metal-organic compounds
Diaquabis[2-(2-hydroxyethyl)pyridine-κ2N,O]cobalt(II) dichloride
aUnité de Recherche Chimie de l'Environnement et Moléculaire Structurale 'CHEMS', Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Constantine I, 25000 Constantine, Algeria
*Correspondence e-mail: Lamiabendjeddou@yahoo.fr
In the title salt, [Co(C7H9NO)2(H2O)2]Cl2, the CoII cation, located on an inversion center, is N,O-chelated by two hydroxyethylpyridine ligands and coordinated by two water molecules in a distorted O4N2 octahedral geometry. In the crystal, the Cl− anions link with the complex cations via O—H⋯Cl hydrogen bonds, forming a three-dimensional supramolecular architecture. π–π stacking is observed between the pyridine rings of adjacent molecules [centroid–centroid distance = 3.5810 (11) Å].
Related literature
For applications of pyridine derivatives in the synthesis of coordination polymers, see: Sanudo et al. (2003); Boskovic et al. (2002). For related complexes containing a 2(2-hydroxyethyl)pyridine ligand, see: Kong et al. (2009); Mobin et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POV-RAY (Persistence of Vision Team, 2004).
Supporting information
10.1107/S1600536813018321/xu5717sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813018321/xu5717Isup2.hkl
The title compound was prepared by reaction of 2 (2-hydroxyethyl)pyridine (10.0 mmol, 1.67 g) in a mixture of ethanol–water (V/V = 1:1) and CoCl2.6H2O (10.0 mmol, 2.50 g), the solution was maintained at 313 K under agitation during 24 h at room temperature. Pink crystals were obtained by slow evaporation of the solvents within 3 weeks.
H atoms were placed at calculated positions with C—H = 0.93 Å (aromatic H atoms) and 0.97 Å (methylene H atoms), and refined in ridong mode with Uiso(H) = 1.2Ueq(C). The O-bound H-atoms was located in a Fourier map and refined with O—H restraint of 0.85 (1) Å, Uiso(H) = 1.5Ueq(O).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POV-RAY (Persistence of Vision Team, 2004).Fig. 1. The asymmetric unit of the title structure with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii. | |
Fig. 2. Part of the crystal structure, showing the aggregation of R24(12) and R24(10) hydrogen-bonding motifs. | |
Fig. 3. A part of the crystal packing showing π–π stacking interactions between the pyridine rings (dashed lines). |
[Co(C7H9NO)2(H2O)2]Cl2 | F(000) = 852 |
Mr = 412.17 | Dx = 1.572 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 1536 reflections |
a = 12.8911 (3) Å | θ = 3.2–25.1° |
b = 8.0049 (2) Å | µ = 1.31 mm−1 |
c = 16.8757 (4) Å | T = 293 K |
V = 1741.44 (7) Å3 | Prism, pink |
Z = 4 | 0.3 × 0.2 × 0.2 mm |
Bruker APEXII diffractometer | 1419 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.015 |
Graphite monochromator | θmax = 25.1°, θmin = 3.9° |
ϕ scans | h = −14→15 |
9407 measured reflections | k = −9→9 |
1535 independent reflections | l = −19→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0293P)2 + 0.7255P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.056 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.21 e Å−3 |
1535 reflections | Δρmin = −0.22 e Å−3 |
115 parameters |
[Co(C7H9NO)2(H2O)2]Cl2 | V = 1741.44 (7) Å3 |
Mr = 412.17 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 12.8911 (3) Å | µ = 1.31 mm−1 |
b = 8.0049 (2) Å | T = 293 K |
c = 16.8757 (4) Å | 0.3 × 0.2 × 0.2 mm |
Bruker APEXII diffractometer | 1419 reflections with I > 2σ(I) |
9407 measured reflections | Rint = 0.015 |
1535 independent reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.21 e Å−3 |
1535 reflections | Δρmin = −0.22 e Å−3 |
115 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.50000 | 0.50000 | 0.00000 | 0.0229 (1) | |
O1 | 0.41357 (11) | 0.27513 (16) | 0.00777 (7) | 0.0360 (4) | |
O1W | 0.62402 (10) | 0.39039 (16) | 0.05822 (8) | 0.0360 (4) | |
N1 | 0.43197 (11) | 0.57142 (18) | 0.11153 (8) | 0.0272 (4) | |
C1 | 0.35447 (17) | 0.2261 (3) | 0.07500 (12) | 0.0476 (7) | |
C2 | 0.40794 (17) | 0.2792 (2) | 0.15026 (11) | 0.0413 (6) | |
C3 | 0.40051 (14) | 0.4625 (2) | 0.16765 (10) | 0.0288 (5) | |
C4 | 0.36041 (17) | 0.5176 (2) | 0.23920 (11) | 0.0367 (6) | |
C5 | 0.35342 (16) | 0.6852 (3) | 0.25479 (11) | 0.0417 (6) | |
C6 | 0.38502 (15) | 0.7962 (2) | 0.19758 (12) | 0.0404 (6) | |
C7 | 0.42246 (14) | 0.7350 (2) | 0.12727 (11) | 0.0331 (6) | |
Cl | 0.34635 (4) | 0.01817 (5) | 0.40317 (3) | 0.0402 (2) | |
H1 | 0.3978 (18) | 0.211 (3) | −0.0294 (11) | 0.0540* | |
H1A | 0.34570 | 0.10570 | 0.07490 | 0.0570* | |
H1B | 0.28620 | 0.27680 | 0.07240 | 0.0570* | |
H1W | 0.6327 (17) | 0.2761 (13) | 0.0664 (13) | 0.0540* | |
H2A | 0.48060 | 0.24860 | 0.14680 | 0.0500* | |
H2B | 0.37800 | 0.21780 | 0.19420 | 0.0500* | |
H2W | 0.6813 (12) | 0.436 (2) | 0.0664 (14) | 0.0540* | |
H4 | 0.33820 | 0.44050 | 0.27680 | 0.0440* | |
H5 | 0.32780 | 0.72310 | 0.30310 | 0.0500* | |
H6 | 0.38110 | 0.91080 | 0.20640 | 0.0490* | |
H7 | 0.44230 | 0.81090 | 0.08840 | 0.0400* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0221 (2) | 0.0221 (2) | 0.0245 (2) | 0.0002 (1) | 0.0017 (1) | 0.0009 (1) |
O1 | 0.0429 (8) | 0.0315 (7) | 0.0337 (7) | −0.0128 (6) | 0.0066 (6) | −0.0041 (5) |
O1W | 0.0293 (7) | 0.0295 (7) | 0.0491 (8) | 0.0000 (5) | −0.0083 (6) | 0.0071 (6) |
N1 | 0.0259 (7) | 0.0276 (7) | 0.0280 (7) | 0.0020 (6) | 0.0025 (6) | −0.0007 (6) |
C1 | 0.0534 (13) | 0.0401 (11) | 0.0492 (12) | −0.0200 (10) | 0.0219 (10) | −0.0088 (9) |
C2 | 0.0564 (13) | 0.0310 (10) | 0.0365 (10) | −0.0006 (9) | 0.0159 (9) | 0.0067 (8) |
C3 | 0.0263 (9) | 0.0336 (9) | 0.0266 (9) | −0.0003 (7) | 0.0004 (7) | 0.0003 (7) |
C4 | 0.0353 (11) | 0.0479 (12) | 0.0270 (9) | −0.0029 (8) | 0.0034 (8) | −0.0003 (8) |
C5 | 0.0381 (11) | 0.0547 (12) | 0.0324 (10) | 0.0017 (10) | 0.0038 (8) | −0.0152 (9) |
C6 | 0.0395 (11) | 0.0354 (10) | 0.0463 (11) | 0.0033 (9) | 0.0010 (9) | −0.0134 (9) |
C7 | 0.0306 (10) | 0.0297 (9) | 0.0389 (10) | 0.0004 (7) | 0.0022 (8) | −0.0013 (7) |
Cl | 0.0376 (3) | 0.0269 (2) | 0.0561 (3) | −0.0017 (2) | −0.0020 (2) | 0.0015 (2) |
Co1—O1 | 2.1210 (13) | C2—C3 | 1.499 (2) |
Co1—O1W | 2.0715 (13) | C3—C4 | 1.386 (3) |
Co1—N1 | 2.1537 (14) | C4—C5 | 1.370 (3) |
Co1—O1i | 2.1210 (13) | C5—C6 | 1.374 (3) |
Co1—O1Wi | 2.0715 (13) | C6—C7 | 1.371 (3) |
Co1—N1i | 2.1537 (14) | C1—H1A | 0.9704 |
O1—C1 | 1.422 (2) | C1—H1B | 0.9701 |
O1—H1 | 0.84 (2) | C2—H2A | 0.9699 |
O1W—H2W | 0.835 (16) | C2—H2B | 0.9697 |
O1W—H1W | 0.932 (11) | C4—H4 | 0.9303 |
N1—C3 | 1.350 (2) | C5—H5 | 0.9305 |
N1—C7 | 1.342 (2) | C6—H6 | 0.9307 |
C1—C2 | 1.506 (3) | C7—H7 | 0.9300 |
O1—Co1—O1W | 90.95 (5) | N1—C3—C4 | 121.20 (15) |
O1—Co1—N1 | 87.56 (5) | C2—C3—C4 | 120.39 (15) |
O1—Co1—O1i | 180.00 | N1—C3—C2 | 118.40 (15) |
O1—Co1—O1Wi | 89.05 (5) | C3—C4—C5 | 120.24 (17) |
O1—Co1—N1i | 92.44 (5) | C4—C5—C6 | 118.61 (18) |
O1W—Co1—N1 | 90.70 (5) | C5—C6—C7 | 118.77 (16) |
O1i—Co1—O1W | 89.05 (5) | N1—C7—C6 | 123.51 (16) |
O1W—Co1—O1Wi | 180.00 | O1—C1—H1A | 109.58 |
O1W—Co1—N1i | 89.30 (5) | O1—C1—H1B | 109.54 |
O1i—Co1—N1 | 92.44 (5) | C2—C1—H1A | 109.58 |
O1Wi—Co1—N1 | 89.30 (5) | C2—C1—H1B | 109.59 |
N1—Co1—N1i | 180.00 | H1A—C1—H1B | 108.04 |
O1i—Co1—O1Wi | 90.95 (5) | C1—C2—H2A | 108.66 |
O1i—Co1—N1i | 87.56 (5) | C1—C2—H2B | 108.64 |
O1Wi—Co1—N1i | 90.70 (5) | C3—C2—H2A | 108.70 |
Co1—O1—C1 | 124.41 (12) | C3—C2—H2B | 108.72 |
C1—O1—H1 | 107.4 (15) | H2A—C2—H2B | 107.60 |
Co1—O1—H1 | 127.1 (15) | C3—C4—H4 | 119.87 |
H1W—O1W—H2W | 107.4 (17) | C5—C4—H4 | 119.89 |
Co1—O1W—H2W | 125.1 (12) | C4—C5—H5 | 120.72 |
Co1—O1W—H1W | 125.4 (13) | C6—C5—H5 | 120.67 |
C3—N1—C7 | 117.65 (14) | C5—C6—H6 | 120.60 |
Co1—N1—C7 | 117.99 (11) | C7—C6—H6 | 120.63 |
Co1—N1—C3 | 124.34 (11) | N1—C7—H7 | 118.22 |
O1—C1—C2 | 110.47 (17) | C6—C7—H7 | 118.27 |
C1—C2—C3 | 114.33 (16) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Clii | 0.84 (2) | 2.26 (2) | 3.0625 (13) | 162 (2) |
O1W—H1W···Cliii | 0.932 (11) | 2.145 (12) | 3.0738 (13) | 174.6 (19) |
O1W—H2W···Cliv | 0.835 (16) | 2.285 (16) | 3.1121 (14) | 170.4 (15) |
Symmetry codes: (ii) x, −y, z−1/2; (iii) −x+1, y, −z+1/2; (iv) x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Co(C7H9NO)2(H2O)2]Cl2 |
Mr | 412.17 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 293 |
a, b, c (Å) | 12.8911 (3), 8.0049 (2), 16.8757 (4) |
V (Å3) | 1741.44 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.31 |
Crystal size (mm) | 0.3 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9407, 1535, 1419 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.056, 1.04 |
No. of reflections | 1535 |
No. of parameters | 115 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.22 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POV-RAY (Persistence of Vision Team, 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cli | 0.84 (2) | 2.26 (2) | 3.0625 (13) | 162 (2) |
O1W—H1W···Clii | 0.932 (11) | 2.145 (12) | 3.0738 (13) | 174.6 (19) |
O1W—H2W···Cliii | 0.835 (16) | 2.285 (16) | 3.1121 (14) | 170.4 (15) |
Symmetry codes: (i) x, −y, z−1/2; (ii) −x+1, y, −z+1/2; (iii) x+1/2, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université de Constantine 1, Algeria. Thanks are due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie, Algeria) via the PNR program for financial support.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Boskovic, C., Brechin, E. K. & Christou, G. (2002). J. Am. Chem. Soc. 124, 3725–3736. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kong, L.-Q., Ju, X.-P. & Li, D.-C. (2009). Acta Cryst. E65, m1518. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mobin, S. M., Srivastava, A. K., Mathur, P. & Lahiri, G. K. (2010). Dalton Trans. 39, 1447–1449. Web of Science CSD CrossRef CAS PubMed Google Scholar
Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ . Google Scholar
Sanudo, E. C., Wernsdorfer, W. & Christou, G. (2003). Polyhedron, 22, 2267–2271. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine derivatives ligands have the potential to be used in the synthesis of supramolecular materials, particularly transition metal coordination polymers (Sanudo et al., 2003; Boskovic et al., 2002). A few complexes containing L (L =2 (2-hydroxyethyl)pyridine) have been studied for years, because this ligand has a versatile coordination activities and bridging function (Kong et al., 2009; Mobin et al., 2010). We report here the synthesis and crystal structure of the title compound.
The complex comprises two L (L = 2-(2-hydroxyethyl)pyridine) ligands, one CoII ion, two aqua ligands and uncoordinated Cl anions (Fig. 1). The coordination geometry around the Co center is octahedral with a CoN2O4 ligand set (Table 1). The bis L ligands coordinate to the Co(II) ions through the nitrogen atom of pyridine ring and the oxygen atom of hydroxyl group, creating a chelate ring. The octahedral geometries are completed by two trans aqua ligands at axial positions.
The complex cations are connected via O—H···Cl hydrogen bonds (Fig. 2), forming a centrosymmetric and a noncentrosymmetric rings, in two domensionel network, which can be described by the graph set R24(12) and R24(10), respectively (Bernstein et al.,1995). π-π stacking between the pyridine rings [centroid-centroid distance = 3.5810 (11) Å] is also present (Fig. 3).