organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1342-o1343

N′-{(E)-[5-(Hy­dr­oxy­meth­yl)furan-2-yl]methyl­­idene}pyridine-4-carbohydrazide dihydrate

aDepartment of Chemistry and Research Centre, PRNSS College, Mattanur 670 702, Kannur, Kerala, India, bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, and cDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India
*Correspondence e-mail: eesans@yahoo.com

(Received 30 June 2013; accepted 20 July 2013; online 27 July 2013)

In the title compound, C12H11N3O3·2H2O, the dihedral angle formed by the planes of the pyridine and the furan rings of the organic carbohydrazide mol­ecule is 4.66 (7)°. In the crystal, these mol­ecules form stacks along the b-axis direction, neighbouring mol­ecules within each stack being related by inversion and the shortest distance between the centroids of the pyridine and furan rings being 3.714 (1) Å. Mol­ecules from neighboring stacks are linked by pairs of N—H⋯O hydrogen bonds. The water mol­ecules fill the channels between the stacks being linked by O—H⋯O hydrogen bonds into helices along [010]. Besides this, water mol­ecules are involved in O—H⋯N and O—H⋯O hydrogen bonds with the carbohydrazide mol­ecules, thus forming a three-dimensional network, augmented by weak C—H⋯O interactions.

Related literature

For biological properties of carbohydrazide and its derivatives, see: Rollas & Kucukguzel (2007[Rollas, S. & Kucukguzel, S. G. (2007). Molecules, 12, 1910-1939.]); Bakir & Brown (2002[Bakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129-136.]). For the synthesis of related compounds, see: Sreeja & Kurup (2005[Sreeja, P. B. & Kurup, M. R. P. (2005). Spectrochim. Acta Part A, 61, 331-336.]). For related structures, see: Nair et al. (2012[Nair, Y., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2709.]); Reshma et al. (2012[Reshma, P. R., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2785.]); Prasanna et al. (2013[Prasanna, M. K., Sithambaresan, M., Pradeepkumar, K. & Kurup, M. R. P. (2013). Acta Cryst. E69, o881.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O3·2H2O

  • Mr = 281.27

  • Monoclinic, P 21 /c

  • a = 10.7020 (14) Å

  • b = 7.0263 (8) Å

  • c = 18.024 (3) Å

  • β = 106.252 (7)°

  • V = 1301.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.50 × 0.25 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.972

  • 9681 measured reflections

  • 3139 independent reflections

  • 2308 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.114

  • S = 1.03

  • 3139 reflections

  • 206 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2S—H2A⋯N3 0.85 (2) 2.49 (2) 3.2272 (17) 146 (2)
O2S—H2A⋯O1 0.85 (2) 2.22 (2) 2.9648 (15) 146 (2)
O3—H3′⋯O1Si 0.89 (2) 1.90 (2) 2.7937 (16) 174.9 (18)
O2S—H2B⋯O1Sii 0.86 (2) 2.06 (2) 2.9145 (18) 171 (2)
O1S—H1B⋯O2Siii 0.87 (2) 1.94 (2) 2.7924 (17) 167 (2)
N2—H2′⋯O3iv 0.876 (18) 2.024 (18) 2.8485 (16) 156.3 (16)
O1S—H1A⋯N1 0.87 (2) 2.03 (2) 2.8501 (16) 157 (2)
C4—H4⋯O3iv 0.93 2.50 3.3897 (18) 160
C12—H12B⋯O1v 0.97 2.43 3.3621 (19) 162
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+2, -z+2; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Heterocyclic carbohydrazides are compounds with a wide spectrum of biological and analytical applications. They form stable metal chelates which find applications in molecular sensing (Bakir & Brown, 2002). The title compound is a derivative of isoniazid which is one of the first line drug used in the treatment of tuberculosis. A number of hydrazones derived from isoniazid were reported to be active antitubercular agents and were found to be less toxic than isoniazid (Rollas & Kucukguzel, 2007).

The compound crystallizes in monoclinic P21/c space group. The molecule exists in a E configuration with respect to the C7=N3 bond, typical of such kind of compounds (Reshma et al., 2012), with the C8—C7—N3—N2 torsion angle of 178.04 (11)° (Fig 1). The N3—N2—C6—O1 torsion angle of -2.72 (18)° indicates the cis configuration of the O1 atom with respect to the hydrazine nitrogen atom N3 (Nair et al., 2012). C7N3 [1.267 (3) Å] and C6O1 [1.217 (8) Å] bond distances are very close to the formal double CN and CO bond lengths (Prasanna, et al., 2013) confirming that the carbohydrazide exists in solid state as an amido tautomer.

Seven classical hydrogen bonds are present in the crystal (Fig. 2). One of the nitrogen atoms of pyridine-4-carbohydrazide molecule is involved in classical intermolecular hydrogen bond of the N—H···O type with oxygen atom of the hydroxymethyl group of the neighboring molecule with a D···A distance of 2.8483 (16) Å. There are two hydrogen bonds of the O—H···O type between the two water molecules: O2S—H2B···O1S and O1S—H1B···O2S with D···A distances of 2.9146 (18) Å and 2.7923 (17) Å, respectively. Each water molecule is involved in other O—H···O and O—H···N hydrogen bonds: O2S—H2A···O1 and O3—H3'···O1S with D···A distances of 2.9647 (15) Å and 2.7937 (16) Å and O2S—H2A···N3 and O1S—H1A···N1 with D···A distances of 3.2272 (17) Å and 2.8501 (16) Å, respectively. Additionally, there are non-classical intermolecular C—H···O hydrogen bonds between the hydrogen atoms attached to C4 and C12 carbon atoms and the O3 and O1 atoms of the neighboring molecule with D···A distances of 3.390 (2) Å and 3.362 (2) Å, respectively. These interactions are augmented by weak π···π interactions which connect the molecules with a centroid-centroid distances of 3.714 (1) Å and 3.760 (1) Å (Fig. 3). The packing diagram showing the molecular assembly of the title compound along the b axis is shown in Fig. 4.

Related literature top

For biological properties of carbohydrazide and its derivatives, see: Rollas & Kucukguzel (2007); Bakir & Brown (2002). For the synthesis of related compounds, see: Sreeja & Kurup (2005). For related structures, see: Nair et al. (2012); Reshma et al. (2012); Prasanna et al. (2013).

Experimental top

The title compound was prepared by adapting a reported procedure (Sreeja & Kurup, 2005). To a warm methanolic solution of 5-(hydroxymethyl)furan-2-carbaldehyde (0.126 g, 1 mmol), a methanolic solution of pyridine-4-carbohydrazide (0.137 g, 1 mmol) was added and the resulting solution was stirred well with slight heating for 75 minutes. A colorless compound formed was filtered off, washed with water, ethanol and finally with ether and dried. Single crystals suitable for X-ray diffraction studies were obtained by recrystallization from a mixture of methanol, ethanol and DMF.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso(H)=1.2Ueq(carrier) or 1.5Ueq (methyl C). The H atoms of the water molecule were located from difference maps and restrained using DFIX and DANG instructions. Omitted owing to disagreement was the reflection (1 1 0).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids for the non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding in the crystal of the title compound.
[Figure 3] Fig. 3. The π···π stacking interactions in the title compound.
[Figure 4] Fig. 4. A view of the unit cell along the b axis.
N'-{(E)-[5-(Hydroxymethyl)furan-2-yl]methylidene}pyridine-4-carbohydrazide dihydrate top
Crystal data top
C12H11N3O3·2H2OF(000) = 592
Mr = 281.27Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3182 reflections
a = 10.7020 (14) Åθ = 2.4–28.2°
b = 7.0263 (8) ŵ = 0.11 mm1
c = 18.024 (3) ÅT = 296 K
β = 106.252 (7)°Block, colorless
V = 1301.2 (3) Å30.50 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3139 independent reflections
Radiation source: fine-focus sealed tube2308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.33 pixels mm-1θmax = 28.0°, θmin = 3.1°
ω and ϕ scanh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 99
Tmin = 0.946, Tmax = 0.972l = 2316
9681 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.1806P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3139 reflectionsΔρmax = 0.23 e Å3
206 parametersΔρmin = 0.19 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0056 (14)
Crystal data top
C12H11N3O3·2H2OV = 1301.2 (3) Å3
Mr = 281.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7020 (14) ŵ = 0.11 mm1
b = 7.0263 (8) ÅT = 296 K
c = 18.024 (3) Å0.50 × 0.25 × 0.25 mm
β = 106.252 (7)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3139 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2308 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.972Rint = 0.023
9681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
3139 reflectionsΔρmin = 0.19 e Å3
206 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.65878 (8)0.90209 (13)1.02711 (5)0.0361 (2)
N30.59249 (10)0.91380 (15)0.82424 (6)0.0352 (3)
N10.17508 (11)0.89401 (16)0.49077 (6)0.0405 (3)
N20.48334 (11)0.90481 (16)0.76219 (6)0.0340 (3)
O30.74289 (10)1.09936 (16)1.18406 (6)0.0456 (3)
O10.60410 (9)0.97315 (16)0.68198 (6)0.0459 (3)
O1S0.05219 (11)0.82845 (18)0.33090 (6)0.0484 (3)
O2S0.87042 (11)0.96561 (18)0.78948 (7)0.0553 (3)
C10.40194 (13)0.8935 (2)0.55313 (8)0.0379 (3)
H10.48620.88530.54860.046*
C50.38137 (12)0.91494 (16)0.62455 (7)0.0291 (3)
C40.25460 (13)0.9228 (2)0.62766 (8)0.0382 (3)
H40.23580.93500.67480.046*
C20.29770 (15)0.8844 (2)0.48870 (8)0.0427 (3)
H20.31380.87080.44090.051*
C30.15595 (13)0.9122 (2)0.55978 (8)0.0421 (3)
H30.07060.91810.56260.051*
C70.57428 (13)0.89688 (18)0.89043 (8)0.0353 (3)
H70.49060.88330.89550.042*
C80.68443 (13)0.89898 (17)0.95717 (7)0.0328 (3)
C110.77674 (13)0.90344 (18)1.08159 (7)0.0348 (3)
C100.87211 (14)0.8998 (2)1.04728 (9)0.0439 (4)
H100.96100.89961.07190.053*
C120.77600 (15)0.9152 (2)1.16286 (8)0.0441 (4)
H12B0.71410.82361.17190.053*
H12A0.86150.88101.19560.053*
C90.81354 (14)0.8965 (2)0.96715 (9)0.0437 (3)
H90.85590.89310.92860.052*
C60.49926 (12)0.93343 (17)0.69202 (7)0.0304 (3)
H1A0.067 (2)0.853 (3)0.3797 (9)0.089 (7)*
H2'0.4086 (18)0.875 (2)0.7700 (10)0.058 (5)*
H1B0.0138 (16)0.751 (3)0.3174 (11)0.077 (6)*
H2B0.888 (2)1.017 (3)0.7503 (11)0.094 (8)*
H3'0.808 (2)1.176 (3)1.1820 (11)0.075 (6)*
H2A0.7875 (15)0.961 (3)0.7772 (12)0.083 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0314 (5)0.0508 (5)0.0229 (5)0.0029 (4)0.0023 (4)0.0017 (4)
N30.0323 (6)0.0432 (6)0.0257 (6)0.0023 (4)0.0009 (5)0.0009 (4)
N10.0406 (7)0.0478 (7)0.0282 (6)0.0018 (5)0.0016 (5)0.0017 (5)
N20.0276 (6)0.0488 (6)0.0224 (6)0.0037 (5)0.0019 (5)0.0008 (4)
O30.0446 (6)0.0623 (7)0.0327 (6)0.0122 (5)0.0156 (5)0.0072 (4)
O10.0300 (5)0.0750 (7)0.0327 (5)0.0025 (5)0.0089 (4)0.0011 (5)
O1S0.0448 (6)0.0656 (7)0.0315 (6)0.0005 (5)0.0052 (5)0.0008 (5)
O2S0.0374 (6)0.0725 (8)0.0497 (7)0.0006 (5)0.0019 (5)0.0059 (6)
C10.0339 (7)0.0518 (8)0.0293 (7)0.0009 (6)0.0107 (6)0.0013 (5)
C50.0307 (6)0.0311 (6)0.0241 (6)0.0005 (5)0.0053 (5)0.0013 (4)
C40.0344 (7)0.0559 (8)0.0247 (7)0.0008 (6)0.0088 (5)0.0010 (5)
C20.0474 (8)0.0551 (8)0.0246 (7)0.0006 (6)0.0086 (6)0.0048 (6)
C30.0317 (7)0.0582 (9)0.0334 (8)0.0005 (6)0.0042 (6)0.0006 (6)
C70.0333 (7)0.0427 (7)0.0271 (7)0.0013 (5)0.0040 (5)0.0007 (5)
C80.0363 (7)0.0372 (6)0.0233 (6)0.0017 (5)0.0058 (5)0.0013 (5)
C110.0326 (7)0.0378 (7)0.0279 (7)0.0010 (5)0.0018 (5)0.0012 (5)
C100.0327 (7)0.0562 (9)0.0377 (8)0.0011 (6)0.0010 (6)0.0092 (6)
C120.0474 (8)0.0527 (8)0.0255 (7)0.0084 (6)0.0006 (6)0.0065 (6)
C90.0369 (7)0.0594 (9)0.0347 (8)0.0013 (6)0.0100 (6)0.0095 (6)
C60.0289 (6)0.0350 (6)0.0264 (6)0.0022 (5)0.0065 (5)0.0005 (5)
Geometric parameters (Å, º) top
O2—C81.3634 (15)C1—H10.9300
O2—C111.3654 (15)C5—C41.3745 (18)
N3—C71.2671 (17)C5—C61.4928 (17)
N3—N21.3741 (15)C4—C31.3763 (18)
N1—C31.3221 (17)C4—H40.9300
N1—C21.3248 (19)C2—H20.9300
N2—C61.3379 (16)C3—H30.9300
N2—H2'0.876 (18)C7—C81.4294 (18)
O3—C121.4218 (18)C7—H70.9300
O3—H3'0.89 (2)C8—C91.3427 (19)
O1—C61.2178 (15)C11—C101.333 (2)
O1S—H1A0.865 (16)C11—C121.4694 (19)
O1S—H1B0.872 (15)C10—C91.405 (2)
O2S—H2B0.860 (16)C10—H100.9300
O2S—H2A0.853 (15)C12—H12B0.9700
C1—C21.3683 (19)C12—H12A0.9700
C1—C51.3737 (18)C9—H90.9300
C8—O2—C11106.27 (10)N3—C7—C8118.91 (12)
C7—N3—N2116.25 (11)N3—C7—H7120.5
C3—N1—C2116.53 (12)C8—C7—H7120.5
C6—N2—N3117.28 (11)C9—C8—O2110.02 (11)
C6—N2—H2'123.5 (12)C9—C8—C7133.47 (13)
N3—N2—H2'119.1 (12)O2—C8—C7116.50 (11)
C12—O3—H3'106.2 (12)C10—C11—O2109.88 (12)
H1A—O1S—H1B108.4 (18)C10—C11—C12132.98 (13)
H2B—O2S—H2A104.8 (19)O2—C11—C12117.09 (12)
C2—C1—C5119.61 (12)C11—C10—C9107.34 (13)
C2—C1—H1120.2C11—C10—H10126.3
C5—C1—H1120.2C9—C10—H10126.3
C1—C5—C4117.48 (12)O3—C12—C11112.99 (11)
C1—C5—C6116.89 (11)O3—C12—H12B109.0
C4—C5—C6125.60 (11)C11—C12—H12B109.0
C5—C4—C3118.81 (12)O3—C12—H12A109.0
C5—C4—H4120.6C11—C12—H12A109.0
C3—C4—H4120.6H12B—C12—H12A107.8
N1—C2—C1123.54 (13)C8—C9—C10106.49 (13)
N1—C2—H2118.2C8—C9—H9126.8
C1—C2—H2118.2C10—C9—H9126.8
N1—C3—C4124.02 (13)O1—C6—N2122.77 (12)
N1—C3—H3118.0O1—C6—C5120.18 (11)
C4—C3—H3118.0N2—C6—C5117.05 (11)
C7—N3—N2—C6176.19 (11)C8—O2—C11—C12177.41 (11)
C2—C1—C5—C41.17 (19)O2—C11—C10—C90.14 (16)
C2—C1—C5—C6177.08 (12)C12—C11—C10—C9177.28 (15)
C1—C5—C4—C31.08 (19)C10—C11—C12—O3103.43 (18)
C6—C5—C4—C3177.01 (12)O2—C11—C12—O373.84 (15)
C3—N1—C2—C10.4 (2)O2—C8—C9—C100.54 (16)
C5—C1—C2—N10.4 (2)C7—C8—C9—C10179.70 (14)
C2—N1—C3—C40.5 (2)C11—C10—C9—C80.25 (17)
C5—C4—C3—N10.2 (2)N3—N2—C6—O12.72 (18)
N2—N3—C7—C8178.04 (11)N3—N2—C6—C5177.35 (10)
C11—O2—C8—C90.62 (14)C1—C5—C6—O116.96 (17)
C11—O2—C8—C7179.94 (11)C4—C5—C6—O1161.14 (13)
N3—C7—C8—C98.1 (2)C1—C5—C6—N2163.11 (12)
N3—C7—C8—O2172.79 (11)C4—C5—C6—N218.79 (18)
C8—O2—C11—C100.46 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2S—H2A···N30.85 (2)2.49 (2)3.2272 (17)146 (2)
O2S—H2A···O10.85 (2)2.22 (2)2.9648 (15)146 (2)
O3—H3···O1Si0.89 (2)1.90 (2)2.7937 (16)174.9 (18)
O2S—H2B···O1Sii0.86 (2)2.06 (2)2.9145 (18)171 (2)
O1S—H1B···O2Siii0.87 (2)1.94 (2)2.7924 (17)167 (2)
N2—H2···O3iv0.876 (18)2.024 (18)2.8485 (16)156.3 (16)
O1S—H1A···N10.87 (2)2.03 (2)2.8501 (16)157 (2)
C4—H4···O3iv0.932.503.3897 (18)160
C12—H12B···O1v0.972.433.3621 (19)162
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+2, z+1; (iii) x1, y+3/2, z1/2; (iv) x+1, y+2, z+2; (v) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2S—H2A···N30.853 (15)2.485 (17)3.2272 (17)146.0 (19)
O2S—H2A···O10.853 (15)2.219 (18)2.9648 (15)146.1 (19)
O3—H3'···O1Si0.89 (2)1.90 (2)2.7937 (16)174.9 (18)
O2S—H2B···O1Sii0.860 (16)2.063 (16)2.9145 (18)171 (2)
O1S—H1B···O2Siii0.872 (15)1.936 (15)2.7924 (17)166.9 (19)
N2—H2'···O3iv0.876 (18)2.024 (18)2.8485 (16)156.3 (16)
O1S—H1A···N10.865 (16)2.033 (17)2.8501 (16)157 (2)
C4—H4···O3iv0.932.503.3897 (18)160
C12—H12B···O1v0.972.433.3621 (19)162
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+2, z+1; (iii) x1, y+3/2, z1/2; (iv) x+1, y+2, z+2; (v) x, y+3/2, z+1/2.
 

Acknowledgements

MKP is thankful to the University Grants Commission, Bangalore, India, for the award of a Teacher Fellowship. MRPK is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the single-crystal X-ray diffraction measurements.

References

First citationBakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129–136.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNair, Y., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2709.  CSD CrossRef IUCr Journals Google Scholar
First citationPrasanna, M. K., Sithambaresan, M., Pradeepkumar, K. & Kurup, M. R. P. (2013). Acta Cryst. E69, o881.  CSD CrossRef IUCr Journals Google Scholar
First citationReshma, P. R., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2785.  CSD CrossRef IUCr Journals Google Scholar
First citationRollas, S. & Kucukguzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreeja, P. B. & Kurup, M. R. P. (2005). Spectrochim. Acta Part A, 61, 331–336.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1342-o1343
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds