organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1253-o1254

(Di­methyl­phosphor­yl)methanaminium iodide–(di­methyl­phosphor­yl)methan­amine (1/1)

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de

(Received 7 July 2013; accepted 9 July 2013; online 13 July 2013)

The asymmetric unit of the title structure, C3H11NOP+·I·C3H10NOP, consists of one (di­methyl­phosphor­yl)methanamine (dpma) mol­ecule, one (di­methyl­phosphor­yl)methanaminium (dpmaH) ion and one iodide counter-anion. In the crystal, medium–strong to weak N—H⋯O and N—H⋯N hydrogen bonds connect dpmaH cations and dpma mol­ecules into strands along [001]. The iodide counter-anions form only very weak hydrogen bonds. The crystal used for the diffraction study was found to be an inversion twin with a ratio of 0.83 (2):0.17 (2). The title structure is isotypic to that of dpmaH[ClO4dpma [Buhl et al. (2013[Buhl, D., Gün, H., Jablonka, A. & Reiss, G. J. (2013). Crystals 3, 350-362.]). Crystals 3, 350–362].

Related literature

For transition metal complexes of the dpma ligand, see: Dodoff et al. (1990[Dodoff, N., Macicek, J., Angelova, O., Varbanov, S. G. & Spassovska, N. (1990). J. Coord. Chem. 22, 219-228.]); Borisov et al. (1994[Borisov, G., Varbanov, S. G., Venanzi, L. M., Albinati, A. & Demartin, F. (1994). Inorg. Chem. 33, 5430-5437.]); Trendafilova et al. (1997[Trendafilova, N., Georgieva, I., Bauer, G., Varbanov, S. G. & Dodoff, N. (1997). Spectrochim. Acta, A53, 819-828.]); Kochel (2009[Kochel, A. (2009). Inorg. Chim. Acta, 362, 1379-1382.]). For transition metal complexes of the cationic dpmaH ligand, see: Reiss (2013a[Reiss, G. J. (2013a). Acta Cryst. E69, m248-m249.],b[Reiss, G. J. (2013b). Acta Cryst. E69, m250-m251.]). For dpmaH+ salts, see: Reiss & Jörgens (2012[Reiss, G. J. & Jörgens, S. (2012). Acta Cryst. E68, o2899-o2900.]); Buhl et al. (2013[Buhl, D., Gün, H., Jablonka, A. & Reiss, G. J. (2013). Crystals 3, 350-362.]); Lambertz et al. (2013[Lambertz, C., Luppa, A. & Reiss, G. J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 227-228.]). For the term tecton, see: Brunet et al. (1997[Brunet, P., Simard, M. & Wuest, J. D. (1997). J. Am. Chem. Soc. 119, 2737-2738.]). For the graph-set analysis method, see: Grell et al. (2002[Grell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1-56.]).

[Scheme 1]

Experimental

Crystal data
  • C3H11NOP+·I·C3H10NOP

  • Mr = 342.09

  • Orthorhombic, P c a 21

  • a = 17.7791 (3) Å

  • b = 11.1766 (2) Å

  • c = 6.91805 (12) Å

  • V = 1374.69 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.54 mm−1

  • T = 100 K

  • 0.36 × 0.19 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.538, Tmax = 0.808

  • 10904 measured reflections

  • 3062 independent reflections

  • 2972 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.033

  • S = 1.05

  • 3062 reflections

  • 145 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Refined as an inversion twin.

  • Flack parameter: 0.173 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯N2i 0.86 (3) 1.95 (3) 2.805 (4) 173 (3)
N1—H12⋯O1ii 0.86 (3) 1.96 (3) 2.824 (3) 177 (4)
N1—H13⋯O2 0.91 (3) 1.81 (3) 2.716 (4) 172 (4)
N2—H21⋯O1 0.82 (3) 2.17 (3) 2.965 (4) 163 (4)
N2—H22⋯I1 0.83 (3) 3.21 (3) 3.948 (3) 150 (4)
Symmetry codes: (i) x, y, z-1; (ii) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011)[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

(Dimethylphosphoryl)methanamine (dpma) is a promising bidentate ligand for the coordination of various transition metals (Dodoff et al., 1990; Borisov et al. 1994; Trendafilova et al., 1997; Kochel 2009). The corresponding N-protonated dpmaH cation is also known to form transition metal complexes (Reiss, 2013a, 2013b). For simple dpmaH salts it has been demonstrated that this tecton (for the term tecton see: Brunet et al., 1997) shows a distinct tendency to form one-dimensional polymers by hydrogen bonded head to tail connections of adjacent cations (Reiss & Jörgens, 2012; Lambertz et al. 2013, Buhl et al. 2013). This contribution is part of our ongoing interest in the construction of new hydrogen bonded network architectures using phosphoryl containing tectons.

As illustrated in Figure 1, the asymmetric unit of the title structure consists of one dpmaH cation, one dpma molecule, and one iodide anion in the non-centrosymmetric space group Pca21. Bond lengths and angles within the dpmaH cation and in the neutral dpma molecule are in the expected ranges (Buhl et al. 2013). The dpmaH cation and the dpma molecule are each connected head to tail via one strong and one moderate N–H···O hydrogen bond constructing a ten-membered ring (second level graph-set descriptor: R22(10); Figure 1 (red numbers)). Furthermore, these primary cyclic units are connected to adjacent units by N–H···N and N–H···O hydrogen bonds (Figure 2). These connections form one-dimensional strands running along [001]. The iodide counter anions form only very weak classical and non–classical hydrogen bonds, if at all. The hydrogen bonding motif of the backbone of the afore mentioned strands is represented by the second level graph-set descriptor C22(7) (Figure 2, red numbers). The connections of the dpmaH . dpma cyclic units with adjacent ones produce one more simple ring-motif, which can be described as a third level graph-set descriptor: R34(11) (Figure 2, green numbers). To visualize the basic principles of the construction a constructor graph is shown in Fig. 3 (Grell et al. 2002). The title structure is isotypic to the structure of dpmaH[ClO4] . dpma (Buhl et al. 2013). However, there are differences in detail due to the nature of the iodide counter anion. For dpmaHI.dpma a 6% smaller volume of the unit cell has been determined. In both structures the counter anions are positioned in the vicinity of the amino group of the dpma molecule. The replacement of perchlorate by the significantly weaker hydrogen bonded iodide counter anion leads to a measurable strengthening of the hydrogen bond donating property of the amino group within the strands. The crystal which was used for the diffraction study was found to be an inversion twin with a ratio of 0.83 (2):0.17 (2).

Related literature top

For transition metal complexes of the dpma ligand, see: Dodoff et al. (1990); Borisov et al. (1994); Trendafilova et al. (1997); Kochel (2009). For transition metal complexes of the cationic dpmaH ligand, see: Reiss (2013a,b). For dpmaH+ salts, see: Reiss & Jörgens (2012); Buhl et al. (2013); Lambertz et al. (2013). For the term tecton, see: Brunet et al. (1997). For the graph-set analysis method, see: Grell et al. (2002).

Experimental top

In a typical experiment 0.5 g dpma was dissolved in 3 ml hydroiodic acid. The solution was slowly heated to dryness. The residual solid (dpmaHI) and an equimolar amount of dpma were dissolved im 5 ml methanol. Slow evaporation of this solution at room temperature yielded colorless crystals of the title compound.

Refinement top

All hydrogen atoms were identified in difference syntheses. Hydrogen atoms at the methyl groups are idealized, were refined using rigid groups and allowed to rotate about the P—C bond (AFIX 137 option of the SHELXL97 program; Uiso = 1.5Ueq(C)). The hydrogen atoms at the methylene groups were included using a riding model with the Uiso values set to 1.2Ueq(C). The coordinates of the hydrogen atoms involved in hydrogen bonds were refined with the N—H distance restrained to one common value. For each of these hydrogen atoms an individual Uiso value was refined.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title structure is shown with displacement ellipsoids drawn at the 70% probability level. Blue broken lines indicate hydrogen bonds. The red number marks the ring size of the second level R22(10) graph-set descriptor for this connection of the dpmaH cation with the dpma molecule.
[Figure 2] Fig. 2. The primary units are further connected via hydrogen bonds to form strands running along [001].
[Figure 3] Fig. 3. Constructor graph (Grell et al. 2002) of that part of the title structure shown in figure 2 (black dots: dpma, gray dots: dpmaH, arrows: crystallographic dependency is coded by the colours).
(Dimethylphosphoryl)methanaminium iodide–(dimethylphosphoryl)methanamine (1/1) top
Crystal data top
C3H11NOP+·I·C3H10NOPDx = 1.653 Mg m3
Mr = 342.09Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 8874 reflections
a = 17.7791 (3) Åθ = 2.9–29.4°
b = 11.1766 (2) ŵ = 2.54 mm1
c = 6.91805 (12) ÅT = 100 K
V = 1374.69 (4) Å3Block, colorless
Z = 40.36 × 0.19 × 0.10 mm
F(000) = 680
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3062 independent reflections
Radiation source: Enhance (Mo) X-ray Source2972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.2711 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scansh = 2122
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
k = 1411
Tmin = 0.538, Tmax = 0.808l = 88
10904 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.011P)2 + 0.370P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max = 0.003
S = 1.05Δρmax = 0.32 e Å3
3062 reflectionsΔρmin = 0.28 e Å3
145 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.00115 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Refined as an inversion twin.
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.173 (17)
Crystal data top
C3H11NOP+·I·C3H10NOPV = 1374.69 (4) Å3
Mr = 342.09Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 17.7791 (3) ŵ = 2.54 mm1
b = 11.1766 (2) ÅT = 100 K
c = 6.91805 (12) Å0.36 × 0.19 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3062 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
2972 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.808Rint = 0.023
10904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.033Δρmax = 0.32 e Å3
S = 1.05Δρmin = 0.28 e Å3
3062 reflectionsAbsolute structure: Refined as an inversion twin.
145 parametersAbsolute structure parameter: 0.173 (17)
6 restraints
Special details top

Experimental. CrysAlisPro, Version 1.171.34.44, (Oxford Diffraction, 2009). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.57385 (2)0.73704 (2)0.75007 (5)0.01322 (6)
P10.34627 (4)0.54054 (8)0.66655 (12)0.00984 (17)
O10.31186 (10)0.62671 (19)0.8072 (3)0.0116 (5)
N10.33299 (15)0.7173 (3)0.3886 (4)0.0110 (6)
H110.3537 (18)0.748 (3)0.288 (5)0.025 (11)*
H120.2881 (17)0.693 (4)0.364 (5)0.033 (12)*
H130.331 (2)0.775 (3)0.481 (6)0.041 (13)*
C10.28010 (15)0.4322 (3)0.5842 (4)0.0125 (7)
H1A0.26430.38330.69090.019*
H1B0.30310.38270.48740.019*
H1C0.23720.47210.52990.019*
C20.42584 (14)0.4612 (2)0.7564 (8)0.0164 (6)
H2A0.46470.51700.79040.025*
H2B0.44420.40770.65860.025*
H2C0.41150.41610.86870.025*
C30.38262 (16)0.6192 (3)0.4555 (5)0.0124 (7)
H3A0.43160.65210.48650.015*
H3B0.38920.56240.35090.015*
P20.35541 (4)0.99276 (7)0.78259 (13)0.01040 (17)
O20.32571 (12)0.9051 (2)0.6371 (3)0.0154 (5)
N20.38890 (15)0.8119 (3)1.0417 (4)0.0120 (6)
H210.370 (2)0.771 (3)0.957 (5)0.016 (10)*
H220.4349 (17)0.809 (4)1.022 (6)0.033 (12)*
C40.44922 (15)1.0407 (3)0.7318 (6)0.0170 (7)
H4A0.48190.97230.72710.026*
H4B0.46591.09420.83150.026*
H4C0.45031.08110.60940.026*
C50.30034 (16)1.1262 (3)0.7964 (5)0.0179 (8)
H5A0.30361.16870.67610.027*
H5B0.31901.17600.89890.027*
H5C0.24881.10580.82170.027*
C60.35496 (16)0.9310 (3)1.0246 (4)0.0119 (6)
H6A0.38170.98541.10950.014*
H6B0.30330.92671.06950.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01355 (9)0.01279 (10)0.01334 (9)0.00093 (6)0.00029 (13)0.00089 (17)
P10.0106 (4)0.0092 (4)0.0096 (4)0.0003 (3)0.0001 (3)0.0014 (3)
O10.0137 (10)0.0098 (12)0.0112 (11)0.0002 (8)0.0022 (8)0.0009 (8)
N10.0123 (14)0.0099 (16)0.0108 (13)0.0017 (11)0.0011 (11)0.0004 (12)
C10.0153 (15)0.0105 (18)0.0116 (15)0.0020 (12)0.0005 (13)0.0001 (13)
C20.0149 (13)0.0170 (15)0.0172 (14)0.0023 (11)0.0012 (17)0.000 (3)
C30.0117 (15)0.0118 (19)0.0137 (15)0.0010 (12)0.0023 (13)0.0011 (14)
P20.0105 (3)0.0099 (4)0.0108 (4)0.0014 (3)0.0018 (3)0.0004 (3)
O20.0182 (11)0.0133 (13)0.0146 (12)0.0035 (9)0.0032 (9)0.0035 (10)
N20.0126 (14)0.0109 (16)0.0125 (13)0.0015 (11)0.0009 (11)0.0000 (13)
C40.0162 (14)0.0208 (17)0.0141 (19)0.0016 (11)0.0015 (16)0.0050 (19)
C50.0218 (15)0.0124 (17)0.020 (2)0.0065 (12)0.0059 (13)0.0033 (13)
C60.0113 (15)0.0113 (18)0.0130 (15)0.0014 (12)0.0006 (12)0.0012 (13)
Geometric parameters (Å, º) top
P1—O11.500 (2)P2—O21.501 (2)
P1—C21.782 (3)P2—C41.787 (3)
P1—C11.782 (3)P2—C51.787 (3)
P1—C31.823 (3)P2—C61.811 (3)
N1—C31.481 (4)N2—C61.467 (4)
N1—H110.86 (3)N2—H210.82 (3)
N1—H120.86 (3)N2—H220.83 (3)
N1—H130.91 (3)C4—H4A0.9600
C1—H1A0.9600C4—H4B0.9600
C1—H1B0.9600C4—H4C0.9600
C1—H1C0.9600C5—H5A0.9600
C2—H2A0.9600C5—H5B0.9600
C2—H2B0.9600C5—H5C0.9600
C2—H2C0.9600C6—H6A0.9700
C3—H3A0.9700C6—H6B0.9700
C3—H3B0.9700
O1—P1—C2114.65 (19)H3A—C3—H3B107.7
O1—P1—C1112.00 (13)O2—P2—C4113.09 (16)
C2—P1—C1107.30 (15)O2—P2—C5112.85 (13)
O1—P1—C3110.77 (14)C4—P2—C5105.77 (15)
C2—P1—C3103.78 (18)O2—P2—C6111.70 (14)
C1—P1—C3107.81 (15)C4—P2—C6107.47 (17)
C3—N1—H11107 (2)C5—P2—C6105.44 (15)
C3—N1—H12112 (3)C6—N2—H21106 (3)
H11—N1—H12111 (4)C6—N2—H22115 (3)
C3—N1—H13109 (3)H21—N2—H22106 (4)
H11—N1—H13108 (3)P2—C4—H4A109.5
H12—N1—H13109 (4)P2—C4—H4B109.5
P1—C1—H1A109.5H4A—C4—H4B109.5
P1—C1—H1B109.5P2—C4—H4C109.5
H1A—C1—H1B109.5H4A—C4—H4C109.5
P1—C1—H1C109.5H4B—C4—H4C109.5
H1A—C1—H1C109.5P2—C5—H5A109.5
H1B—C1—H1C109.5P2—C5—H5B109.5
P1—C2—H2A109.5H5A—C5—H5B109.5
P1—C2—H2B109.5P2—C5—H5C109.5
H2A—C2—H2B109.5H5A—C5—H5C109.5
P1—C2—H2C109.5H5B—C5—H5C109.5
H2A—C2—H2C109.5N2—C6—P2114.7 (2)
H2B—C2—H2C109.5N2—C6—H6A108.6
N1—C3—P1113.3 (2)P2—C6—H6A108.6
N1—C3—H3A108.9N2—C6—H6B108.6
P1—C3—H3A108.9P2—C6—H6B108.6
N1—C3—H3B108.9H6A—C6—H6B107.6
P1—C3—H3B108.9
O1—P1—C3—N140.2 (3)O2—P2—C6—N249.4 (3)
C2—P1—C3—N1163.7 (2)C4—P2—C6—N275.2 (3)
C1—P1—C3—N182.7 (3)C5—P2—C6—N2172.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···N2i0.86 (3)1.95 (3)2.805 (4)173 (3)
N1—H12···O1ii0.86 (3)1.96 (3)2.824 (3)177 (4)
N1—H13···O20.91 (3)1.81 (3)2.716 (4)172 (4)
N2—H21···O10.82 (3)2.17 (3)2.965 (4)163 (4)
N2—H22···I10.83 (3)3.21 (3)3.948 (3)150 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC3H11NOP+·I·C3H10NOP
Mr342.09
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)17.7791 (3), 11.1766 (2), 6.91805 (12)
V3)1374.69 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.54
Crystal size (mm)0.36 × 0.19 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.538, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
10904, 3062, 2972
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.033, 1.05
No. of reflections3062
No. of parameters145
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.28
Absolute structureRefined as an inversion twin.
Absolute structure parameter0.173 (17)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···N2i0.86 (3)1.95 (3)2.805 (4)173 (3)
N1—H12···O1ii0.86 (3)1.96 (3)2.824 (3)177 (4)
N1—H13···O20.91 (3)1.81 (3)2.716 (4)172 (4)
N2—H21···O10.82 (3)2.17 (3)2.965 (4)163 (4)
N2—H22···I10.83 (3)3.21 (3)3.948 (3)150 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y, z1/2.
 

Acknowledgements

I would like to thank V. Breuers for valuable suggestions. Furthermore, I acknowledge the support for the publication fee by the Deutsche Forschungsgemeinschaft (DFG) and the open access publication fund of the Heinrich-Heine-Universität Düsseldorf.

References

First citationBorisov, G., Varbanov, S. G., Venanzi, L. M., Albinati, A. & Demartin, F. (1994). Inorg. Chem. 33, 5430–5437.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrunet, P., Simard, M. & Wuest, J. D. (1997). J. Am. Chem. Soc. 119, 2737–2738.  CSD CrossRef CAS Web of Science Google Scholar
First citationBuhl, D., Gün, H., Jablonka, A. & Reiss, G. J. (2013). Crystals 3, 350–362.  CSD CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDodoff, N., Macicek, J., Angelova, O., Varbanov, S. G. & Spassovska, N. (1990). J. Coord. Chem. 22, 219–228.  CrossRef CAS Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1–56.  CrossRef CAS Google Scholar
First citationKochel, A. (2009). Inorg. Chim. Acta, 362, 1379–1382.  Web of Science CSD CrossRef CAS Google Scholar
First citationLambertz, C., Luppa, A. & Reiss, G. J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 227–228.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationReiss, G. J. (2013a). Acta Cryst. E69, m248–m249.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. (2013b). Acta Cryst. E69, m250–m251.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. & Jörgens, S. (2012). Acta Cryst. E68, o2899–o2900.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrendafilova, N., Georgieva, I., Bauer, G., Varbanov, S. G. & Dodoff, N. (1997). Spectrochim. Acta, A53, 819–828.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1253-o1254
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds