metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m439-m440

Di­aqua­bis­­[2-(2-hy­dr­oxy­eth­yl)pyridine-κ2N,O]cobalt(II) dichloride

aUnité de Recherche Chimie de l'Environnement et Moléculaire Structurale 'CHEMS', Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Constantine I, 25000 Constantine, Algeria
*Correspondence e-mail: Lamiabendjeddou@yahoo.fr

(Received 29 June 2013; accepted 2 July 2013; online 6 July 2013)

In the title salt, [Co(C7H9NO)2(H2O)2]Cl2, the CoII cation, located on an inversion center, is N,O-chelated by two hy­droxy­ethyl­pyridine ligands and coordinated by two water mol­ecules in a distorted O4N2 octa­hedral geometry. In the crystal, the Cl anions link with the complex cations via O—H⋯Cl hydrogen bonds, forming a three-dimensional supra­molecular architecture. ππ stacking is observed between the pyridine rings of adjacent mol­ecules [centroid–centroid distance = 3.5810 (11) Å].

Related literature

For applications of pyridine derivatives in the synthesis of coordination polymers, see: Sanudo et al. (2003[Sanudo, E. C., Wernsdorfer, W. & Christou, G. (2003). Polyhedron, 22, 2267-2271.]); Boskovic et al. (2002[Boskovic, C., Brechin, E. K. & Christou, G. (2002). J. Am. Chem. Soc. 124, 3725-3736.]). For related complexes containing a 2(2-hy­droxy­eth­yl)pyridine ligand, see: Kong et al. (2009[Kong, L.-Q., Ju, X.-P. & Li, D.-C. (2009). Acta Cryst. E65, m1518.]); Mobin et al. (2010[Mobin, S. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2010). Dalton Trans. 39, 1447-1449.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H9NO)2(H2O)2]Cl2

  • Mr = 412.17

  • Orthorhombic, P b c n

  • a = 12.8911 (3) Å

  • b = 8.0049 (2) Å

  • c = 16.8757 (4) Å

  • V = 1741.44 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker APEXII diffractometer

  • 9407 measured reflections

  • 1535 independent reflections

  • 1419 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.056

  • S = 1.04

  • 1535 reflections

  • 115 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.1210 (13)
Co1—O1W 2.0715 (13)
Co1—N1 2.1537 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cli 0.84 (2) 2.26 (2) 3.0625 (13) 162 (2)
O1W—H1W⋯Clii 0.932 (11) 2.145 (12) 3.0738 (13) 174.6 (19)
O1W—H2W⋯Cliii 0.835 (16) 2.285 (16) 3.1121 (14) 170.4 (15)
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POV-RAY (Persistence of Vision Team, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ .]).

Supporting information


Comment top

Pyridine derivatives ligands have the potential to be used in the synthesis of supramolecular materials, particularly transition metal coordination polymers (Sanudo et al., 2003; Boskovic et al., 2002). A few complexes containing L (L =2 (2-hydroxyethyl)pyridine) have been studied for years, because this ligand has a versatile coordination activities and bridging function (Kong et al., 2009; Mobin et al., 2010). We report here the synthesis and crystal structure of the title compound.

The complex comprises two L (L = 2-(2-hydroxyethyl)pyridine) ligands, one CoII ion, two aqua ligands and uncoordinated Cl anions (Fig. 1). The coordination geometry around the Co center is octahedral with a CoN2O4 ligand set (Table 1). The bis L ligands coordinate to the Co(II) ions through the nitrogen atom of pyridine ring and the oxygen atom of hydroxyl group, creating a chelate ring. The octahedral geometries are completed by two trans aqua ligands at axial positions.

The complex cations are connected via O—H···Cl hydrogen bonds (Fig. 2), forming a centrosymmetric and a noncentrosymmetric rings, in two domensionel network, which can be described by the graph set R24(12) and R24(10), respectively (Bernstein et al.,1995). π-π stacking between the pyridine rings [centroid-centroid distance = 3.5810 (11) Å] is also present (Fig. 3).

Related literature top

For applications of pyridine derivatives in the synthesis of coordination polymers, see: Sanudo et al. (2003); Boskovic et al. (2002). For related complexes containing a 2(2-hydroxyethyl)pyridine ligand, see: Kong et al. (2009); Mobin et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by reaction of 2 (2-hydroxyethyl)pyridine (10.0 mmol, 1.67 g) in a mixture of ethanol–water (V/V = 1:1) and CoCl2.6H2O (10.0 mmol, 2.50 g), the solution was maintained at 313 K under agitation during 24 h at room temperature. Pink crystals were obtained by slow evaporation of the solvents within 3 weeks.

Refinement top

H atoms were placed at calculated positions with C—H = 0.93 Å (aromatic H atoms) and 0.97 Å (methylene H atoms), and refined in ridong mode with Uiso(H) = 1.2Ueq(C). The O-bound H-atoms was located in a Fourier map and refined with O—H restraint of 0.85 (1) Å, Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POV-RAY (Persistence of Vision Team, 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title structure with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure, showing the aggregation of R24(12) and R24(10) hydrogen-bonding motifs.
[Figure 3] Fig. 3. A part of the crystal packing showing ππ stacking interactions between the pyridine rings (dashed lines).
Diaquabis[2-(2-hydroxyethyl)pyridine-κ2N,O]cobalt(II) dichloride top
Crystal data top
[Co(C7H9NO)2(H2O)2]Cl2F(000) = 852
Mr = 412.17Dx = 1.572 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1536 reflections
a = 12.8911 (3) Åθ = 3.2–25.1°
b = 8.0049 (2) ŵ = 1.31 mm1
c = 16.8757 (4) ÅT = 293 K
V = 1741.44 (7) Å3Prism, pink
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Bruker APEXII
diffractometer
1419 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.1°, θmin = 3.9°
ϕ scansh = 1415
9407 measured reflectionsk = 99
1535 independent reflectionsl = 1920
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.7255P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.21 e Å3
1535 reflectionsΔρmin = 0.22 e Å3
115 parameters
Crystal data top
[Co(C7H9NO)2(H2O)2]Cl2V = 1741.44 (7) Å3
Mr = 412.17Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 12.8911 (3) ŵ = 1.31 mm1
b = 8.0049 (2) ÅT = 293 K
c = 16.8757 (4) Å0.3 × 0.2 × 0.2 mm
Data collection top
Bruker APEXII
diffractometer
1419 reflections with I > 2σ(I)
9407 measured reflectionsRint = 0.015
1535 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
1535 reflectionsΔρmin = 0.22 e Å3
115 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.500000.500000.000000.0229 (1)
O10.41357 (11)0.27513 (16)0.00777 (7)0.0360 (4)
O1W0.62402 (10)0.39039 (16)0.05822 (8)0.0360 (4)
N10.43197 (11)0.57142 (18)0.11153 (8)0.0272 (4)
C10.35447 (17)0.2261 (3)0.07500 (12)0.0476 (7)
C20.40794 (17)0.2792 (2)0.15026 (11)0.0413 (6)
C30.40051 (14)0.4625 (2)0.16765 (10)0.0288 (5)
C40.36041 (17)0.5176 (2)0.23920 (11)0.0367 (6)
C50.35342 (16)0.6852 (3)0.25479 (11)0.0417 (6)
C60.38502 (15)0.7962 (2)0.19758 (12)0.0404 (6)
C70.42246 (14)0.7350 (2)0.12727 (11)0.0331 (6)
Cl0.34635 (4)0.01817 (5)0.40317 (3)0.0402 (2)
H10.3978 (18)0.211 (3)0.0294 (11)0.0540*
H1A0.345700.105700.074900.0570*
H1B0.286200.276800.072400.0570*
H1W0.6327 (17)0.2761 (13)0.0664 (13)0.0540*
H2A0.480600.248600.146800.0500*
H2B0.378000.217800.194200.0500*
H2W0.6813 (12)0.436 (2)0.0664 (14)0.0540*
H40.338200.440500.276800.0440*
H50.327800.723100.303100.0500*
H60.381100.910800.206400.0490*
H70.442300.810900.088400.0400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0221 (2)0.0221 (2)0.0245 (2)0.0002 (1)0.0017 (1)0.0009 (1)
O10.0429 (8)0.0315 (7)0.0337 (7)0.0128 (6)0.0066 (6)0.0041 (5)
O1W0.0293 (7)0.0295 (7)0.0491 (8)0.0000 (5)0.0083 (6)0.0071 (6)
N10.0259 (7)0.0276 (7)0.0280 (7)0.0020 (6)0.0025 (6)0.0007 (6)
C10.0534 (13)0.0401 (11)0.0492 (12)0.0200 (10)0.0219 (10)0.0088 (9)
C20.0564 (13)0.0310 (10)0.0365 (10)0.0006 (9)0.0159 (9)0.0067 (8)
C30.0263 (9)0.0336 (9)0.0266 (9)0.0003 (7)0.0004 (7)0.0003 (7)
C40.0353 (11)0.0479 (12)0.0270 (9)0.0029 (8)0.0034 (8)0.0003 (8)
C50.0381 (11)0.0547 (12)0.0324 (10)0.0017 (10)0.0038 (8)0.0152 (9)
C60.0395 (11)0.0354 (10)0.0463 (11)0.0033 (9)0.0010 (9)0.0134 (9)
C70.0306 (10)0.0297 (9)0.0389 (10)0.0004 (7)0.0022 (8)0.0013 (7)
Cl0.0376 (3)0.0269 (2)0.0561 (3)0.0017 (2)0.0020 (2)0.0015 (2)
Geometric parameters (Å, º) top
Co1—O12.1210 (13)C2—C31.499 (2)
Co1—O1W2.0715 (13)C3—C41.386 (3)
Co1—N12.1537 (14)C4—C51.370 (3)
Co1—O1i2.1210 (13)C5—C61.374 (3)
Co1—O1Wi2.0715 (13)C6—C71.371 (3)
Co1—N1i2.1537 (14)C1—H1A0.9704
O1—C11.422 (2)C1—H1B0.9701
O1—H10.84 (2)C2—H2A0.9699
O1W—H2W0.835 (16)C2—H2B0.9697
O1W—H1W0.932 (11)C4—H40.9303
N1—C31.350 (2)C5—H50.9305
N1—C71.342 (2)C6—H60.9307
C1—C21.506 (3)C7—H70.9300
O1—Co1—O1W90.95 (5)N1—C3—C4121.20 (15)
O1—Co1—N187.56 (5)C2—C3—C4120.39 (15)
O1—Co1—O1i180.00N1—C3—C2118.40 (15)
O1—Co1—O1Wi89.05 (5)C3—C4—C5120.24 (17)
O1—Co1—N1i92.44 (5)C4—C5—C6118.61 (18)
O1W—Co1—N190.70 (5)C5—C6—C7118.77 (16)
O1i—Co1—O1W89.05 (5)N1—C7—C6123.51 (16)
O1W—Co1—O1Wi180.00O1—C1—H1A109.58
O1W—Co1—N1i89.30 (5)O1—C1—H1B109.54
O1i—Co1—N192.44 (5)C2—C1—H1A109.58
O1Wi—Co1—N189.30 (5)C2—C1—H1B109.59
N1—Co1—N1i180.00H1A—C1—H1B108.04
O1i—Co1—O1Wi90.95 (5)C1—C2—H2A108.66
O1i—Co1—N1i87.56 (5)C1—C2—H2B108.64
O1Wi—Co1—N1i90.70 (5)C3—C2—H2A108.70
Co1—O1—C1124.41 (12)C3—C2—H2B108.72
C1—O1—H1107.4 (15)H2A—C2—H2B107.60
Co1—O1—H1127.1 (15)C3—C4—H4119.87
H1W—O1W—H2W107.4 (17)C5—C4—H4119.89
Co1—O1W—H2W125.1 (12)C4—C5—H5120.72
Co1—O1W—H1W125.4 (13)C6—C5—H5120.67
C3—N1—C7117.65 (14)C5—C6—H6120.60
Co1—N1—C7117.99 (11)C7—C6—H6120.63
Co1—N1—C3124.34 (11)N1—C7—H7118.22
O1—C1—C2110.47 (17)C6—C7—H7118.27
C1—C2—C3114.33 (16)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Clii0.84 (2)2.26 (2)3.0625 (13)162 (2)
O1W—H1W···Cliii0.932 (11)2.145 (12)3.0738 (13)174.6 (19)
O1W—H2W···Cliv0.835 (16)2.285 (16)3.1121 (14)170.4 (15)
Symmetry codes: (ii) x, y, z1/2; (iii) x+1, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C7H9NO)2(H2O)2]Cl2
Mr412.17
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)12.8911 (3), 8.0049 (2), 16.8757 (4)
V3)1741.44 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9407, 1535, 1419
Rint0.015
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.056, 1.04
No. of reflections1535
No. of parameters115
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POV-RAY (Persistence of Vision Team, 2004).

Selected bond lengths (Å) top
Co1—O12.1210 (13)Co1—N12.1537 (14)
Co1—O1W2.0715 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cli0.84 (2)2.26 (2)3.0625 (13)162 (2)
O1W—H1W···Clii0.932 (11)2.145 (12)3.0738 (13)174.6 (19)
O1W—H2W···Cliii0.835 (16)2.285 (16)3.1121 (14)170.4 (15)
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université de Constantine 1, Algeria. Thanks are due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie, Algeria) via the PNR program for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoskovic, C., Brechin, E. K. & Christou, G. (2002). J. Am. Chem. Soc. 124, 3725–3736.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKong, L.-Q., Ju, X.-P. & Li, D.-C. (2009). Acta Cryst. E65, m1518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMobin, S. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2010). Dalton Trans. 39, 1447–1449.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPersistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/Google Scholar
First citationSanudo, E. C., Wernsdorfer, W. & Christou, G. (2003). Polyhedron, 22, 2267–2271.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m439-m440
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds