heterocycles that could be either difficult to obtain or even inaccessible via metal-free protocols (Bokach et al., 2006, 2011). Furthermore, an interest in 2,3-dihydro-1,2,4-oxadiazole and their platinum complexes is caused by their potential application in medicine. Despite 2,3-dihydro-1,2,4-oxadiazoles are known, examples of 5-dialkylamino-2,3-dihydro-1,2,4-oxadiazoles and, in particular, their metal complexes are rare. Therefore, the synthesis of new complexes bearing the rare heterocycles as ligands and investigation of their properties, including their biological activity, are of interest. As an amplification of our project focused on metal-mediated CA and reactivity of metal-bound dialkylcyanamides (Kritchenkov et al., 2011)) we synthesized and characterized the title compound by a single-crystal X-ray diffraction.
In the crystal structure of the title compound, the Pt atom is in the inversion center and coordinated by two Cl atoms and two N atoms (Fig. 1) of the heterocycles in trans-position. The Pt(1)–N(3) bond length (Table 1) is typical for (imine)PtII species (Allen et al., 1987). The N(3)–C(2) (1.307 (3) Å) distance is characteristic for the N=C double bond (Fritsky et al., 2006; Penkova et al., 2009), while the N(3)–C(4) and N(5)–C(4) (1.472 (3) and 1.480 (3) Å), correspondingly, are specific for the N–C single bonds (Allen et al., 1987). In the complex, the C(4) atom of the heterocyclic ligand exhibits the RR/SS configuration.
In the crystal structure, the complexes interact with each other via the weak C—H···Cl hydrogen bond (Table 2), forming the supramolecular chains running along the b axis.