organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Benz­yl­oxy)iso­quinoline-1,3(2H,4H)-dione

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 25 June 2013; accepted 19 July 2013; online 24 July 2013)

The title compound, C16H13NO3, exists in the keto form and the iso­quinoline system is essentially planar (mean deviation = 0.0424 Å). The dihedral angle between the aromatic rings is 4.2 (2)°. In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional structure.

Related literature

For the biological properties of the title compound, see: Parkes et al. (2003[Parkes, K. E., Ermert, P., Fässler, J., Ives, J., Martin, J. A., Merrett, J. H., Obrecht, D., Williams, G. & Klumpp, K. (2003). J. Med. Chem. 46, 1153-1164.]); Sun et al. (2005[Sun, W., Pertzev, A. & Nicholson, A. W. (2005). Nucleic Acids Res. 33, 807-815.]); Hang et al. (2004[Hang, J. Q., Rajendran, S., Yang, Y., Li, Y., In, P. W., Overton, H., Parkes, K. E., Cammack, N., Martin, J. A. & Klumpp, K. (2004). Biochem. Biophys. Res. Commun. 317, 321-329.]); Billamboz et al. (2008[Billamboz, M., Bailly, F., Barreca, M. L., De Luca, L., Mouscadet, J. F., Calmels, C., Andréola, M. L., Witvrouw, M., Christ, F., Debyser, Z. & Cotelle, P. (2008). J. Med. Chem. 51, 7717-7730.]). For related structures, see: Ishikawa & Matsuo (2013[Ishikawa, Y. & Matsuo, S. (2013). Acta Cryst. E69, o1312.]); Lee et al. (2008[Lee, J. M., Park, E. J., Cho, S. H. & Chang, S. (2008). J. Am. Chem. Soc. 130, 7824-7825.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO3

  • Mr = 267.28

  • Orthorhombic, P n a 21

  • a = 7.677 (4) Å

  • b = 12.003 (10) Å

  • c = 13.885 (10) Å

  • V = 1279.4 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.50 × 0.18 × 0.13 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.262, Tmax = 0.988

  • 2451 measured reflections

  • 1756 independent reflections

  • 1191 reflections with F2 > 2σ(F2)

  • Rint = 0.081

  • 3 standard reflections every 150 reflections intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.212

  • S = 1.03

  • 1756 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C4–C8 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H25⋯O19i 0.95 2.51 3.334 (8) 146
C3—H22BCg3ii 0.99 2.91 3.556 (7) 124
C7—H26⋯Cg2iii 0.95 2.88 3.470 (8) 122
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The title compound is a synthetic intermediate of 2-hydroxyisoquinoline-1,3(2H,4H)-dione known to inhibit metalloenzymes such as influenza endonuclease (Parkes et al. 2003), HIV-1 reverse transcriptase RNase H (Hang et al. 2004), HIV-1 integrase (Billamboz et al. 2008) and Escherichia coli ribonuclease III (Sun et al. 2005). Here we report the crystal structure of the title compound, which was obtained from the condensation of homophthalic acid with O-benzylhydroxylamine using a Dean–Stark apparatus.

The compound, C16H13NO3, crystallizes in the orthorhombic space group Pna21. It exists in its keto form [C2—C3—C8 = 117.6 (5)°], as shown in Fig. 1, and the isoquinoline moiety is essentially planar (r.m.s. deviation = 0.0424 Å). The dihedral angle between the least-square planes of the benzene rings is 4.2 (2)°. In the crystal, the molecules are packed through not only intermolecular C—H···O interactions between the isoquinoline methylene H21Ai (i: x + 1/2, -y + 1/2 + 1, z) and isoquinoline-1,3(2H,4H)-dione O18 atoms, and the isoquinoline-1,3(2H,4H)-dione H25ii (ii: -x + 1/2, y + 1/2–1, z + 1/2–1) and O19 atoms, but also through a C—H···π interaction between the isoquinoline-1,3(2H,4H)-dione H22Biii (iii: -x + 1, -y + 1, z - 1/2) atom and the benzyl phenyl ring (Fig. 2).

Related literature top

For the biological properties of the title compound, see: Parkes et al. (2003); Sun et al. (2005); Hang et al. (2004); Billamboz et al. (2008). For related structures, see: Ishikawa & Matsuo (2013); Lee et al. (2008).

Experimental top

The title compound was synthesized according to the literature (Billamboz et al., 2008). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the compound at room temperature.

Refinement top

The phenyl protons of the isoquinoline ring [C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)] and the methylene protons of the benzyl group [C—H = 0.99 Å, Uiso(H) = 1.2Ueq(C)] were placed in geometrical positions, and refined using a riding model. The methylene protons of the isoquinoline ring were found in a difference Fourier map, and also refined using a riding model [C—H = 0.99 Å, Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A crystal packing view of the title compound. Intermolecular C–H···O hydrogen bonds are represented as dashed lines.
2-(Benzyloxy)isoquinoline-1,3(2H,4H)-dione top
Crystal data top
C16H13NO3F(000) = 560.00
Mr = 267.28Dx = 1.387 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2c -2nCell parameters from 24 reflections
a = 7.677 (4) Åθ = 12.7–16.5°
b = 12.003 (10) ŵ = 0.10 mm1
c = 13.885 (10) ÅT = 100 K
V = 1279.4 (15) Å3Block, colourless
Z = 40.50 × 0.18 × 0.13 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.081
ω/2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 59
Tmin = 0.262, Tmax = 0.988k = 815
2451 measured reflectionsl = 1810
1756 independent reflections3 standard reflections every 150 reflections
1191 reflections with F2 > 2σ(F2) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1324P)2 + 0.3682P]
where P = (Fo2 + 2Fc2)/3
1756 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.39 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H13NO3V = 1279.4 (15) Å3
Mr = 267.28Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.677 (4) ŵ = 0.10 mm1
b = 12.003 (10) ÅT = 100 K
c = 13.885 (10) Å0.50 × 0.18 × 0.13 mm
Data collection top
Rigaku AFC-7R
diffractometer
1191 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.081
Tmin = 0.262, Tmax = 0.9883 standard reflections every 150 reflections
2451 measured reflections intensity decay: 1.0%
1756 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0691 restraint
wR(F2) = 0.212H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
1756 reflectionsΔρmin = 0.39 e Å3
182 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O180.3591 (6)0.8028 (4)0.3730 (4)0.0355 (13)
O190.1647 (6)0.4679 (4)0.2670 (4)0.0339 (12)
O200.2975 (6)0.6634 (4)0.2295 (3)0.0260 (11)
N170.2641 (7)0.6331 (4)0.3243 (4)0.0240 (12)
C10.2937 (8)0.7121 (5)0.3953 (5)0.0240 (14)
C20.1810 (7)0.5289 (5)0.3351 (5)0.0207 (14)
C30.1218 (8)0.5009 (5)0.4351 (5)0.0251 (14)
C40.1467 (8)0.5476 (5)0.6103 (5)0.0275 (15)
C50.1916 (9)0.6178 (5)0.6834 (5)0.0282 (15)
C60.2712 (9)0.7203 (6)0.6642 (5)0.0308 (16)
C70.3035 (9)0.7490 (6)0.5712 (5)0.0291 (16)
C80.1770 (7)0.5759 (5)0.5142 (5)0.0199 (13)
C90.2574 (8)0.6785 (5)0.4957 (6)0.0223 (13)
C100.4704 (9)0.6278 (6)0.2021 (5)0.0314 (16)
C110.4750 (8)0.6293 (5)0.0941 (5)0.0242 (15)
C120.5520 (8)0.7162 (5)0.0431 (5)0.0263 (15)
C130.5527 (9)0.7163 (5)0.0557 (5)0.0278 (15)
C140.4772 (8)0.6294 (6)0.1066 (5)0.0307 (16)
C150.3991 (8)0.5420 (6)0.0573 (6)0.0314 (16)
C160.3984 (8)0.5424 (5)0.0420 (5)0.0288 (15)
H21A0.00710.49820.43490.0302*
H22B0.16360.42490.45040.0302*
H230.09360.47820.62510.0331*
H240.16860.59680.74810.0338*
H250.30220.76900.71540.0370*
H260.35840.81810.55750.0350*
H27A0.49390.55180.22660.0376*
H28B0.55910.67910.22880.0376*
H290.60470.77600.07710.0315*
H300.60520.77640.08950.0334*
H310.47890.62960.17500.0368*
H320.34660.48240.09170.0376*
H330.34490.48250.07560.0346*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O180.046 (3)0.020 (3)0.041 (3)0.007 (2)0.008 (3)0.001 (3)
O190.035 (3)0.026 (3)0.040 (3)0.005 (2)0.004 (3)0.012 (3)
O200.026 (3)0.027 (3)0.025 (3)0.0063 (18)0.002 (2)0.002 (2)
N170.026 (3)0.021 (3)0.026 (3)0.003 (3)0.000 (3)0.000 (3)
C10.016 (3)0.018 (3)0.038 (4)0.004 (3)0.006 (3)0.002 (3)
C20.013 (3)0.022 (3)0.027 (4)0.005 (3)0.000 (3)0.006 (3)
C30.027 (3)0.015 (3)0.033 (4)0.002 (3)0.002 (4)0.004 (3)
C40.023 (4)0.019 (4)0.040 (5)0.001 (3)0.001 (3)0.002 (3)
C50.025 (4)0.033 (4)0.027 (4)0.004 (3)0.005 (3)0.000 (4)
C60.031 (4)0.027 (4)0.034 (5)0.001 (3)0.000 (3)0.011 (4)
C70.028 (4)0.021 (3)0.039 (4)0.003 (3)0.003 (3)0.003 (4)
C80.016 (3)0.014 (3)0.030 (4)0.005 (3)0.005 (3)0.001 (3)
C90.015 (3)0.017 (3)0.035 (4)0.003 (3)0.004 (3)0.004 (3)
C100.024 (4)0.034 (4)0.036 (4)0.001 (3)0.006 (3)0.003 (4)
C110.016 (3)0.021 (4)0.036 (4)0.006 (3)0.002 (3)0.002 (3)
C120.021 (4)0.017 (3)0.041 (4)0.001 (3)0.003 (4)0.002 (3)
C130.028 (4)0.024 (4)0.031 (4)0.001 (3)0.001 (3)0.001 (3)
C140.030 (4)0.035 (4)0.026 (4)0.013 (3)0.004 (3)0.007 (4)
C150.024 (4)0.029 (4)0.040 (5)0.008 (3)0.001 (4)0.008 (4)
C160.026 (4)0.019 (3)0.042 (5)0.002 (3)0.000 (4)0.003 (3)
Geometric parameters (Å, º) top
O18—C11.238 (8)C12—C131.372 (10)
O19—C21.203 (8)C13—C141.387 (9)
O20—N171.389 (7)C14—C151.388 (10)
O20—C101.445 (8)C15—C161.379 (10)
N17—C11.388 (9)C3—H21A0.990
N17—C21.411 (8)C3—H22B0.990
C1—C91.478 (10)C4—H230.950
C2—C31.499 (9)C5—H240.950
C3—C81.482 (9)C6—H250.950
C4—C51.362 (10)C7—H260.950
C4—C81.397 (9)C10—H27A0.990
C5—C61.399 (9)C10—H28B0.990
C6—C71.360 (10)C12—H290.950
C7—C91.392 (10)C13—H300.950
C8—C91.401 (8)C14—H310.950
C10—C111.500 (9)C15—H320.950
C11—C121.392 (9)C16—H330.950
C11—C161.400 (9)
O18···O202.644 (7)C12···H22Bxii3.2667
O18···C23.599 (8)C12···H22Bviii3.0478
O18···C72.860 (9)C12···H23xii3.5261
O18···C103.281 (8)C12···H29v3.4674
O19···O202.611 (6)C13···H21Axii3.4039
O19···C13.571 (8)C13···H22Bxii3.0049
O19···C103.162 (8)C13···H22Bviii2.7609
O20···C123.304 (8)C13···H30v3.4683
O20···C163.081 (8)C14···H22Bviii2.9417
N17···C82.806 (9)C14···H24xiii3.1364
N17···C113.582 (9)C14···H25xiii3.2749
C1···C32.912 (9)C14···H27Aviii3.1855
C1···C103.172 (10)C14···H30v3.0805
C2···C92.922 (9)C15···H21Aii3.0498
C2···C103.123 (9)C15···H22Bviii3.3817
C4···C72.754 (10)C15···H24xiii3.2965
C5···C92.753 (10)C15···H27Aviii3.3091
C6···C82.805 (9)C15···H30v3.1688
C11···C142.787 (10)C16···H21Aii3.3870
C12···C152.773 (10)C16···H26iii3.3432
C13···C162.757 (9)C16···H29v3.1734
O18···N17i3.273 (7)H21A···O18v2.7383
O18···C1i3.356 (8)H21A···C13ix3.4039
O18···C2i3.235 (8)H21A···C15vi3.0498
O18···C3i3.220 (8)H21A···C16vi3.3870
O18···C8i3.453 (8)H21A···H24ii3.0922
O18···C9i3.507 (8)H21A···H26v2.9708
O19···C4ii3.237 (8)H21A···H29ix3.4020
O19···C5ii3.144 (8)H21A···H30ix2.7873
O19···C6iii3.334 (8)H21A···H32vi2.6426
O19···C14iv3.465 (8)H21A···H33vi3.2553
O20···C10v3.567 (8)H22B···C11iv3.4786
O20···C12v3.512 (8)H22B···C12ix3.2667
N17···O18v3.273 (7)H22B···C12iv3.0478
C1···O18v3.356 (8)H22B···C13ix3.0049
C2···O18v3.235 (8)H22B···C13iv2.7609
C2···C14iv3.339 (9)H22B···C14iv2.9417
C3···O18v3.220 (8)H22B···C15iv3.3817
C3···C14iv3.501 (9)H22B···H29ix3.2450
C4···O19vi3.237 (8)H22B···H29iv3.4746
C5···O19vi3.144 (8)H22B···H30ix2.7823
C6···O19vii3.334 (8)H22B···H30iv3.0485
C8···O18v3.453 (8)H22B···H31iv3.3152
C8···C16iv3.576 (9)H23···O19vi2.8692
C9···O18v3.507 (8)H23···C2vi3.6000
C10···O20i3.567 (8)H23···C11iv3.5800
C12···O20i3.512 (8)H23···C12ix3.5261
C14···O19viii3.465 (8)H23···H26v3.1810
C14···C2viii3.339 (9)H23···H27Aiv3.4851
C14···C3viii3.501 (9)H23···H28Biv3.5703
C16···C8viii3.576 (9)H23···H29ix2.9408
O18···H262.5693H23···H33vi3.4679
O18···H28B2.9272H24···O19vi2.6864
O19···H21A2.7032H24···C2vi3.3076
O19···H22B2.5992H24···C14xi3.1364
O19···H27A2.7774H24···C15xi3.2965
O19···H333.0006H24···H21Avi3.0922
O20···H293.4447H24···H25v3.2725
O20···H333.0680H24···H27Aiv3.1607
N17···H21A3.0517H24···H30x2.7632
N17···H22B3.1476H24···H31xi2.6402
N17···H27A2.4292H24···H32xi2.9496
N17···H28B2.6821H25···O19vii2.5062
C1···H21A3.4970H25···C2vii3.5380
C1···H262.6337H25···C5i3.3133
C1···H27A3.3989H25···C14xi3.2749
C1···H28B3.1074H25···H24i3.2725
C2···H27A2.8484H25···H30xi3.5721
C3···H232.6606H25···H30x3.1509
C4···H21A2.7715H25···H31xi2.6373
C4···H22B2.6683H25···H31x3.1564
C4···H253.2573H25···H33vii3.4076
C5···H263.2367H26···O19vii3.4239
C6···H233.2552H26···C3i3.4205
C7···H243.2315H26···C4i2.8340
C8···H243.2589H26···C5i3.1922
C8···H263.2792H26···C6i3.5289
C9···H21A3.0855H26···C7i3.5159
C9···H22B3.1913H26···C8i2.8223
C9···H233.2542H26···C9i3.1811
C9···H253.2556H26···C16vii3.3432
C10···H292.6909H26···H21Ai2.9708
C10···H332.6560H26···H23i3.1810
C11···H303.2581H26···H32vii3.2649
C11···H323.2770H26···H33vii2.5284
C12···H27A3.2528H27A···C4viii3.4128
C12···H28B2.6163H27A···C5viii3.2149
C12···H313.2506H27A···C14iv3.1855
C12···H333.2552H27A···C15iv3.3091
C13···H323.2611H27A···H23viii3.4851
C14···H293.2500H27A···H24viii3.1607
C14···H333.2461H27A···H31iv2.5797
C15···H303.2584H27A···H32iv2.8344
C16···H27A2.6682H28B···O18i3.0594
C16···H28B3.3079H28B···O20i2.6303
C16···H293.2576H28B···N17i3.0521
C16···H313.2488H28B···C1i3.2085
H21A···H232.7623H28B···H23viii3.5703
H22B···H232.5650H28B···H32iv3.2401
H23···H242.2976H29···O20i2.6822
H24···H252.3513H29···C10i3.4963
H25···H262.3102H29···C11i3.0703
H27A···H293.5035H29···C12i3.4674
H27A···H332.5284H29···C16i3.1734
H28B···H292.4309H29···H21Axii3.4020
H28B···H333.5769H29···H22Bxii3.2450
H29···H302.3133H29···H22Bviii3.4746
H30···H312.3353H29···H23xii2.9408
H31···H322.3427H29···H33i3.4347
H32···H332.3236H30···C3xii3.2264
O18···H21Ai2.7383H30···C5xiv3.4640
O18···H28Bv3.0594H30···C13i3.4683
O18···H32vii2.7174H30···C14i3.0805
O19···H23ii2.8692H30···C15i3.1688
O19···H24ii2.6864H30···H21Axii2.7873
O19···H25iii2.5062H30···H22Bxii2.7823
O19···H26iii3.4239H30···H22Bviii3.0485
O19···H31iv3.0836H30···H24xiv2.7632
O20···H28Bv2.6303H30···H25xiii3.5721
O20···H29v2.6822H30···H25xiv3.1509
N17···H28Bv3.0521H30···H31i3.3032
N17···H32iv3.4949H30···H32i3.4373
C1···H28Bv3.2085H31···O19viii3.0836
C1···H32vii3.4231H31···C2viii3.2337
C2···H23ii3.6000H31···C5xiii2.9585
C2···H24ii3.3076H31···C6xiii2.9513
C2···H25iii3.5380H31···C10viii3.5514
C2···H31iv3.2337H31···H22Bviii3.3152
C3···H26v3.4205H31···H24xiii2.6402
C3···H30ix3.2264H31···H25xiii2.6373
C4···H26v2.8340H31···H25xiv3.1564
C4···H27Aiv3.4128H31···H27Aviii2.5797
C5···H25v3.3133H31···H30v3.3032
C5···H26v3.1922H32···O18iii2.7174
C5···H27Aiv3.2149H32···N17viii3.4949
C5···H30x3.4640H32···C1iii3.4231
C5···H31xi2.9585H32···C10viii3.4525
C6···H26v3.5289H32···H21Aii2.6426
C6···H31xi2.9513H32···H24xiii2.9496
C6···H33vii3.4955H32···H26iii3.2649
C7···H26v3.5159H32···H27Aviii2.8344
C7···H33vii3.0267H32···H28Bviii3.2401
C8···H26v2.8223H32···H30v3.4373
C9···H26v3.1811H33···C6iii3.4955
C10···H29v3.4963H33···C7iii3.0267
C10···H31iv3.5514H33···H21Aii3.2553
C10···H32iv3.4525H33···H23ii3.4679
C11···H22Bviii3.4786H33···H25iii3.4076
C11···H23viii3.5800H33···H26iii2.5284
C11···H29v3.0703H33···H29v3.4347
N17—O20—C10109.9 (5)C11—C16—C15121.2 (6)
O20—N17—C1117.6 (5)C2—C3—H21A107.914
O20—N17—C2114.7 (5)C2—C3—H22B107.913
C1—N17—C2127.1 (6)C8—C3—H21A107.922
O18—C1—N17119.3 (6)C8—C3—H22B107.920
O18—C1—C9123.6 (6)H21A—C3—H22B107.196
N17—C1—C9116.9 (6)C5—C4—H23119.363
O19—C2—N17120.1 (6)C8—C4—H23119.352
O19—C2—C3124.0 (6)C4—C5—H24119.596
N17—C2—C3115.8 (5)C6—C5—H24119.593
C2—C3—C8117.6 (5)C5—C6—H25120.560
C5—C4—C8121.3 (6)C7—C6—H25120.552
C4—C5—C6120.8 (7)C6—C7—H26119.495
C5—C6—C7118.9 (7)C9—C7—H26119.505
C6—C7—C9121.0 (7)O20—C10—H27A110.462
C3—C8—C4120.8 (6)O20—C10—H28B110.463
C3—C8—C9121.6 (6)C11—C10—H27A110.467
C4—C8—C9117.5 (6)C11—C10—H28B110.470
C1—C9—C7119.8 (6)H27A—C10—H28B108.651
C1—C9—C8119.7 (6)C11—C12—H29119.632
C7—C9—C8120.5 (7)C13—C12—H29119.618
O20—C10—C11106.3 (5)C12—C13—H30119.774
C10—C11—C12121.8 (6)C14—C13—H30119.782
C10—C11—C16119.9 (6)C13—C14—H31120.076
C12—C11—C16118.3 (6)C15—C14—H31120.079
C11—C12—C13120.7 (6)C14—C15—H32120.249
C12—C13—C14120.4 (6)C16—C15—H32120.252
C13—C14—C15119.8 (7)C11—C16—H33119.416
C14—C15—C16119.5 (7)C15—C16—H33119.405
N17—O20—C10—C11162.1 (4)C5—C6—C7—H26179.5
N17—O20—C10—H27A42.2H25—C6—C7—C9179.5
N17—O20—C10—H28B78.0H25—C6—C7—H260.5
C10—O20—N17—C195.6 (5)C6—C7—C9—C1179.9 (6)
C10—O20—N17—C292.6 (5)C6—C7—C9—C80.3 (9)
O20—N17—C1—O184.9 (8)H26—C7—C9—C10.1
O20—N17—C1—C9179.9 (4)H26—C7—C9—C8179.7
O20—N17—C2—O199.4 (7)C3—C8—C9—C12.0 (8)
O20—N17—C2—C3172.1 (4)C3—C8—C9—C7178.1 (5)
C1—N17—C2—O19179.7 (5)C4—C8—C9—C1179.5 (5)
C1—N17—C2—C31.2 (8)C4—C8—C9—C70.3 (8)
C2—N17—C1—O18175.6 (5)O20—C10—C11—C12100.9 (6)
C2—N17—C1—C99.2 (9)O20—C10—C11—C1678.3 (6)
O18—C1—C9—C72.5 (9)H27A—C10—C11—C12139.2
O18—C1—C9—C8177.6 (5)H27A—C10—C11—C1641.6
N17—C1—C9—C7172.4 (5)H28B—C10—C11—C1219.0
N17—C1—C9—C87.4 (8)H28B—C10—C11—C16161.9
O19—C2—C3—C8170.0 (5)C10—C11—C12—C13179.2 (5)
O19—C2—C3—H21A67.8C10—C11—C12—H290.8
O19—C2—C3—H22B47.8C10—C11—C16—C15179.4 (5)
N17—C2—C3—C88.4 (7)C10—C11—C16—H330.6
N17—C2—C3—H21A113.8C12—C11—C16—C150.2 (9)
N17—C2—C3—H22B130.7C12—C11—C16—H33179.8
C2—C3—C8—C4171.6 (5)C16—C11—C12—C130.0 (9)
C2—C3—C8—C910.1 (8)C16—C11—C12—H29180.0
H21A—C3—C8—C466.2C11—C12—C13—C140.3 (9)
H21A—C3—C8—C9112.2C11—C12—C13—H30179.7
H22B—C3—C8—C449.3H29—C12—C13—C14179.7
H22B—C3—C8—C9132.3H29—C12—C13—H300.3
C5—C4—C8—C3177.7 (5)C12—C13—C14—C150.5 (9)
C5—C4—C8—C90.7 (9)C12—C13—C14—H31179.5
C8—C4—C5—C60.5 (9)H30—C13—C14—C15179.5
C8—C4—C5—H24179.5H30—C13—C14—H310.5
H23—C4—C5—C6179.5C13—C14—C15—C160.3 (9)
H23—C4—C5—H240.5C13—C14—C15—H32179.7
H23—C4—C8—C32.3H31—C14—C15—C16179.6
H23—C4—C8—C9179.3H31—C14—C15—H320.4
C4—C5—C6—C70.1 (9)C14—C15—C16—C110.0 (9)
C4—C5—C6—H25179.9C14—C15—C16—H33180.0
H24—C5—C6—C7179.9H32—C15—C16—C11180.0
H24—C5—C6—H250.1H32—C15—C16—H330.0
C5—C6—C7—C90.5 (10)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+1, z1/2; (iii) x+1/2, y1/2, z1/2; (iv) x+1, y+1, z+1/2; (v) x1/2, y+3/2, z; (vi) x, y+1, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1, y+1, z1/2; (ix) x+1/2, y1/2, z+1/2; (x) x1/2, y+3/2, z+1; (xi) x, y, z+1; (xii) x+1/2, y+1/2, z1/2; (xiii) x, y, z1; (xiv) x+1/2, y+3/2, z1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C4–C8 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3i—H21Ai···O180.992.743.220 (8)110
C6—H25···O19vii0.952.513.334 (8)146
C3—H22B···Cg3iv0.992.913.556 (7)124
C7—H26···Cg2i0.952.883.470 (8)122
Symmetry codes: (i) x+1/2, y+3/2, z; (iv) x+1, y+1, z+1/2; (vii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C4–C8 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H25···O19i0.952.513.334 (8)146
C3—H22B···Cg3ii0.992.913.556 (7)124
C7—H26···Cg2iii0.952.883.470 (8)122
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1/2; (iii) x+1/2, y+3/2, z.
 

Acknowledgements

The authors acknowledge the University of Shizuoka for supporting this study.

References

First citationBillamboz, M., Bailly, F., Barreca, M. L., De Luca, L., Mouscadet, J. F., Calmels, C., Andréola, M. L., Witvrouw, M., Christ, F., Debyser, Z. & Cotelle, P. (2008). J. Med. Chem. 51, 7717–7730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHang, J. Q., Rajendran, S., Yang, Y., Li, Y., In, P. W., Overton, H., Parkes, K. E., Cammack, N., Martin, J. A. & Klumpp, K. (2004). Biochem. Biophys. Res. Commun. 317, 321–329.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIshikawa, Y. & Matsuo, S. (2013). Acta Cryst. E69, o1312.  CSD CrossRef IUCr Journals Google Scholar
First citationLee, J. M., Park, E. J., Cho, S. H. & Chang, S. (2008). J. Am. Chem. Soc. 130, 7824–7825.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationParkes, K. E., Ermert, P., Fässler, J., Ives, J., Martin, J. A., Merrett, J. H., Obrecht, D., Williams, G. & Klumpp, K. (2003). J. Med. Chem. 46, 1153–1164.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W., Pertzev, A. & Nicholson, A. W. (2005). Nucleic Acids Res. 33, 807–815.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds