organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-6,8-Di­chloro-3-{[(naphthalen-1-ylmeth­yl)iminiumyl]meth­yl}-2H-chromen-4-olate

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 20 June 2013; accepted 1 July 2013; online 10 July 2013)

In the title compound, C21H15Cl2NO2, the H atom of the –OH group is transferred to the N atom of the imine, forming a zwitterion. Thus, there is formation of a six-membered ring via an intra­molecular O⋯H—N, rather than O—H⋯N, hydrogen bond in the mol­ecule. The dihedral angle between the naphthalene ring system and the benzene ring of the 2H-chromen system is 87.41 (4)°. In the crystal, the mol­ecules are packed through N—H⋯O, ππ [centroid–centroid distances = 3.744 (3) and 3.780 (3) Å], C—Cl⋯π [Cl⋯centroid = 3.261 (3) Å], C—H⋯π and C—H⋯O inter­actions.

Related literature

For the biological propertries of similar structures, see: Khan et al. (2009[Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2988.]); Tu et al. (2013[Tu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826-2831.]). For related structures, see: Benaouida et al. (2013[Benaouida, M. A., Chetioui, S. & Bouaoud, S. E. (2013). Acta Cryst. E69, o867-o868.]); Małecka & Budzisz (2006[Małecka, M. & Budzisz, E. (2006). Acta Cryst. E62, o5058-o5060.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15Cl2NO2

  • Mr = 384.26

  • Monoclinic, P 21 /c

  • a = 16.286 (7) Å

  • b = 8.910 (6) Å

  • c = 12.008 (9) Å

  • β = 102.65 (4)°

  • V = 1700.2 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 100 K

  • 0.37 × 0.37 × 0.28 mm

Data collection
  • Rigaku AFC7R diffractometer

  • 4657 measured reflections

  • 3875 independent reflections

  • 3367 reflections with F2 > 2.0σ(F2)

  • Rint = 0.083

  • 3 standard reflections every 150 reflections intensity decay: −0.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.04

  • 3875 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H6⋯O2 0.88 2.18 2.794 (2) 126
N1—H6⋯O2i 0.88 2.54 3.306 (3) 146
C1—H2A⋯O2ii 0.99 2.52 3.472 (3) 160
C15—H11⋯Cg2iii 0.95 2.77 3.682 (3) 160
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+2, -z+1.

Data collection: WinAFC (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC; data reduction: WinAFC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Schiff bases of 3-formyl chromones have attracted much attention due to their biological functions such as enzyme inhibition (Khan et al. 2009; Tu et al. 2013). Here we report the crystal structure of the title compound, which was obtained from the condensation reaction of 6,8-dichloro-3-formylchromone with 1-naphthylmethylamine and successive reduction with 2-picoline borane. The structure shows that the H atom of the –OH group is transferred to the N1 atom of the imine, thus forming a zwitterion. As a result, an intramolecular O···H–N [O2···N1 = 2.795 (2) Å], rather than O–H···N, hydrogen bond is formed. The bond distances O2–C3 [1.245 (3) Å], C3–C2 [1.431 (3) Å], C2–C10 [1.377 (3) Å] and C10–N1 [1.329 (3) Å] and torsion angles O2–C3–C2–C10 [3.2 (3)°] and C3–C2–C10–N1 [–2.4 (3)°] in the six-membered ring indicate charge delocalization among the atoms. This effect might be responsible for the preferential reduction of the α,β-unsaturated carbonyl of the synthetic intermediate, rather than reduction of the imine. The dihedral angle between the naphthalene ring and the benzene part of the 2H-chromen ring is 87.41 (4)°. In the crystal, the molecules are packed through intermolecular N–H···O, as shown in Figure 2, π···π, C-Cl···π, C-H···π and C-H···O interactions.

Related literature top

For the biological propertries of similar structures, see: Khan et al. (2009); Tu et al. (2013). For related structures, see: Benaouida et al. (2013); Małecka & Budzisz (2006).

Experimental top

1-Naphthylmethylamine (5.0 mmol), 6,8-dichloro-3-formylchromone (5.0 mmol) and 2-picoline borane (5.0 mmol) were dissolved in a mixture of MeOH-AcOH (10:1, 60 ml), and stirred overnight at room temperature. Hydrochloric acid (1 M, 20 ml) was added to the reaction mixture, which was then stirred for 30 min. After neutralization with saturated NaHCO3, the mixture was extracted with methylene chloride. The extract was washed with brine, dried over anhydrous Na2SO4 and purified by column chromatography on silica gel (n-hexane: ethyl acetate = 9: 1). The eluted fractions were concentrated and filtered off. Layering n-hexane on the filtrate gave single crystals suitable for X-ray diffraction (yield 19%).

Refinement top

The carbon-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. The hydrogen atom of the OH group was located near N1 of the imine in a difference Fourier map, and refined with distance constraint [N–H 0.88 Å, Uiso(H) = 1.2Ueq(N)].

Computing details top

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC (Rigaku, 1999); data reduction: WinAFC (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A crystal packing view of the title compound. Intra- and intermolecular N–H···O hydrogen bonds are represented as dashed lines.
(E)-6,8-Dichloro-3-{[(naphthalen-1-ylmethyl)iminio]methyl}-2H-chromen-4-olate top
Crystal data top
C21H15Cl2NO2F(000) = 792.00
Mr = 384.26Dx = 1.501 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.286 (7) Åθ = 15.7–17.5°
b = 8.910 (6) ŵ = 0.40 mm1
c = 12.008 (9) ÅT = 100 K
β = 102.65 (4)°Block, yellow
V = 1700.2 (19) Å30.37 × 0.37 × 0.28 mm
Z = 4
Data collection top
Rigaku AFC7R
diffractometer
θmax = 27.6°
ω–2θ scansh = 2021
4657 measured reflectionsk = 011
3875 independent reflectionsl = 158
3367 reflections with F2 > 2.0σ(F2)3 standard reflections every 150 reflections
Rint = 0.083 intensity decay: 0.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.7479P]
where P = (Fo2 + 2Fc2)/3
3875 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.53 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H15Cl2NO2V = 1700.2 (19) Å3
Mr = 384.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.286 (7) ŵ = 0.40 mm1
b = 8.910 (6) ÅT = 100 K
c = 12.008 (9) Å0.37 × 0.37 × 0.28 mm
β = 102.65 (4)°
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.083
4657 measured reflections3 standard reflections every 150 reflections
3875 independent reflections intensity decay: 0.4%
3367 reflections with F2 > 2.0σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.04Δρmax = 0.49 e Å3
3875 reflectionsΔρmin = 0.53 e Å3
235 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10099 (2)0.41074 (4)0.50407 (3)0.02134 (10)
Cl20.17147 (2)0.84582 (4)0.82092 (3)0.01871 (10)
O10.34501 (6)0.79385 (11)0.80754 (9)0.0176 (2)
O20.43015 (6)0.52671 (12)0.57813 (9)0.0194 (2)
N10.58885 (7)0.64807 (13)0.66903 (11)0.0178 (3)
C10.42933 (8)0.73258 (16)0.84317 (12)0.0173 (3)
C20.46328 (8)0.67928 (15)0.74377 (12)0.0163 (3)
C30.40821 (8)0.59345 (15)0.65803 (12)0.0153 (3)
C40.25901 (8)0.50521 (16)0.59487 (11)0.0149 (3)
C50.17435 (8)0.52122 (16)0.59411 (11)0.0156 (3)
C60.14631 (8)0.62656 (15)0.66285 (11)0.0152 (3)
C70.20515 (8)0.71380 (15)0.73498 (11)0.0141 (3)
C80.29135 (8)0.69931 (15)0.73910 (11)0.0142 (3)
C90.31801 (8)0.59510 (15)0.66686 (11)0.0148 (3)
C100.54680 (8)0.70260 (15)0.74329 (12)0.0166 (3)
C110.67892 (8)0.67249 (16)0.68340 (12)0.0174 (3)
C120.70249 (8)0.80052 (15)0.61334 (11)0.0140 (3)
C130.64295 (9)0.87459 (16)0.53406 (12)0.0176 (3)
C140.66574 (9)0.99175 (17)0.46685 (12)0.0208 (3)
C150.74839 (10)1.03185 (17)0.47995 (12)0.0210 (3)
C160.89800 (9)0.99932 (17)0.57563 (13)0.0212 (3)
C170.95874 (9)0.93028 (17)0.65587 (13)0.0219 (3)
C180.93670 (9)0.81701 (16)0.72581 (12)0.0193 (3)
C190.85400 (8)0.77372 (15)0.71310 (12)0.0157 (3)
C200.78937 (8)0.84224 (14)0.63022 (11)0.0133 (3)
C210.81193 (9)0.95853 (16)0.56097 (12)0.0170 (3)
H1B0.42830.64760.89600.0207*
H2A0.46720.81060.88500.0207*
H30.27690.43340.54660.0179*
H40.08790.63820.66030.0182*
H50.57770.76430.80240.0199*
H60.56170.59620.61000.0213*
H7A0.70480.57910.66260.0209*
H8B0.70330.69250.76510.0209*
H90.58550.84700.52400.0211*
H100.62361.04240.41270.0249*
H110.76331.10980.43410.0252*
H120.91351.07570.52900.0255*
H131.01600.95880.66450.0263*
H140.97910.77020.78200.0231*
H150.84000.69680.76050.0188*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01563 (16)0.0285 (2)0.01929 (17)0.00243 (13)0.00266 (12)0.00941 (13)
Cl20.01504 (16)0.01710 (17)0.02549 (18)0.00033 (12)0.00772 (12)0.00669 (13)
O10.0124 (5)0.0160 (5)0.0241 (5)0.0000 (4)0.0036 (4)0.0044 (4)
O20.0161 (5)0.0212 (5)0.0225 (5)0.0025 (4)0.0078 (4)0.0020 (4)
N10.0120 (6)0.0189 (6)0.0228 (6)0.0021 (5)0.0046 (5)0.0003 (5)
C10.0116 (6)0.0192 (7)0.0204 (7)0.0005 (5)0.0020 (5)0.0002 (6)
C20.0139 (6)0.0148 (7)0.0210 (7)0.0018 (5)0.0053 (5)0.0031 (6)
C30.0138 (6)0.0135 (6)0.0197 (7)0.0027 (5)0.0061 (5)0.0043 (5)
C40.0160 (6)0.0162 (6)0.0134 (6)0.0024 (5)0.0048 (5)0.0004 (5)
C50.0155 (7)0.0170 (7)0.0141 (6)0.0015 (5)0.0024 (5)0.0006 (5)
C60.0125 (6)0.0174 (7)0.0165 (6)0.0008 (5)0.0051 (5)0.0021 (5)
C70.0155 (6)0.0118 (6)0.0164 (6)0.0024 (5)0.0068 (5)0.0007 (5)
C80.0137 (6)0.0128 (6)0.0162 (6)0.0001 (5)0.0039 (5)0.0022 (5)
C90.0138 (6)0.0150 (7)0.0165 (6)0.0018 (5)0.0053 (5)0.0033 (5)
C100.0146 (6)0.0142 (6)0.0206 (7)0.0000 (5)0.0032 (5)0.0037 (6)
C110.0110 (6)0.0173 (7)0.0245 (7)0.0012 (5)0.0050 (5)0.0044 (6)
C120.0140 (6)0.0132 (6)0.0155 (6)0.0001 (5)0.0051 (5)0.0018 (5)
C130.0162 (7)0.0183 (7)0.0177 (7)0.0011 (5)0.0021 (5)0.0014 (6)
C140.0244 (7)0.0205 (7)0.0157 (7)0.0033 (6)0.0003 (6)0.0017 (6)
C150.0282 (8)0.0187 (7)0.0172 (7)0.0015 (6)0.0072 (6)0.0027 (6)
C160.0231 (8)0.0187 (7)0.0246 (7)0.0042 (6)0.0110 (6)0.0001 (6)
C170.0153 (7)0.0224 (8)0.0298 (8)0.0038 (6)0.0089 (6)0.0056 (6)
C180.0150 (7)0.0206 (7)0.0219 (7)0.0030 (6)0.0035 (6)0.0033 (6)
C190.0161 (6)0.0143 (6)0.0173 (7)0.0004 (5)0.0050 (5)0.0017 (5)
C200.0144 (6)0.0127 (6)0.0137 (6)0.0000 (5)0.0050 (5)0.0029 (5)
C210.0199 (7)0.0157 (7)0.0169 (7)0.0008 (6)0.0072 (5)0.0021 (6)
Geometric parameters (Å, º) top
Cl1—C51.7319 (15)C15—C211.415 (2)
Cl2—C71.7313 (17)C16—C171.367 (2)
O1—C11.4524 (17)C16—C211.421 (3)
O1—C81.3543 (17)C17—C181.409 (3)
O2—C31.246 (2)C18—C191.377 (2)
N1—C101.330 (3)C19—C201.4185 (19)
N1—C111.4554 (19)C20—C211.426 (3)
C1—C21.498 (3)N1—H60.880
C2—C31.430 (2)C1—H1B0.990
C2—C101.377 (2)C1—H2A0.990
C3—C91.496 (2)C4—H30.950
C4—C51.384 (2)C6—H40.950
C4—C91.3958 (19)C10—H50.950
C5—C61.391 (2)C11—H7A0.990
C6—C71.3817 (19)C11—H8B0.990
C7—C81.400 (2)C13—H90.950
C8—C91.403 (2)C14—H100.950
C11—C121.516 (3)C15—H110.950
C12—C131.3703 (19)C16—H120.950
C12—C201.434 (2)C17—H130.950
C13—C141.418 (3)C18—H140.950
C14—C151.368 (3)C19—H150.950
Cl2···O12.9030 (16)C2···H9iv3.5215
O1···C32.878 (3)C2···H10vi3.2427
O2···N12.7938 (19)C2···H10iv3.5375
O2···C42.844 (2)C3···H2Aii3.3458
O2···C102.889 (2)C3···H5ii2.9718
N1···C32.956 (2)C3···H10vi3.3648
N1···C132.846 (3)C4···H5ii3.4301
C1···C92.755 (3)C4···H7Aiii3.3561
C2···C82.794 (3)C4···H8Bii3.2427
C4···C72.775 (3)C4···H11vi3.4591
C5···C82.780 (3)C5···H11vi3.4793
C6···C92.800 (3)C5···H15ii3.4109
C10···C123.370 (3)C6···H11vi3.1293
C10···C133.583 (3)C6···H12vi3.5089
C11···C192.937 (3)C6···H14viii3.5789
C12···C152.810 (3)C7···H11vi2.7047
C13···C212.801 (3)C8···H7Av3.5798
C14···C202.819 (3)C8···H10vi3.4120
C16···C192.792 (3)C8···H11vi2.6837
C17···C202.819 (3)C9···H5ii3.3815
C18···C212.806 (3)C9···H10vi3.5560
Cl1···Cl2i3.4590 (17)C9···H11vi3.0717
Cl1···C18ii3.531 (3)C10···H9iv3.3197
Cl1···C18iii3.372 (3)C10···H10iv3.0585
Cl1···C19ii3.531 (3)C11···H3iii3.1482
Cl1···C19iii3.298 (3)C12···H3iii2.9038
Cl1···C20iii3.483 (2)C13···H1Bv2.8981
Cl2···Cl1iv3.4590 (17)C13···H1Bi3.5306
Cl2···C4iv3.544 (3)C13···H2Ai3.4463
Cl2···C5iv3.478 (3)C13···H3iii3.2759
O1···N1v3.327 (3)C13···H5i3.0174
O1···C11v3.401 (3)C14···H1Bv2.8448
O2···O2iii3.285 (3)C14···H5i3.1497
O2···N1iii3.306 (3)C14···H8Bi3.0966
O2···C1ii3.472 (3)C15···H8Bi3.2195
O2···C1i3.542 (3)C16···H4v3.3653
O2···C10ii3.567 (3)C16···H13ix3.4908
N1···O1ii3.327 (3)C16···H14x3.3549
N1···O2iii3.306 (3)C17···H4xi3.3395
C1···O2v3.472 (3)C17···H4v3.1019
C1···O2iv3.542 (3)C17···H12ix3.3585
C4···Cl2i3.544 (3)C17···H14x3.2288
C5···Cl2i3.478 (3)C18···H4xi3.1738
C5···C19ii3.302 (3)C18···H4v3.2351
C6···C16ii3.558 (3)C18···H13xii3.4745
C6···C17ii3.515 (3)C20···H3iii3.2717
C6···C18ii3.466 (3)H1B···C13ii2.8981
C6···C19ii3.479 (3)H1B···C13iv3.5306
C6···C20ii3.542 (3)H1B···C14ii2.8448
C6···C21ii3.566 (3)H1B···H9ii2.8715
C7···C21ii3.399 (3)H1B···H9iv2.6810
C8···C15vi3.511 (3)H1B···H10ii2.7785
C10···O2v3.567 (3)H1B···H10iv3.5696
C10···C13iv3.567 (3)H2A···O2v2.5248
C10···C14iv3.418 (3)H2A···O2iv2.9081
C11···O1ii3.401 (3)H2A···N1v3.1678
C13···C10i3.567 (3)H2A···N1iv3.5686
C14···C10i3.418 (3)H2A···C3v3.3458
C15···C8vi3.511 (3)H2A···C13iv3.4463
C16···C6v3.558 (3)H2A···H6v2.5906
C17···C6v3.515 (3)H2A···H6iv2.9221
C18···Cl1v3.531 (3)H2A···H9iv2.6567
C18···Cl1iii3.372 (3)H3···Cl2i3.4819
C18···C6v3.466 (3)H3···C11iii3.1482
C19···Cl1v3.531 (3)H3···C12iii2.9038
C19···Cl1iii3.298 (3)H3···C13iii3.2759
C19···C5v3.302 (3)H3···C20iii3.2717
C19···C6v3.479 (3)H3···H5ii3.0475
C20···Cl1iii3.483 (2)H3···H6iii3.5623
C20···C6v3.542 (3)H3···H7Aiii2.5963
C21···C6v3.566 (3)H3···H8Bii3.0827
C21···C7v3.399 (3)H3···H9iii3.5808
Cl1···H32.8044H4···Cl1vii3.3003
Cl1···H42.8011H4···C16ii3.3653
Cl2···H42.8007H4···C17viii3.3395
O2···H32.5793H4···C17ii3.1019
O2···H62.1816H4···C18viii3.1738
N1···H92.4771H4···C18ii3.2351
C1···H52.5838H4···H12vi3.4114
C2···H62.6121H4···H13viii3.0915
C3···H1B2.8456H4···H13ii3.3779
C3···H2A3.3086H4···H14viii2.7925
C3···H32.6730H4···H14ii3.5715
C3···H53.2932H5···O2v2.7607
C3···H62.6854H5···C3v2.9718
C4···H43.2775H5···C4v3.4301
C6···H33.2754H5···C9v3.3815
C8···H1B2.6266H5···C13iv3.0174
C8···H2A3.1711H5···C14iv3.1497
C8···H33.2817H5···H3v3.0475
C8···H43.2853H5···H9iv2.8161
C9···H1B2.9757H5···H10iv3.0576
C10···H1B2.9791H6···O1ii3.1444
C10···H2A2.5432H6···O2iii2.5402
C10···H7A3.1414H6···C1ii3.2859
C10···H8B2.5054H6···H2Aii2.5906
C10···H93.1166H6···H2Ai2.9221
C11···H52.5417H6···H3iii3.5623
C11···H92.6689H6···H6iii3.4103
C11···H152.5932H7A···Cl2ii2.8708
C12···H53.3778H7A···O1ii2.7154
C12···H62.9216H7A···O2iii3.3604
C12···H103.2782H7A···C4iii3.3561
C12···H152.6946H7A···C8ii3.5798
C13···H63.0440H7A···H3iii2.5963
C13···H7A3.1064H8B···C4v3.2427
C13···H8B3.1775H8B···C14iv3.0966
C13···H113.2717H8B···C15iv3.2195
C15···H93.2633H8B···H3v3.0827
C15···H122.6531H8B···H10iv3.1963
C16···H112.6523H8B···H11iv3.3862
C16···H143.2588H9···O2iii3.5379
C17···H153.2725H9···C1i3.0434
C18···H123.2633H9···C2i3.5215
C19···H7A2.9380H9···C10i3.3197
C19···H8B2.7588H9···H1Bv2.8715
C19···H133.2701H9···H1Bi2.6810
C20···H7A2.7891H9···H2Ai2.6567
C20···H8B2.7134H9···H3iii3.5808
C20···H93.2869H9···H5i2.8161
C20···H113.3119H10···O1vi3.1583
C20···H123.3119H10···N1i3.3222
C20···H143.2890H10···C2vi3.2427
C21···H103.2781H10···C2i3.5375
C21···H133.2836H10···C3vi3.3648
C21···H153.3029H10···C8vi3.4120
H1B···H53.0755H10···C9vi3.5560
H2A···H52.2747H10···C10i3.0585
H5···H62.7173H10···H1Bv2.7785
H5···H7A3.3695H10···H1Bi3.5696
H5···H8B2.2788H10···H5i3.0576
H5···H93.4527H10···H8Bi3.1963
H6···H7A2.2832H11···Cl2v3.5822
H6···H8B2.7639H11···Cl2vi3.4771
H6···H92.5271H11···O1vi3.1669
H7A···H93.2912H11···C4vi3.4591
H7A···H152.4895H11···C5vi3.4793
H8B···H93.3945H11···C6vi3.1293
H8B···H152.2403H11···C7vi2.7047
H9···H102.3596H11···C8vi2.6837
H10···H112.3125H11···C9vi3.0717
H11···H122.4808H11···H8Bi3.3862
H12···H132.3085H12···Cl2v3.4716
H13···H142.3547H12···C6vi3.5089
H14···H152.3174H12···C17ix3.3585
Cl1···H4vii3.3003H12···H4vi3.4114
Cl1···H14ii3.3665H12···H12ix3.3307
Cl1···H15ii3.3698H12···H13ix2.8245
Cl2···H3iv3.4819H12···H14x3.0781
Cl2···H7Av2.8708H13···Cl2xi2.9779
Cl2···H11ii3.5822H13···C16ix3.4908
Cl2···H11vi3.4771H13···C18x3.4745
Cl2···H12ii3.4716H13···H4xi3.0915
Cl2···H13viii2.9779H13···H4v3.3779
Cl2···H14viii3.1376H13···H12ix2.8245
Cl2···H15v3.2700H13···H14x2.8458
O1···H6v3.1444H13···H15x3.1438
O1···H7Av2.7154H14···Cl1v3.3665
O1···H10vi3.1583H14···Cl2xi3.1376
O1···H11vi3.1669H14···C6xi3.5789
O2···H2Aii2.5248H14···C16xii3.3549
O2···H2Ai2.9081H14···C17xii3.2288
O2···H5ii2.7607H14···H4xi2.7925
O2···H6iii2.5402H14···H4v3.5715
O2···H7Aiii3.3604H14···H12xii3.0781
O2···H9iii3.5379H14···H13xii2.8458
N1···H2Aii3.1678H15···Cl1v3.3698
N1···H2Ai3.5686H15···Cl2ii3.2700
N1···H10iv3.3222H15···C5v3.4109
C1···H6v3.2859H15···H13xii3.1438
C1···H9iv3.0434
C1—O1—C8112.82 (12)C19—C20—C21118.39 (13)
C10—N1—C11121.31 (12)C15—C21—C16121.33 (15)
O1—C1—C2112.00 (12)C15—C21—C20119.55 (14)
C1—C2—C3117.41 (13)C16—C21—C20119.12 (13)
C1—C2—C10119.51 (12)C10—N1—H6119.342
C3—C2—C10122.82 (14)C11—N1—H6119.346
O2—C3—C2124.70 (13)O1—C1—H1B109.210
O2—C3—C9120.73 (12)O1—C1—H2A109.215
C2—C3—C9114.49 (13)C2—C1—H1B109.214
C5—C4—C9119.64 (14)C2—C1—H2A109.212
Cl1—C5—C4119.70 (12)H1B—C1—H2A107.905
Cl1—C5—C6118.85 (11)C5—C4—H3120.177
C4—C5—C6121.43 (12)C9—C4—H3120.180
C5—C6—C7118.60 (13)C5—C6—H4120.699
Cl2—C7—C6119.28 (11)C7—C6—H4120.701
Cl2—C7—C8119.20 (10)N1—C10—H5116.499
C6—C7—C8121.52 (13)C2—C10—H5116.493
O1—C8—C7118.23 (13)N1—C11—H7A108.592
O1—C8—C9122.75 (13)N1—C11—H8B108.590
C7—C8—C9118.88 (12)C12—C11—H7A108.590
C3—C9—C4120.27 (13)C12—C11—H8B108.589
C3—C9—C8119.48 (12)H7A—C11—H8B107.556
C4—C9—C8119.90 (13)C12—C13—H9119.454
N1—C10—C2127.01 (13)C14—C13—H9119.453
N1—C11—C12114.70 (11)C13—C14—H10119.980
C11—C12—C13121.42 (13)C15—C14—H10119.986
C11—C12—C20118.60 (11)C14—C15—H11119.628
C13—C12—C20119.98 (14)C21—C15—H11119.617
C12—C13—C14121.09 (14)C17—C16—H12119.532
C13—C14—C15120.03 (13)C21—C16—H12119.524
C14—C15—C21120.75 (15)C16—C17—H13119.901
C17—C16—C21120.94 (15)C18—C17—H13119.892
C16—C17—C18120.21 (14)C17—C18—H14119.822
C17—C18—C19120.35 (13)C19—C18—H14119.826
C18—C19—C20120.98 (14)C18—C19—H15119.511
C12—C20—C19123.04 (13)C20—C19—H15119.512
C12—C20—C21118.57 (12)
C1—O1—C8—C7155.30 (11)O1—C8—C9—C4177.29 (11)
C1—O1—C8—C929.15 (17)C7—C8—C9—C3171.33 (11)
C8—O1—C1—C252.17 (15)C7—C8—C9—C41.77 (19)
C8—O1—C1—H1B68.9N1—C11—C12—C136.86 (19)
C8—O1—C1—H2A173.3N1—C11—C12—C20174.05 (11)
C10—N1—C11—C1298.17 (16)H7A—C11—C12—C13114.8
C10—N1—C11—H7A140.2H7A—C11—C12—C2064.3
C10—N1—C11—H8B23.5H8B—C11—C12—C13128.5
C11—N1—C10—C2175.34 (12)H8B—C11—C12—C2052.4
C11—N1—C10—H54.7C11—C12—C13—C14178.41 (12)
H6—N1—C10—C24.7C11—C12—C13—H91.6
H6—N1—C10—H5175.3C11—C12—C20—C192.90 (19)
H6—N1—C11—C1281.8C11—C12—C20—C21177.44 (11)
H6—N1—C11—H7A39.8C13—C12—C20—C19178.00 (12)
H6—N1—C11—H8B156.5C13—C12—C20—C211.66 (19)
O1—C1—C2—C344.51 (16)C20—C12—C13—C140.7 (2)
O1—C1—C2—C10141.16 (11)C20—C12—C13—H9179.3
H1B—C1—C2—C376.6C12—C13—C14—C150.5 (3)
H1B—C1—C2—C1097.7C12—C13—C14—H10179.5
H2A—C1—C2—C3165.6H9—C13—C14—C15179.5
H2A—C1—C2—C1020.1H9—C13—C14—H100.5
C1—C2—C3—O2171.00 (12)C13—C14—C15—C210.6 (3)
C1—C2—C3—C912.11 (17)C13—C14—C15—H11179.4
C1—C2—C10—N1171.75 (12)H10—C14—C15—C21179.4
C1—C2—C10—H58.3H10—C14—C15—H110.6
C3—C2—C10—N12.3 (3)C14—C15—C21—C16179.85 (13)
C3—C2—C10—H5177.7C14—C15—C21—C200.4 (3)
C10—C2—C3—O23.1 (3)H11—C15—C21—C160.1
C10—C2—C3—C9173.76 (12)H11—C15—C21—C20179.6
O2—C3—C9—C48.74 (19)C17—C16—C21—C15178.49 (13)
O2—C3—C9—C8164.33 (12)C17—C16—C21—C200.9 (3)
C2—C3—C9—C4174.23 (11)C21—C16—C17—C180.1 (3)
C2—C3—C9—C812.69 (17)C21—C16—C17—H13179.9
C5—C4—C9—C3172.09 (11)H12—C16—C17—C18179.9
C5—C4—C9—C81.0 (2)H12—C16—C17—H130.1
C9—C4—C5—Cl1179.53 (11)H12—C16—C21—C151.5
C9—C4—C5—C60.7 (2)H12—C16—C21—C20179.1
H3—C4—C5—Cl10.5C16—C17—C18—C190.7 (3)
H3—C4—C5—C6179.3C16—C17—C18—H14179.3
H3—C4—C9—C37.9H13—C17—C18—C19179.3
H3—C4—C9—C8179.0H13—C17—C18—H140.7
Cl1—C5—C6—C7179.64 (9)C17—C18—C19—C200.3 (3)
Cl1—C5—C6—H40.4C17—C18—C19—H15179.7
C4—C5—C6—C71.6 (2)H14—C18—C19—C20179.7
C4—C5—C6—H4178.4H14—C18—C19—H150.3
C5—C6—C7—Cl2179.84 (11)C18—C19—C20—C12179.65 (12)
C5—C6—C7—C80.70 (19)C18—C19—C20—C210.7 (2)
H4—C6—C7—Cl20.2H15—C19—C20—C120.3
H4—C6—C7—C8179.3H15—C19—C20—C21179.3
Cl2—C7—C8—O12.47 (17)C12—C20—C21—C151.54 (19)
Cl2—C7—C8—C9178.20 (8)C12—C20—C21—C16179.02 (11)
C6—C7—C8—O1176.67 (12)C19—C20—C21—C15178.13 (12)
C6—C7—C8—C90.94 (19)C19—C20—C21—C161.30 (19)
O1—C8—C9—C34.19 (19)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z+1/2; (v) x+1, y+1/2, z+3/2; (vi) x+1, y+2, z+1; (vii) x, y+1, z+1; (viii) x1, y, z; (ix) x+2, y+2, z+1; (x) x+2, y+1/2, z+3/2; (xi) x+1, y, z; (xii) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H6···O20.882.182.794 (2)126
N1—H6···O2iii0.882.543.306 (3)146
C1—H2A···O2v0.992.523.472 (3)160
C15—H11···Cg2vi0.952.773.682 (3)160
Symmetry codes: (iii) x+1, y+1, z+1; (v) x+1, y+1/2, z+3/2; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC21H15Cl2NO2
Mr384.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.286 (7), 8.910 (6), 12.008 (9)
β (°) 102.65 (4)
V3)1700.2 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.37 × 0.37 × 0.28
Data collection
DiffractometerRigaku AFC7R
diffractometer
Absorption correction
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
4657, 3875, 3367
Rint0.083
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.04
No. of reflections3875
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.53

Computer programs: WinAFC (Rigaku, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H6···O20.882.182.794 (2)126
N1—H6···O2i0.882.543.306 (3)146
C1—H2A···O2ii0.992.523.472 (3)160
C15—H11···Cg2iii0.952.773.682 (3)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+2, z+1.
 

Acknowledgements

We acknowledge the University of Shizuoka for supporting this study.

References

First citationBenaouida, M. A., Chetioui, S. & Bouaoud, S. E. (2013). Acta Cryst. E69, o867–o868.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983–2988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMałecka, M. & Budzisz, E. (2006). Acta Cryst. E62, o5058–o5060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826–2831.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds