organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1284-o1285

(2-tert-Butyl-3-phenyl-2,3-di­hydro­isoxazole-4,5-di­yl)bis­­(phenyl­methanone)

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 8 July 2013; accepted 15 July 2013; online 20 July 2013)

The phenyl and tert-butyl groups of the title compound, C27H25NO3, exhibit a trans configuration in agreement with the stereochemistry of the Z phenyl-N-tert-butyl­nitrone starting material. The attached carbonyl groups are not coplanar with the neighboring di­hydro­isoxazole ring and the phenyl rings they are bonded to, with torsion angles of 59.26 (8), 17.53 (11), 16.52 (12) and 52.86 (7)°. The dihedral angle between the di­hydro­isoxazole ring and the directly attached phenyl group is 86.86 (8)°. There are two nonclassical inter­molecular C—H⋯O hydrogen-bonding inter­actions that operate together with an inter­molecular C—H⋯π inter­action to form a supramolecular architecture in the crystal system.

Related literature

For background to isoxazoline derivatives and their applications, see: Kiss et al. (2009[Kiss, L., Nonn, M., Forro, E., Sillanpaa, R. & Fulop, F. (2009). Tetrahedron Lett. 50, 2605-2608]); Velikorodov & Sukhenko (2003[Velikorodov, A. V. & Sukhenko, L. T. (2003). Pharm. Chem. J. 37, 24-26.]); Shi et al. (2012[Shi, L., Hu, R., Wei, Y., Liang, Y., Yang, Z. & Ke, S. (2012). Eur. J. Med. Chem. 54, 549-556.]); Khan & Lee (2006[Khan, O. F. & Lee, H. J. (2006). Steroids, 71, 183-188.]). For the mechanism of the 1,3-dipolar cyclo­addition of nitro­nes with alkynes, see: Eberson et al. (1998[Eberson, L., McCullough, J. P., Hartshorn, C. M. & Hartshorn, M. P. J. (1998). J. Chem. Soc. Perkin. Trans. 2, pp. 41-47.]). For the synthesis of related compounds, see: Chakraborty et al. (2012[Chakraborty, B., Sharma, P. K. & Samanta, A. (2012). Indian J. Chem. Sect. B, 51, 1180-1185.]).

[Scheme 1]

Experimental

Crystal data
  • C27H25NO3

  • Mr = 411.48

  • Orthorhombic, P n a 21

  • a = 20.1034 (12) Å

  • b = 17.799 (1) Å

  • c = 6.1366 (3) Å

  • V = 2195.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.984

  • 20181 measured reflections

  • 2967 independent reflections

  • 2422 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.094

  • S = 1.05

  • 2967 reflections

  • 283 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.51 3.203 (3) 131
C25—H25A⋯O1ii 0.96 2.59 3.483 (3) 155
C2—H2⋯Cg1i 0.93 2.70 3.490 (3) 143
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isoxazolines are an important class of heterocyclic compounds because of their wide variety of applications. In chemistry, they find use as intermediates in organic synthesis (Kiss et al., 2009), and many isoxazoline derivatives are bilologocally active compounds with antimicrobial, anticancer, analgesic and anti-inflammatory properties (Velikorodov and Sukhenko, 2003; Shi et al., 2012; Khan and Lee, 2006). Considering these applications we report the structure of a 4-isoxazoline derivative, which was prepared by the 1,3-dipolar cycloaddition reaction of phenyl-N-tert-butylnitrone with dibenzoylacetylene.

The compound (Fig. 1) crystallizes in the orthorhombic space group Pna21. The torsion angle of 125.52 (18)° of the molecular fragment C24/N1/C17/C18 shows the phenyl and tert butyl groups be trans to each other, which agrees with the stereochemistry of the Z phenyl-N-tert-butylnitrone starting material based on the mechanism of the reaction (Eberson et al., 1998). The dihedral angle of the dihydroisoxazole ring with the directly attached phenyl group is 86.86 (8)°. The carbonyl groups attached are not coplanar with the neighboring dihydroisoxazole ring and the phenyl rings they are bonded to. The carbonyl group between the C1–C6 phenyl ring and the dihydroisoxazole ring significantly deviates from the average planes of the phenyl and the dihydroisoxazole rings, respectively, with the largest deviations being 0.2065 (1) and 0.4366 (1) Å for the O1 atom. The torsion angles between the plane of the carbonyl group (atoms C6, C7, O1 and C8) and those of the phenyl and the dihydroisoxazole rings are 17.53 (11) and 59.26 (8)° respectively. The other carbonyl group between the C11-C16 phenyl ring and the dihydroisoxazole ring also significantly deviates from the planes of the attached phenyl and the dihydroisoxazole rings, respectively, with the largest deviations being 0.4777 (1) and 0.1441 (1) Å for the O3 atom. The torsion angles between the plane of the carbonyl group (atoms C9, C10, O3 and C11) and those of the phenyl and the dihydroisoxazole rings are 52.86 (7) and 16.52 (12)° respectively.

There are two intermolecular C–H···O hydrogen bond interactions (Fig. 2) between the H atoms attached at the C3 & C25 and O3 & O1 atoms of neighboring molecules with D···A distances of 3.203 (3) and 3.483 (3) Å, respectively. An intermolecular C–H···π interaction (Fig. 3) between the H at C2 and the C18-C23 aromatic ring of an adjacent molecule with an H···π distance of 2.70 Å also supports the interconnection between the molecules. Thus, these intermolecular hydrogen bonding interactions, augmented by a weak C–H···π interaction, play a major role in the formation of the supramolecular network of the molecular units. Fig. 4 shows a packing diagram of the title compound viewed along the c axis direction.

Related literature top

For background to isoxazoline derivatives and their applications, see: Kiss et al. (2009); Velikorodov & Sukhenko (2003); Shi et al. (2012); Khan & Lee (2006). For the mechanism of the 1,3-dipolar cycloaddition of nitrones with alkynes, see: Eberson et al. (1998). For the synthesis of related compounds, see: Chakraborty et al. (2012).

Experimental top

The title compound was prepared by adapting a reported procedure (Chakraborty et al., 2012). Phenyl-N-tert-butylnitrone (3 mmol) and dibenzoylacetylene (3 mmol) were added into 15 mL of acetonitrile and stirred for 4 h at room temperature. The reaction was monitored by TLC using EtOAc/hexane (1:5). The solvent was removed under reduced pressure and the product was purified from the crude by column chromatography on silica gel. Yellow crystals suitable for X-ray structure determination were grown from ethanol by slow evaporation (m.p: 110 °C).

IR (KBr, υ in cm-1): 3054, 2970, 1655, 1624, 1439, 1355, 1294, 1186, 1063,955,855,770, 694, 525. 1H NMR (400 MHz, CDCl3, δ, ppm): 1.27 (s, 9H), 6.0 (s, 1H), 7.05-7.74 (m, 15H). 13C NMR (400 MHz, CDCl3, δ, p.p.m.): 190.61, 185.68, 155.93, 142.29, 139.60, 135.52, 134.35, 132.00, 129.23, 128.71, 128.63, 128.01, 127.72, 127.49, 120.31, 69.53, 61.83, 24.99. MS: m/z calculated for C27H25NO3: 411 (M+); m/z measured: 411(M+), 412 (M+1).

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances of 0.93–0.98 Å. H atoms were assigned Uiso = 1.2Ueq(carrier) or 1.5Ueq (methyl C). Omitted owing to bad disagreement were the reflections (1 0 0), (2 0 0) and (1 1 0). In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. C—H···O intermolecular hydrogen bonding interactions found in the title compound.
[Figure 3] Fig. 3. C—H···π interaction found in the compound C27H25NO3.
[Figure 4] Fig. 4. Packing diagram of the compound along the c axis.
(2-tert-Butyl-3-phenyl-2,3-dihydroisoxazole-4,5-diyl)bis(phenylmethanone) top
Crystal data top
C27H25NO3F(000) = 872
Mr = 411.48Dx = 1.245 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8059 reflections
a = 20.1034 (12) Åθ = 2.3–25.1°
b = 17.799 (1) ŵ = 0.08 mm1
c = 6.1366 (3) ÅT = 296 K
V = 2195.8 (2) Å3Block, yellow
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2967 independent reflections
Radiation source: fine-focus sealed tube2422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 3.1°
ω and ϕ scanh = 2624
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 2320
Tmin = 0.968, Tmax = 0.984l = 88
20181 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.2966P]
where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max < 0.001
283 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C27H25NO3V = 2195.8 (2) Å3
Mr = 411.48Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.1034 (12) ŵ = 0.08 mm1
b = 17.799 (1) ÅT = 296 K
c = 6.1366 (3) Å0.40 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2967 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2422 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.984Rint = 0.025
20181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.11 e Å3
2967 reflectionsΔρmin = 0.16 e Å3
283 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14603 (9)0.40278 (10)0.0012 (3)0.0661 (5)
O20.05003 (7)0.36111 (8)0.3046 (3)0.0517 (4)
O30.20313 (8)0.27030 (9)0.7795 (3)0.0616 (4)
N10.01783 (8)0.30875 (9)0.4612 (3)0.0458 (4)
C30.25597 (12)0.60359 (13)0.4233 (5)0.0625 (7)
H30.27720.64730.46900.075*
C20.26649 (13)0.57720 (14)0.2177 (5)0.0637 (7)
H20.29560.60230.12500.076*
C10.23438 (11)0.51380 (13)0.1469 (4)0.0545 (5)
H10.24160.49620.00620.065*
C60.19103 (9)0.47575 (10)0.2851 (3)0.0402 (4)
C70.15240 (10)0.41275 (12)0.1949 (4)0.0446 (5)
C80.11570 (9)0.36106 (10)0.3468 (3)0.0407 (4)
C90.13418 (9)0.31458 (10)0.5061 (3)0.0398 (4)
C170.07315 (9)0.27504 (10)0.5896 (4)0.0432 (4)
H170.06700.28560.74510.052*
C180.07424 (9)0.19093 (11)0.5505 (4)0.0456 (5)
C230.09136 (13)0.16269 (13)0.3489 (4)0.0619 (6)
H230.10220.19560.23670.074*
C220.09257 (16)0.08604 (14)0.3114 (5)0.0763 (8)
H220.10480.06770.17520.092*
C210.07586 (14)0.03747 (13)0.4739 (6)0.0761 (8)
H210.07650.01400.44860.091*
C240.03126 (10)0.35530 (11)0.5852 (4)0.0510 (5)
C260.06460 (13)0.30225 (15)0.7463 (5)0.0782 (9)
H26A0.07840.25750.67170.117*
H26B0.10270.32650.80910.117*
H26C0.03370.28930.85950.117*
C270.08187 (12)0.38226 (15)0.4187 (5)0.0708 (7)
H27A0.06030.41400.31390.106*
H27B0.11630.41000.49120.106*
H27C0.10100.33970.34570.106*
C250.00051 (13)0.42144 (13)0.7032 (5)0.0639 (6)
H25A0.03180.40360.80610.096*
H25B0.03460.44880.77880.096*
H25C0.02080.45390.59960.096*
C200.05818 (14)0.06446 (14)0.6739 (6)0.0737 (8)
H200.04660.03120.78450.088*
C190.05747 (11)0.14130 (13)0.7128 (5)0.0595 (6)
H190.04560.15930.84970.071*
C100.19933 (10)0.30137 (10)0.6033 (4)0.0438 (4)
C110.26076 (9)0.32369 (10)0.4850 (4)0.0451 (5)
C160.30928 (11)0.36438 (13)0.5935 (5)0.0619 (6)
H160.30190.38100.73510.074*
C150.36829 (14)0.37991 (17)0.4906 (7)0.0864 (10)
H150.40030.40870.56120.104*
C140.38057 (15)0.35349 (19)0.2856 (8)0.0933 (11)
H140.42130.36290.21930.112*
C130.33269 (16)0.31311 (17)0.1776 (5)0.0814 (9)
H130.34100.29510.03800.098*
C120.27250 (12)0.29918 (13)0.2752 (4)0.0576 (6)
H120.23960.27320.19980.069*
C50.18161 (10)0.50193 (11)0.4950 (4)0.0462 (4)
H50.15340.47640.58970.055*
C40.21427 (12)0.56621 (12)0.5637 (4)0.0560 (5)
H40.20800.58400.70470.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0854 (12)0.0756 (10)0.0372 (8)0.0054 (9)0.0025 (8)0.0026 (8)
O20.0428 (7)0.0611 (8)0.0511 (8)0.0062 (6)0.0059 (7)0.0124 (7)
O30.0648 (9)0.0699 (10)0.0502 (9)0.0031 (7)0.0153 (8)0.0129 (8)
N10.0422 (8)0.0427 (8)0.0526 (10)0.0021 (7)0.0033 (8)0.0006 (8)
C30.0596 (14)0.0528 (12)0.0750 (18)0.0103 (10)0.0015 (13)0.0032 (13)
C20.0545 (13)0.0655 (14)0.0711 (17)0.0108 (11)0.0147 (12)0.0140 (13)
C10.0516 (12)0.0644 (13)0.0475 (12)0.0049 (10)0.0121 (10)0.0053 (10)
C60.0397 (9)0.0416 (9)0.0393 (10)0.0089 (7)0.0017 (9)0.0072 (8)
C70.0485 (11)0.0460 (10)0.0394 (11)0.0100 (8)0.0002 (9)0.0031 (9)
C80.0419 (10)0.0406 (10)0.0398 (11)0.0025 (8)0.0046 (8)0.0043 (8)
C90.0437 (9)0.0364 (8)0.0393 (10)0.0005 (7)0.0060 (9)0.0032 (8)
C170.0467 (10)0.0427 (10)0.0402 (10)0.0024 (8)0.0020 (9)0.0009 (9)
C180.0425 (10)0.0397 (9)0.0544 (13)0.0026 (8)0.0094 (9)0.0057 (9)
C230.0876 (17)0.0436 (11)0.0546 (15)0.0034 (11)0.0131 (13)0.0018 (11)
C220.109 (2)0.0506 (13)0.0698 (17)0.0003 (14)0.0221 (17)0.0089 (13)
C210.0867 (18)0.0427 (12)0.099 (2)0.0096 (12)0.0261 (18)0.0003 (15)
C240.0430 (10)0.0489 (11)0.0611 (13)0.0021 (9)0.0018 (10)0.0082 (11)
C260.0658 (15)0.0703 (15)0.098 (2)0.0048 (12)0.0304 (16)0.0025 (16)
C270.0476 (12)0.0747 (15)0.090 (2)0.0146 (11)0.0092 (13)0.0145 (16)
C250.0631 (14)0.0559 (13)0.0727 (17)0.0017 (11)0.0043 (13)0.0172 (13)
C200.0683 (15)0.0519 (14)0.101 (2)0.0095 (12)0.0033 (16)0.0288 (15)
C190.0527 (12)0.0575 (13)0.0684 (16)0.0018 (10)0.0030 (11)0.0151 (12)
C100.0524 (11)0.0374 (9)0.0415 (10)0.0045 (8)0.0131 (9)0.0050 (9)
C110.0434 (10)0.0399 (10)0.0520 (12)0.0079 (8)0.0102 (10)0.0036 (9)
C160.0570 (13)0.0583 (13)0.0704 (16)0.0015 (10)0.0167 (13)0.0024 (13)
C150.0545 (15)0.0826 (19)0.122 (3)0.0141 (13)0.0181 (19)0.025 (2)
C140.0583 (16)0.098 (2)0.123 (3)0.0151 (16)0.018 (2)0.045 (2)
C130.0803 (19)0.0897 (19)0.0742 (19)0.0328 (16)0.0175 (16)0.0174 (16)
C120.0582 (13)0.0591 (13)0.0556 (14)0.0142 (10)0.0043 (11)0.0019 (11)
C50.0490 (11)0.0467 (10)0.0428 (10)0.0020 (8)0.0056 (10)0.0041 (10)
C40.0655 (13)0.0510 (11)0.0513 (13)0.0036 (10)0.0040 (11)0.0052 (10)
Geometric parameters (Å, º) top
O1—C71.209 (3)C24—C271.520 (4)
O2—C81.345 (2)C24—C261.522 (3)
O2—N11.487 (2)C26—H26A0.9600
O3—C101.217 (3)C26—H26B0.9600
N1—C171.489 (2)C26—H26C0.9600
N1—C241.496 (3)C27—H27A0.9600
C3—C21.363 (4)C27—H27B0.9600
C3—C41.374 (3)C27—H27C0.9600
C3—H30.9300C25—H25A0.9600
C2—C11.371 (3)C25—H25B0.9600
C2—H20.9300C25—H25C0.9600
C1—C61.392 (3)C20—C191.388 (4)
C1—H10.9300C20—H200.9300
C6—C51.383 (3)C19—H190.9300
C6—C71.472 (3)C10—C111.486 (3)
C7—C81.503 (3)C11—C121.380 (3)
C8—C91.333 (3)C11—C161.386 (3)
C9—C101.458 (3)C16—C151.372 (4)
C9—C171.505 (3)C16—H160.9300
C17—C181.516 (3)C15—C141.365 (5)
C17—H170.9800C15—H150.9300
C18—C191.374 (3)C14—C131.372 (5)
C18—C231.379 (3)C14—H140.9300
C23—C221.384 (3)C13—C121.372 (4)
C23—H230.9300C13—H130.9300
C22—C211.362 (4)C12—H120.9300
C22—H220.9300C5—C41.385 (3)
C21—C201.365 (5)C5—H50.9300
C21—H210.9300C4—H40.9300
C24—C251.514 (3)
C8—O2—N1107.60 (14)C24—C26—H26B109.5
O2—N1—C17105.62 (13)H26A—C26—H26B109.5
O2—N1—C24105.59 (14)C24—C26—H26C109.5
C17—N1—C24116.51 (17)H26A—C26—H26C109.5
C2—C3—C4120.6 (2)H26B—C26—H26C109.5
C2—C3—H3119.7C24—C27—H27A109.5
C4—C3—H3119.7C24—C27—H27B109.5
C3—C2—C1120.3 (2)H27A—C27—H27B109.5
C3—C2—H2119.9C24—C27—H27C109.5
C1—C2—H2119.9H27A—C27—H27C109.5
C2—C1—C6120.1 (2)H27B—C27—H27C109.5
C2—C1—H1119.9C24—C25—H25A109.5
C6—C1—H1119.9C24—C25—H25B109.5
C5—C6—C1119.32 (19)H25A—C25—H25B109.5
C5—C6—C7122.32 (18)C24—C25—H25C109.5
C1—C6—C7118.14 (19)H25A—C25—H25C109.5
O1—C7—C6122.5 (2)H25B—C25—H25C109.5
O1—C7—C8117.9 (2)C21—C20—C19120.3 (3)
C6—C7—C8119.47 (18)C21—C20—H20119.9
C9—C8—O2114.52 (17)C19—C20—H20119.9
C9—C8—C7134.23 (18)C18—C19—C20120.4 (3)
O2—C8—C7111.20 (16)C18—C19—H19119.8
C8—C9—C10130.56 (18)C20—C19—H19119.8
C8—C9—C17108.23 (16)O3—C10—C9119.5 (2)
C10—C9—C17121.17 (17)O3—C10—C11120.21 (18)
N1—C17—C9103.90 (15)C9—C10—C11120.22 (18)
N1—C17—C18108.96 (15)C12—C11—C16119.6 (2)
C9—C17—C18113.33 (16)C12—C11—C10120.88 (19)
N1—C17—H17110.2C16—C11—C10119.3 (2)
C9—C17—H17110.2C15—C16—C11119.5 (3)
C18—C17—H17110.2C15—C16—H16120.2
C19—C18—C23118.5 (2)C11—C16—H16120.2
C19—C18—C17121.1 (2)C14—C15—C16120.7 (3)
C23—C18—C17120.37 (19)C14—C15—H15119.6
C18—C23—C22120.9 (2)C16—C15—H15119.6
C18—C23—H23119.6C15—C14—C13119.9 (3)
C22—C23—H23119.6C15—C14—H14120.1
C21—C22—C23120.0 (3)C13—C14—H14120.1
C21—C22—H22120.0C14—C13—C12120.2 (3)
C23—C22—H22120.0C14—C13—H13119.9
C22—C21—C20119.9 (2)C12—C13—H13119.9
C22—C21—H21120.0C13—C12—C11120.0 (3)
C20—C21—H21120.0C13—C12—H12120.0
N1—C24—C25113.87 (17)C11—C12—H12120.0
N1—C24—C27105.9 (2)C6—C5—C4119.8 (2)
C25—C24—C27110.46 (19)C6—C5—H5120.1
N1—C24—C26106.08 (17)C4—C5—H5120.1
C25—C24—C26110.6 (2)C3—C4—C5119.9 (2)
C27—C24—C26109.7 (2)C3—C4—H4120.1
C24—C26—H26A109.5C5—C4—H4120.1
C8—O2—N1—C173.35 (19)C17—C18—C23—C22180.0 (2)
C8—O2—N1—C24120.65 (17)C18—C23—C22—C210.9 (4)
C4—C3—C2—C11.4 (4)C23—C22—C21—C200.2 (5)
C3—C2—C1—C60.3 (4)O2—N1—C24—C2558.2 (2)
C2—C1—C6—C51.0 (3)C17—N1—C24—C2558.7 (2)
C2—C1—C6—C7173.7 (2)O2—N1—C24—C2763.41 (19)
C5—C6—C7—O1158.6 (2)C17—N1—C24—C27179.74 (18)
C1—C6—C7—O115.9 (3)O2—N1—C24—C26179.99 (18)
C5—C6—C7—C817.5 (3)C17—N1—C24—C2663.2 (2)
C1—C6—C7—C8167.99 (18)C22—C21—C20—C190.3 (4)
N1—O2—C8—C91.9 (2)C23—C18—C19—C200.3 (3)
N1—O2—C8—C7179.93 (15)C17—C18—C19—C20179.5 (2)
O1—C7—C8—C9121.7 (3)C21—C20—C19—C180.3 (4)
C6—C7—C8—C962.0 (3)C8—C9—C10—O3162.4 (2)
O1—C7—C8—O255.8 (3)C17—C9—C10—O314.9 (3)
C6—C7—C8—O2120.48 (19)C8—C9—C10—C1119.3 (3)
O2—C8—C9—C10177.13 (19)C17—C9—C10—C11163.36 (17)
C7—C8—C9—C105.4 (4)O3—C10—C11—C12124.2 (2)
O2—C8—C9—C170.4 (2)C9—C10—C11—C1254.0 (2)
C7—C8—C9—C17177.0 (2)O3—C10—C11—C1650.4 (3)
O2—N1—C17—C93.45 (18)C9—C10—C11—C16131.4 (2)
C24—N1—C17—C9113.39 (17)C12—C11—C16—C150.2 (3)
O2—N1—C17—C18117.64 (17)C10—C11—C16—C15174.8 (2)
C24—N1—C17—C18125.52 (18)C11—C16—C15—C142.3 (4)
C8—C9—C17—N12.5 (2)C16—C15—C14—C132.2 (5)
C10—C9—C17—N1175.33 (17)C15—C14—C13—C120.0 (4)
C8—C9—C17—C18115.60 (19)C14—C13—C12—C112.1 (4)
C10—C9—C17—C1866.6 (2)C16—C11—C12—C132.0 (3)
N1—C17—C18—C19111.1 (2)C10—C11—C12—C13172.5 (2)
C9—C17—C18—C19133.7 (2)C1—C6—C5—C41.2 (3)
N1—C17—C18—C2368.0 (2)C7—C6—C5—C4173.24 (19)
C9—C17—C18—C2347.1 (3)C2—C3—C4—C51.2 (4)
C19—C18—C23—C220.9 (4)C6—C5—C4—C30.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.513.203 (3)131
C25—H25A···O1ii0.962.593.483 (3)155
C2—H2···Cg1i0.932.703.490 (3)143
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.513.203 (3)131
C25—H25A···O1ii0.962.593.483 (3)155
C2—H2···Cg1i0.932.703.490 (3)143
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z+1.
 

Acknowledgements

RS is grateful to the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Senior Research Fellowship. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for single-crystal X-ray diffraction measurements.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, B., Sharma, P. K. & Samanta, A. (2012). Indian J. Chem. Sect. B, 51, 1180–1185.  Google Scholar
First citationEberson, L., McCullough, J. P., Hartshorn, C. M. & Hartshorn, M. P. J. (1998). J. Chem. Soc. Perkin. Trans. 2, pp. 41–47.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhan, O. F. & Lee, H. J. (2006). Steroids, 71, 183–188.  Web of Science CrossRef PubMed Google Scholar
First citationKiss, L., Nonn, M., Forro, E., Sillanpaa, R. & Fulop, F. (2009). Tetrahedron Lett. 50, 2605–2608  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Hu, R., Wei, Y., Liang, Y., Yang, Z. & Ke, S. (2012). Eur. J. Med. Chem. 54, 549–556.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVelikorodov, A. V. & Sukhenko, L. T. (2003). Pharm. Chem. J. 37, 24–26.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 8| August 2013| Pages o1284-o1285
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds