metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m466-m467

catena-Poly[[aqua­bis­­(3-chloro­benzoato-κ2O,O′)cadmium]-μ-N,N-di­ethyl­nico­tin­amide-κ2N1:O]

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bAksaray University, Science Education Department, 68100, Aksaray, Turkey, cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 11 July 2013; accepted 16 July 2013; online 20 July 2013)

In the crystal of the title CdII polymeric complex, [Cd(C7H4ClO2)2(C10H14N2O)(H2O)]n, the CdII cation is chelated by two chloro­benzoate anions and coordinated by two N,N-di­­ethyl­nicotinamide (DENA) ligands and one water mol­ecule in a distorted NO6 penta­gonal–bipyramidal geometry. The CdII cations are bridged by the pyridine N atom and carbonyl O atom of the DENA ligand to form a polymeric chain running along the b axis. Inter­molecular O—H⋯O hydrogen bonds between coordinating water mol­ecules and carboxyl­ate groups link adjacent chains into layers parallel to the bc plane. ππ contacts between benzene rings [shortest centroid–centroid distance = 3.912 (2) Å] further stabilizes the crystal structure. In the mol­ecule, weak C—H⋯O hydrogen bonds occur between the pyridine ring and carboxyl­ate groups; the dihedral angles between the carboxyl­ate groups and adjacent benzene rings are 4.6 (3) and 12.8 (3)°, while the benzene rings are oriented at a dihedral angle of 1.89 (13)°.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For N,N-di­ethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Çaylak Delibaş et al. (2013[Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m191-m192.]); Greenaway et al. (1984[Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Hökelek et al. (1995[Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020-2023.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (2009a[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955-m956.],b[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328-m1329.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582-m1583.],d[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1416-m1417.],e[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009e). Acta Cryst. E65, m627-m628.],f[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009f). Acta Cryst. E65, m1037-m1038.],g[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009g). Acta Cryst. E65, m1365-m1366.]); Hökelek et al. (2011[Hökelek, T., Sağlam, E. G., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2011). Acta Cryst. E67, m28-m29.]); Necefoğlu et al. (2010a[Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334-m335.],b[Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010b). Acta Cryst. E66, m485-m486.]); Sertçelik et al. (2013[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290-m291.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C7H4ClO2)2(C10H14N2O)(H2O)]

  • Mr = 619.76

  • Monoclinic, C 2/c

  • a = 25.1809 (5) Å

  • b = 7.0161 (3) Å

  • c = 30.6755 (6) Å

  • β = 106.203 (3)°

  • V = 5204.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 296 K

  • 0.35 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.823, Tmax = 0.897

  • 100329 measured reflections

  • 6531 independent reflections

  • 6170 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.093

  • S = 1.35

  • 6531 reflections

  • 326 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.504 (3)
Cd1—O2 2.323 (3)
Cd1—O3 2.421 (3)
Cd1—O4 2.360 (3)
Cd1—O5 2.410 (3)
Cd1—O6 2.314 (3)
Cd1—N1 2.305 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H61⋯O2i 0.85 (4) 1.94 (4) 2.753 (5) 160 (4)
O6—H62⋯O4i 0.86 (4) 2.11 (4) 2.838 (4) 142 (5)
C15—H15⋯O1 0.93 2.52 3.181 (5) 128
C19—H19⋯O3 0.93 2.47 3.130 (5) 128
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The structures of some DENA and/or NA complexes of the Cu2+, Zn2+ and Co2+ ions, [Cu2(C6H5COO)4(C10H14N2O)2] (Hökelek et al., 1995); [Cu2(C8H7O2)4(C6H6N2O)2] (Necefoğlu et al., 2010a); [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a); [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b); [Zn2(C9H10NO2)4(C10H14N2O)2] (Hökelek et al., 2009c); [Zn2(C8H7O2)4(C10H14N2O)2] (Necefoğlu et al., 2010b) and [Co2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2011) have also been determined. In these structures, the benzoate ion acts as a bidentate ligand.

The asymmetric unit of the title CdII complex, [Cd(CB)2(DENA)(H2O)]n, contains two 3-chlorobenzoate (CB), one N,N-diethylnicotinamide (DENA) ligands and one coordinated water molecule; the CB ions act as bidentate ligands (Fig. 1). The coordination number of the CdII ion is six. Intramolecular C—H···O hydrogen bonds (Fig. 1 and Table 2) link the DENA ligand to the carboxyl groups. The O1—Cd1—O2 and O3—Cd1—O4 angles are 53.75 (10)° and 54.23 (9) °, respectively. The corresponding O—M—O (where M is a , metal) angles are 53.50 (14)° in [Cu2(C8H5O3)4(C6H6N2O)4] (Sertçelik et al., 2013), 53.45 (4)° and 51.97 (4)° in [Cd(C7H5O3)2(C6H6NO)(H2O)2].2(H2O) (Çaylak Delibaş et al., 2013), 52.91 (4)° and 53.96 (4)° in [Cd(C8H5O3)2(C6H6N2O)2(H2O)].H2O (Hökelek et al., 2009d), 60.70 (4)° in [Co(C9H10NO2)2(C6H6N2O)(H2O)2] (Hökelek et al., 2009e), 58.45 (9)° in [Mn(C9H10NO2)2- (C6H6N2O)(H2O)2] (Hökelek et al., 2009f), 60.03 (6)° in [Zn(C8H8NO2)2(C6H6N2O)2].H2O (Hökelek et al., 2009g), 58.3 (3)° in [Zn2(C10H14N2O)2(C7H5O3)4].2H2O (Hökelek & Necefoğlu, 1996) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984). The dihedral angles between the planar carboxylate groups [(O1/O2/C1) and (O3/O4/C8)] and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 4.56 (28)° and 12.84 (26)°, respectively, while that between rings A, B and C (N1/C15–C19) are A/B = 1.89 (13), A/C = 34.83 (13) and B/C = 35.13 (11) °.

In the crystal, the CdII ions [Cd1···Cd1a = 7.0161 (5) Å; symmetry code: (a) x, y - 1, z] are bridged by the N and O atoms of the DENA ligands forming polymeric chains running along the b-axis direction, where the coordination number of each CdII atom is seven within a CdO6N donor set (Fig. 2). The average Cd—O distance is 2.389 (3) Å (Table 1). The Cd atom lies 0.0972 (3) Å below and 0.0127 (3) Å above of the carboxylate groups [(O1/O2/C1) and (O3/O4/C8)], respectively. Strong intermolecular O—H···O hydrogen bonds (Table 2) between water molecules and carboxylate groups link the adjacent chains into layers parallel to the bc plane. π···π contacts between the benzene rings Cg1—Cg2i, [symmetry code: (i) 1 - x, 2 - y, - z, where Cg1 and Cg2 are the centroids of the rings A (C2—C7) and B (C9—C14), respectively] may further stabilize the structure, with centroid-centroid distance of 3.912 (2) Å.

Related literature top

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Çaylak Delibaş et al. (2013); Greenaway et al. (1984); Hökelek et al. (1995); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d,e,f,g); Hökelek et al. (2011); Necefoğlu et al. (2010a,b); Sertçelik et al. (2013).

Experimental top

The title compound was prepared by the reaction of CdSO4.8H2O (1.283 g, 5 mmol) in H2O (100 ml) and diethylnicotinamide (1.780 g, 10 mmol) in H2O (10 ml) with sodium 3-chlorobenzoate (1.790 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for ten days, giving colorless single crystals.

Refinement top

Atoms H61 and H62 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the polymeric chain of the title compound [symmetry codes: (a) x, y - 1, z; (b) x, 1 + y, z]. Hydrogen atoms have been omitted for clarity.
catena-Poly[[aquabis(3-chlorobenzoato-κ2O,O')cadmium]-µ-N,N-diethylnicotinamide-κ2N1:O] top
Crystal data top
[Cd(C7H4ClO2)2(C10H14N2O)(H2O)]F(000) = 2496
Mr = 619.76Dx = 1.582 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 9713 reflections
a = 25.1809 (5) Åθ = 2.5–28.4°
b = 7.0161 (3) ŵ = 1.09 mm1
c = 30.6755 (6) ÅT = 296 K
β = 106.203 (3)°Rod-shaped, colourless
V = 5204.2 (3) Å30.35 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker SMART BREEZE CCD
diffractometer
6531 independent reflections
Radiation source: fine-focus sealed tube6170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 3333
Tmin = 0.823, Tmax = 0.897k = 99
100329 measured reflectionsl = 4140
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.35 w = 1/[σ2(Fo2) + (0.0097P)2 + 22.0143P]
where P = (Fo2 + 2Fc2)/3
6531 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.77 e Å3
4 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Cd(C7H4ClO2)2(C10H14N2O)(H2O)]V = 5204.2 (3) Å3
Mr = 619.76Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.1809 (5) ŵ = 1.09 mm1
b = 7.0161 (3) ÅT = 296 K
c = 30.6755 (6) Å0.35 × 0.15 × 0.10 mm
β = 106.203 (3)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
6531 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
6170 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.897Rint = 0.026
100329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.35 w = 1/[σ2(Fo2) + (0.0097P)2 + 22.0143P]
where P = (Fo2 + 2Fc2)/3
6531 reflectionsΔρmax = 0.77 e Å3
326 parametersΔρmin = 1.02 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.430006 (10)0.86384 (4)0.032753 (9)0.03649 (8)
Cl10.67865 (6)0.6435 (2)0.24132 (4)0.0797 (4)
Cl20.20678 (5)1.2006 (2)0.17853 (4)0.0741 (4)
O10.50773 (11)0.7328 (5)0.09538 (10)0.0534 (7)
O20.50591 (11)1.0331 (5)0.07578 (9)0.0533 (7)
O30.35198 (12)0.9354 (4)0.03179 (10)0.0547 (8)
O40.41552 (11)1.1524 (4)0.00840 (9)0.0500 (7)
O50.39003 (12)0.9782 (4)0.09065 (10)0.0498 (7)
O60.47410 (12)0.7107 (5)0.01422 (11)0.0485 (7)
H610.472 (2)0.785 (7)0.0367 (12)0.083 (19)*
H620.5081 (12)0.709 (10)0.0016 (18)0.13 (3)*
N10.38036 (12)0.6005 (4)0.04343 (10)0.0349 (6)
N20.42885 (14)1.1630 (5)0.15138 (11)0.0453 (8)
C10.52769 (14)0.8941 (6)0.10063 (12)0.0420 (9)
C20.57856 (13)0.9332 (6)0.13935 (12)0.0368 (8)
C30.60309 (14)0.7865 (6)0.16792 (12)0.0410 (8)
H30.58920.66310.16270.049*
C40.64831 (15)0.8243 (6)0.20430 (13)0.0451 (9)
C50.66979 (17)1.0049 (8)0.21233 (15)0.0575 (12)
H50.70041.02870.23690.069*
C60.6455 (2)1.1492 (8)0.18368 (16)0.0648 (13)
H60.65971.27210.18880.078*
C70.59975 (17)1.1136 (6)0.14707 (15)0.0516 (10)
H70.58351.21250.12780.062*
C80.37094 (14)1.0967 (5)0.03489 (11)0.0367 (8)
C90.33859 (14)1.2296 (5)0.07074 (11)0.0328 (7)
C100.29377 (14)1.1625 (5)0.10465 (11)0.0364 (7)
H100.28471.03370.10600.044*
C110.26293 (16)1.2868 (6)0.13623 (13)0.0458 (9)
C120.2747 (2)1.4770 (7)0.13478 (15)0.0583 (12)
H120.25301.55990.15610.070*
C130.3196 (2)1.5445 (6)0.10090 (16)0.0606 (12)
H130.32801.67370.09940.073*
C140.35155 (18)1.4214 (6)0.06956 (13)0.0465 (9)
H140.38211.46730.04740.056*
C150.40358 (14)0.4560 (5)0.07000 (12)0.0363 (7)
H150.44180.45520.08220.044*
C160.37313 (15)0.3070 (5)0.08017 (12)0.0346 (7)
C170.31657 (15)0.3072 (6)0.06121 (13)0.0442 (9)
H170.29510.20650.06650.053*
C180.29234 (16)0.4580 (7)0.03445 (15)0.0523 (10)
H180.25420.46290.02200.063*
C190.32558 (15)0.6014 (6)0.02650 (13)0.0442 (9)
H190.30910.70370.00850.053*
C200.39878 (15)1.1380 (5)0.10824 (13)0.0408 (8)
C210.43608 (18)1.3440 (7)0.17587 (14)0.0530 (10)
H21A0.42771.32600.20460.064*
H21B0.41011.43620.15830.064*
C220.4944 (2)1.4228 (8)0.18486 (17)0.0724 (14)
H22A0.49721.54080.20120.109*
H22B0.50261.44460.15650.109*
H22C0.52031.33280.20260.109*
C230.4519 (2)0.9923 (7)0.17814 (16)0.0606 (12)
H23A0.48631.02610.20040.073*
H23B0.46010.89690.15810.073*
C240.4129 (3)0.9093 (9)0.2021 (2)0.097 (2)
H24A0.43060.80520.22100.146*
H24B0.38020.86410.18020.146*
H24C0.40291.00560.22070.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03456 (13)0.03444 (13)0.03743 (13)0.00848 (11)0.00502 (9)0.00642 (11)
Cl10.0728 (8)0.0926 (10)0.0612 (7)0.0290 (8)0.0022 (6)0.0143 (7)
Cl20.0523 (6)0.1018 (11)0.0533 (6)0.0002 (7)0.0100 (5)0.0020 (7)
O10.0415 (15)0.0632 (19)0.0483 (16)0.0173 (14)0.0008 (12)0.0009 (14)
O20.0414 (15)0.070 (2)0.0435 (15)0.0062 (14)0.0043 (12)0.0154 (15)
O30.0528 (16)0.0446 (16)0.0570 (17)0.0091 (13)0.0005 (13)0.0198 (14)
O40.0392 (14)0.0561 (17)0.0474 (15)0.0072 (13)0.0002 (11)0.0094 (14)
O50.0609 (17)0.0322 (14)0.0653 (18)0.0061 (13)0.0322 (15)0.0015 (13)
O60.0440 (16)0.0526 (17)0.0512 (17)0.0086 (13)0.0173 (13)0.0004 (14)
N10.0369 (14)0.0292 (15)0.0384 (15)0.0081 (12)0.0103 (12)0.0011 (12)
N20.0537 (19)0.0402 (18)0.0457 (18)0.0070 (15)0.0200 (15)0.0106 (14)
C10.0291 (16)0.063 (3)0.0349 (18)0.0060 (17)0.0107 (14)0.0010 (18)
C20.0260 (15)0.049 (2)0.0356 (17)0.0057 (14)0.0095 (13)0.0025 (15)
C30.0344 (17)0.048 (2)0.0401 (19)0.0016 (16)0.0102 (15)0.0038 (17)
C40.0351 (18)0.060 (3)0.0383 (19)0.0069 (17)0.0074 (15)0.0016 (18)
C50.041 (2)0.080 (3)0.045 (2)0.013 (2)0.0015 (18)0.014 (2)
C60.062 (3)0.059 (3)0.068 (3)0.023 (2)0.008 (2)0.014 (2)
C70.049 (2)0.046 (2)0.058 (2)0.0066 (19)0.0110 (19)0.002 (2)
C80.0339 (17)0.045 (2)0.0324 (17)0.0001 (15)0.0108 (13)0.0058 (15)
C90.0377 (17)0.0326 (17)0.0300 (16)0.0011 (14)0.0128 (13)0.0032 (13)
C100.0373 (17)0.0345 (18)0.0376 (18)0.0006 (14)0.0109 (14)0.0006 (14)
C110.041 (2)0.060 (3)0.0341 (19)0.0080 (18)0.0072 (15)0.0051 (18)
C120.070 (3)0.053 (3)0.048 (2)0.018 (2)0.011 (2)0.018 (2)
C130.085 (3)0.033 (2)0.061 (3)0.003 (2)0.016 (2)0.007 (2)
C140.059 (2)0.037 (2)0.040 (2)0.0086 (18)0.0097 (17)0.0011 (16)
C150.0350 (17)0.0350 (18)0.0388 (18)0.0089 (14)0.0102 (14)0.0001 (15)
C160.0413 (18)0.0294 (16)0.0366 (17)0.0043 (14)0.0168 (14)0.0004 (14)
C170.0406 (19)0.041 (2)0.054 (2)0.0147 (16)0.0187 (17)0.0038 (17)
C180.0332 (18)0.060 (3)0.061 (3)0.0097 (18)0.0097 (17)0.012 (2)
C190.0403 (19)0.039 (2)0.052 (2)0.0046 (16)0.0100 (16)0.0093 (17)
C200.0464 (19)0.0345 (18)0.049 (2)0.0065 (16)0.0265 (17)0.0047 (16)
C210.061 (3)0.055 (3)0.043 (2)0.009 (2)0.0142 (19)0.0029 (19)
C220.070 (3)0.079 (4)0.062 (3)0.010 (3)0.010 (2)0.000 (3)
C230.069 (3)0.056 (3)0.065 (3)0.022 (2)0.032 (2)0.024 (2)
C240.116 (5)0.085 (4)0.117 (5)0.037 (4)0.076 (4)0.059 (4)
Geometric parameters (Å, º) top
Cd1—O12.504 (3)C9—C101.386 (5)
Cd1—O22.323 (3)C9—C141.383 (5)
Cd1—O32.421 (3)C10—C111.372 (5)
Cd1—O42.360 (3)C10—H100.9300
Cd1—O52.410 (3)C11—C121.365 (6)
Cd1—O62.314 (3)C12—C131.388 (7)
Cd1—N12.305 (3)C12—H120.9300
Cd1—C12.752 (4)C13—H130.9300
Cd1—C82.732 (3)C14—C131.373 (6)
Cl1—C41.732 (4)C14—H140.9300
Cl2—C111.739 (4)C15—C161.383 (5)
O1—C11.230 (5)C15—H150.9300
O3—C81.242 (4)C16—C171.380 (5)
O4—C81.251 (4)C16—C20i1.502 (5)
O6—H610.856 (17)C17—C181.373 (6)
O6—H620.86 (2)C17—H170.9300
O5—C201.237 (5)C18—H180.9300
N1—C151.330 (4)C19—C181.374 (5)
N1—C191.331 (5)C19—H190.9300
N2—C211.461 (5)C20—N21.340 (5)
N2—C231.476 (5)C20—C16ii1.502 (5)
C1—O21.265 (5)C21—C221.521 (6)
C2—C11.509 (5)C21—H21A0.9700
C2—C31.381 (5)C21—H21B0.9700
C2—C71.368 (6)C22—H22A0.9600
C3—C41.380 (5)C22—H22B0.9600
C3—H30.9300C22—H22C0.9600
C4—C51.372 (6)C23—C241.500 (6)
C5—C61.368 (7)C23—H23A0.9700
C5—H50.9300C23—H23B0.9700
C6—H60.9300C24—H24A0.9600
C7—C61.389 (6)C24—H24B0.9600
C7—H70.9300C24—H24C0.9600
C9—C81.497 (5)
O1—Cd1—C126.54 (11)C7—C6—H6119.8
O1—Cd1—C8161.03 (10)C2—C7—C6120.1 (4)
O2—Cd1—O153.75 (10)C2—C7—H7119.9
O2—Cd1—O3135.22 (10)C6—C7—H7119.9
O2—Cd1—O481.10 (10)O3—C8—Cd162.38 (19)
O2—Cd1—O581.83 (10)O3—C8—O4122.0 (3)
O2—Cd1—C127.21 (11)O3—C8—C9118.8 (3)
O2—Cd1—C8108.24 (11)O4—C8—Cd159.57 (19)
O3—Cd1—O1170.39 (10)O4—C8—C9119.2 (3)
O3—Cd1—C1162.33 (11)C9—C8—Cd1178.0 (3)
O3—Cd1—C827.04 (10)C10—C9—C8120.1 (3)
O4—Cd1—O1134.15 (9)C14—C9—C8120.7 (3)
O4—Cd1—O354.23 (9)C14—C9—C10119.1 (3)
O4—Cd1—O594.28 (10)C9—C10—H10120.1
O4—Cd1—C1108.10 (11)C11—C10—C9119.7 (4)
O4—Cd1—C827.19 (10)C11—C10—H10120.1
O5—Cd1—O187.40 (10)C10—C11—Cl2119.2 (3)
O5—Cd1—O397.07 (11)C12—C11—C10121.6 (4)
O5—Cd1—C183.43 (10)C12—C11—Cl2119.2 (3)
O5—Cd1—C896.30 (10)C11—C12—C13118.8 (4)
O6—Cd1—O184.21 (11)C11—C12—H12120.6
O6—Cd1—O297.43 (11)C13—C12—H12120.6
O6—Cd1—O390.46 (11)C12—C13—H13119.8
O6—Cd1—O495.42 (11)C14—C13—C12120.4 (4)
O6—Cd1—O5170.03 (11)C14—C13—H13119.8
O6—Cd1—C191.39 (11)C9—C14—H14119.8
O6—Cd1—C893.37 (11)C13—C14—C9120.4 (4)
N1—Cd1—O186.30 (10)C13—C14—H14119.8
N1—Cd1—O2136.21 (10)N1—C15—C16122.6 (3)
N1—Cd1—O386.21 (10)N1—C15—H15118.7
N1—Cd1—O4139.00 (10)C16—C15—H15118.7
N1—Cd1—O578.90 (10)C15—C16—C20i123.4 (3)
N1—Cd1—O695.16 (10)C17—C16—C15118.4 (3)
N1—Cd1—C1111.11 (11)C17—C16—C20i118.1 (3)
N1—Cd1—C8112.67 (10)C16—C17—H17120.4
C8—Cd1—C1135.29 (12)C18—C17—C16119.1 (3)
C1—O1—Cd188.1 (2)C18—C17—H17120.4
C1—O2—Cd195.6 (2)C17—C18—C19118.7 (4)
C8—O3—Cd190.6 (2)C17—C18—H18120.7
C8—O4—Cd193.2 (2)C19—C18—H18120.7
C20—O5—Cd1124.3 (2)N1—C19—C18122.9 (4)
Cd1—O6—H61107 (4)N1—C19—H19118.5
Cd1—O6—H62103 (5)C18—C19—H19118.5
H61—O6—H62107 (4)O5—C20—N2122.2 (4)
C15—N1—Cd1122.3 (2)O5—C20—C16ii118.0 (3)
C15—N1—C19118.2 (3)N2—C20—C16ii119.8 (3)
C19—N1—Cd1119.0 (2)N2—C21—C22112.6 (4)
C20—N2—C21125.2 (3)N2—C21—H21A109.1
C20—N2—C23118.0 (4)N2—C21—H21B109.1
C21—N2—C23116.5 (3)C22—C21—H21A109.1
O1—C1—Cd165.4 (2)C22—C21—H21B109.1
O1—C1—O2122.5 (3)H21A—C21—H21B107.8
O1—C1—C2119.7 (4)C21—C22—H22A109.5
O2—C1—Cd157.16 (19)C21—C22—H22B109.5
O2—C1—C2117.7 (4)C21—C22—H22C109.5
C2—C1—Cd1173.1 (3)H22A—C22—H22B109.5
C3—C2—C1119.7 (3)H22A—C22—H22C109.5
C7—C2—C1120.6 (4)H22B—C22—H22C109.5
C7—C2—C3119.7 (3)N2—C23—C24112.3 (4)
C2—C3—H3120.3N2—C23—H23A109.2
C4—C3—C2119.5 (4)N2—C23—H23B109.2
C4—C3—H3120.3C24—C23—H23A109.2
C3—C4—Cl1120.2 (3)C24—C23—H23B109.2
C5—C4—Cl1118.6 (3)H23A—C23—H23B107.9
C5—C4—C3121.2 (4)C23—C24—H24A109.5
C4—C5—H5120.5C23—C24—H24B109.5
C6—C5—C4119.0 (4)C23—C24—H24C109.5
C6—C5—H5120.5H24A—C24—H24B109.5
C5—C6—C7120.5 (4)H24A—C24—H24C109.5
C5—C6—H6119.8H24B—C24—H24C109.5
O2—Cd1—O1—C11.3 (2)Cd1—O5—C20—N2109.6 (3)
O4—Cd1—O1—C113.0 (3)Cd1—O5—C20—C16ii72.2 (4)
O5—Cd1—O1—C180.5 (2)C15—N1—Cd1—O19.4 (3)
O6—Cd1—O1—C1104.9 (2)C15—N1—Cd1—O231.9 (3)
N1—Cd1—O1—C1159.5 (2)C15—N1—Cd1—O3164.6 (3)
C8—Cd1—O1—C121.4 (5)C15—N1—Cd1—O4178.8 (2)
O1—Cd1—O2—C11.3 (2)C15—N1—Cd1—O597.5 (3)
O3—Cd1—O2—C1176.7 (2)C15—N1—Cd1—O674.4 (3)
O4—Cd1—O2—C1172.8 (2)C15—N1—Cd1—C119.0 (3)
O5—Cd1—O2—C191.5 (2)C15—N1—Cd1—C8170.3 (3)
O6—Cd1—O2—C178.4 (2)C19—N1—Cd1—O1163.1 (3)
N1—Cd1—O2—C127.0 (3)C19—N1—Cd1—O2140.6 (3)
C8—Cd1—O2—C1174.5 (2)C19—N1—Cd1—O322.9 (3)
O2—Cd1—O3—C84.5 (3)C19—N1—Cd1—O48.6 (4)
O4—Cd1—O3—C80.2 (2)C19—N1—Cd1—O575.1 (3)
O5—Cd1—O3—C890.0 (2)C19—N1—Cd1—O6113.0 (3)
O6—Cd1—O3—C896.5 (2)C19—N1—Cd1—C1153.5 (3)
N1—Cd1—O3—C8168.3 (2)C19—N1—Cd1—C817.2 (3)
C1—Cd1—O3—C80.5 (5)Cd1—N1—C15—C16173.3 (3)
O1—Cd1—O4—C8174.0 (2)C19—N1—C15—C160.7 (5)
O2—Cd1—O4—C8176.5 (2)Cd1—N1—C19—C18174.4 (3)
O3—Cd1—O4—C80.2 (2)C15—N1—C19—C181.5 (6)
O5—Cd1—O4—C895.5 (2)C20—N2—C21—C22109.8 (5)
O6—Cd1—O4—C886.8 (2)C23—N2—C21—C2276.9 (5)
N1—Cd1—O4—C817.5 (3)C20—N2—C23—C2489.3 (5)
C1—Cd1—O4—C8179.9 (2)C21—N2—C23—C2484.5 (6)
O1—Cd1—C1—O2177.7 (4)O1—C1—O2—Cd12.4 (4)
O2—Cd1—C1—O1177.7 (4)C2—C1—O2—Cd1174.6 (3)
O3—Cd1—C1—O1170.0 (3)C3—C2—C1—O11.6 (5)
O3—Cd1—C1—O27.8 (5)C3—C2—C1—O2178.7 (3)
O4—Cd1—C1—O1170.3 (2)C7—C2—C1—O1176.8 (4)
O4—Cd1—C1—O27.5 (2)C7—C2—C1—O20.4 (5)
O5—Cd1—C1—O197.4 (2)C1—C2—C3—C4177.5 (3)
O5—Cd1—C1—O284.9 (2)C7—C2—C3—C40.9 (6)
O6—Cd1—C1—O174.1 (2)C1—C2—C7—C6177.9 (4)
O6—Cd1—C1—O2103.6 (2)C3—C2—C7—C60.5 (6)
N1—Cd1—C1—O122.0 (3)C2—C3—C4—Cl1178.4 (3)
N1—Cd1—C1—O2160.3 (2)C2—C3—C4—C50.8 (6)
C8—Cd1—C1—O1170.3 (2)Cl1—C4—C5—C6178.9 (4)
C8—Cd1—C1—O27.4 (3)C3—C4—C5—C60.3 (7)
O1—Cd1—C8—O3166.4 (3)C4—C5—C6—C70.1 (7)
O1—Cd1—C8—O413.3 (5)C2—C7—C6—C50.0 (7)
O2—Cd1—C8—O3176.6 (2)C10—C9—C8—O311.4 (5)
O2—Cd1—C8—O43.7 (2)C10—C9—C8—O4170.1 (3)
O3—Cd1—C8—O4179.7 (4)C14—C9—C8—O3166.1 (4)
O4—Cd1—C8—O3179.7 (4)C14—C9—C8—O412.4 (5)
O5—Cd1—C8—O393.2 (2)C8—C9—C10—C11177.2 (3)
O5—Cd1—C8—O487.1 (2)C14—C9—C10—C110.3 (5)
O6—Cd1—C8—O384.4 (2)C8—C9—C14—C13175.9 (4)
O6—Cd1—C8—O495.3 (2)C10—C9—C14—C131.6 (6)
N1—Cd1—C8—O312.6 (3)C9—C10—C11—Cl2179.9 (3)
N1—Cd1—C8—O4167.7 (2)C9—C10—C11—C121.1 (6)
C1—Cd1—C8—O3179.8 (2)C10—C11—C12—C131.1 (7)
C1—Cd1—C8—O40.1 (3)Cl2—C11—C12—C13180.0 (4)
Cd1—O1—C1—O22.3 (4)C11—C12—C13—C140.2 (7)
Cd1—O1—C1—C2174.8 (3)C9—C14—C13—C121.6 (7)
Cd1—O3—C8—O40.3 (4)N1—C15—C16—C171.3 (5)
Cd1—O3—C8—C9178.2 (3)N1—C15—C16—C20i176.9 (3)
Cd1—O4—C8—O30.3 (4)C15—C16—C17—C182.4 (6)
Cd1—O4—C8—C9178.1 (3)C20i—C16—C17—C18178.4 (4)
C20—O5—Cd1—O191.2 (3)C16—C17—C18—C191.7 (6)
C20—O5—Cd1—O237.5 (3)N1—C19—C18—C170.3 (7)
C20—O5—Cd1—O397.3 (3)O5—C20—N2—C21173.2 (4)
C20—O5—Cd1—O442.9 (3)O5—C20—N2—C230.0 (5)
C20—O5—Cd1—N1178.0 (3)C16ii—C20—N2—C215.0 (5)
C20—O5—Cd1—C164.9 (3)C16ii—C20—N2—C23178.2 (3)
C20—O5—Cd1—C870.1 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H61···O2iii0.85 (4)1.94 (4)2.753 (5)160 (4)
O6—H62···O4iii0.86 (4)2.11 (4)2.838 (4)142 (5)
C15—H15···O10.932.523.181 (5)128
C19—H19···O30.932.473.130 (5)128
Symmetry code: (iii) x+1, y+2, z.
Selected bond lengths (Å) top
Cd1—O12.504 (3)Cd1—O52.410 (3)
Cd1—O22.323 (3)Cd1—O62.314 (3)
Cd1—O32.421 (3)Cd1—N12.305 (3)
Cd1—O42.360 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H61···O2i0.85 (4)1.94 (4)2.753 (5)160 (4)
O6—H62···O4i0.86 (4)2.11 (4)2.838 (4)142 (5)
C15—H15···O10.932.523.181 (5)128
C19—H19···O30.932.473.130 (5)128
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m191–m192.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1582–m1583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009e). Acta Cryst. E65, m627–m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009f). Acta Cryst. E65, m1037–m1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009g). Acta Cryst. E65, m1365–m1366.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Sağlam, E. G., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2011). Acta Cryst. E67, m28–m29.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955–m956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328–m1329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1416–m1417.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334–m335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010b). Acta Cryst. E66, m485–m486.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290–m291.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages m466-m467
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds