organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-2-Chloro­benzyl­­idene]thio­phene-2-carbohydrazide

aDepartment of Chemistry, An-Najah National University, Nablus, Palestinian Territories, bDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, cDepartment of Chemistry, Hashemite University, PO Box 150459, Zarqa 13115, Jordan, dLCAE-URAC18, Faculté des Sciences, Université Mohammed Ier, Oujda-60000, Morocco, and eLaboratoire LCM, Faculté des Sciences, Université Mohammed Ier, Oujda-60000, Morocco
*Correspondence e-mail: hadsal2003@yahoo.com

(Received 16 June 2013; accepted 26 July 2013; online 17 August 2013)

There are two independent mol­ecules in the asymmetric unit of the title compound, C12H9ClN2OS, a Schiff base derived from hydrazide, in which the dihedral angles between the thio­phene and benzene rings are 3.6 (3) and 7.3 (3)°. In the crystal, the two independent mol­ecules are arranged about an approximate non-crystallographic inversion center and are connected by two N—H⋯O hydrogen bonds. Weak C—H⋯Cl contacts are also present. Conversely, there are neither significant aromatic stacking inter­actions nor contacts involving S atoms.

Related literature

For applications of Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For related structures, see: Warad et al. (2009[Warad, I., Al-Nuri, M., Al-Resayes, S., Al-Farhan, K. & Ghazzali, M. (2009). Acta Cryst. E65, o1597.]); Jiang (2010[Jiang, J.-H. (2010). Acta Cryst. E66, o923.], 2011[Jiang, J.-H. (2011). Acta Cryst. E67, o50.]); Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.]); Li & Meng (2010[Li, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2685.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9ClN2OS

  • Mr = 264.72

  • Orthorhombic, P n a 21

  • a = 24.9465 (15) Å

  • b = 4.3709 (3) Å

  • c = 21.8091 (13) Å

  • V = 2378.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.870, Tmax = 0.954

  • 9965 measured reflections

  • 3845 independent reflections

  • 3341 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.08

  • 3845 reflections

  • 316 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.84 (4) 2.02 (5) 2.856 (4) 175 (4)
N1—H1A⋯O2ii 0.77 (4) 2.09 (4) 2.845 (5) 166 (5)
C10—H10A⋯Cl2iii 0.93 2.93 3.758 (5) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z]; (iii) [-x+1, -y+2, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Schiff bases derivatives have attracted much attention due to their pharmacological activity (Ren et al., 2002). They are attractive from several points of view, such as the possibility of analytical applications (Cimerman et al., 1997). As part of our search for new Schiff base compounds as ligand (Warad et al., 2009), we synthesized the title compound, and describe its structure here. The title compound crystallizes with two independent molecules in the asymmetric unit, related by non-crystallographic inversion. The dihedral angles between the aromatic rings in the two independent molecules are surprisingly different, 3.6 (3)° for S1-molecule and 7.3 (3)° for S2-molecule (Fig. 1). In the crystal lattice two rather strong N—H···O intermolecular hydrogen bonds hold the two independent molecules together. One CH group of the benzene ring is also hydrogen bonded to the Cl atom of the chlorophenyl ring of a symmetry-related independent molecule (Fig. 2). There are no intermolecular contacts to sulfur of importance. Bond lengths and angles are comparable to those in related compounds (Warad et al., 2009; Jiang, 2010, 2011; Li & Jian, 2010; Li & Meng, 2010).

Related literature top

For applications of Schiff bases, see: Cimerman et al. (1997); Ren et al. (2002). For related structures, see: Warad et al. (2009); Jiang (2010, 2011); Li & Jian (2010); Li & Meng (2010).

Experimental top

A mixture of thiophene-2-carbohydrazide (0.05 mol), and 2-chlorobenzaldehyde (0.05 mol) was stirred in refluxing ethanol (20 ml) for 3 h to afford the title compound (0.092 mol, yield 92%). Single crystals suitable for X-ray measurements were obtained by re-crystallization of the title compound from ethanol, at room temperature. A set of 265 frames with an exposure time of 44.4 s per frame was collected.

Refinement top

All non-H atoms were refined anisotropically. H atoms attached to C atoms were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(carrier C). H atoms bonded to N1 and N3 were located in a difference map, and refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing showing molecular conformation for the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. ORTEP drawing with 20% displacement ellipsoids showing N—H···O and C—H···Cl hydrogen bonding.
N'-[(E)-2-Chlorobenzylidene]thiophene-2-carbohydrazide top
Crystal data top
C12H9ClN2OSF(000) = 1088
Mr = 264.72Dx = 1.479 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3090 reflections
a = 24.9465 (15) Åθ = 2.9–29.2°
b = 4.3709 (3) ŵ = 0.48 mm1
c = 21.8091 (13) ÅT = 293 K
V = 2378.0 (2) Å3Parallelpiped, colourless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
3845 independent reflections
Radiation source: Enhance (Mo) X-ray Source3341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.0534 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 2929
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 54
Tmin = 0.870, Tmax = 0.954l = 2521
9965 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.3988P]
where P = (Fo2 + 2Fc2)/3
3845 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.32 e Å3
0 constraints
Crystal data top
C12H9ClN2OSV = 2378.0 (2) Å3
Mr = 264.72Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 24.9465 (15) ŵ = 0.48 mm1
b = 4.3709 (3) ÅT = 293 K
c = 21.8091 (13) Å0.30 × 0.20 × 0.10 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
3845 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3341 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.954Rint = 0.025
9965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.32 e Å3
3845 reflectionsΔρmin = 0.32 e Å3
316 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30063 (4)0.4329 (3)0.72298 (6)0.0619 (3)
O10.17505 (11)0.0648 (6)0.67301 (13)0.0509 (7)
N10.17938 (14)0.2450 (8)0.7547 (2)0.0414 (9)
H1A0.1555 (17)0.166 (10)0.770 (2)0.046 (13)*
N20.20518 (12)0.4548 (7)0.78995 (15)0.0363 (7)
Cl10.11381 (5)0.7410 (3)0.94945 (7)0.0663 (4)
C10.34789 (17)0.3764 (12)0.6679 (2)0.0598 (12)
H10.38230.45760.67010.072*
C20.33115 (19)0.2071 (12)0.6219 (3)0.0684 (16)
H2B0.35320.16010.58890.082*
C30.27627 (15)0.0975 (10)0.6257 (2)0.0502 (11)
H30.25820.02100.59690.060*
C40.25557 (16)0.2105 (8)0.6832 (2)0.0412 (11)
C50.20111 (14)0.1229 (9)0.70353 (18)0.0372 (9)
C60.17984 (14)0.5461 (8)0.83769 (19)0.0376 (9)
H6A0.14540.47450.84540.045*
C70.20468 (14)0.7612 (8)0.8799 (2)0.0357 (10)
C80.17872 (15)0.8624 (8)0.93273 (19)0.0427 (9)
C90.20295 (19)1.0600 (10)0.9746 (2)0.0527 (11)
H9A0.18491.12301.00980.063*
C100.25406 (18)1.1590 (11)0.9628 (3)0.0580 (13)
H10A0.27071.29140.99020.070*
C110.28077 (17)1.0671 (9)0.9117 (2)0.0551 (11)
H11A0.31561.13520.90480.066*
C120.25639 (14)0.8721 (9)0.8698 (2)0.0451 (10)
H12A0.27480.81470.83450.054*
S20.45222 (4)0.0291 (3)0.74612 (7)0.0598 (3)
O20.57997 (11)0.5028 (7)0.79635 (13)0.0506 (7)
N30.57520 (13)0.1945 (7)0.71524 (18)0.0367 (8)
H3A0.6055 (17)0.260 (9)0.705 (2)0.050 (13)*
N40.54883 (11)0.0161 (7)0.67961 (15)0.0365 (7)
Cl20.63843 (4)0.3111 (3)0.52014 (6)0.0597 (3)
C130.40651 (17)0.0776 (12)0.8022 (3)0.0656 (14)
H130.37180.00010.80000.079*
C140.4247 (2)0.2383 (13)0.8504 (3)0.0694 (17)
H14A0.40400.28360.88460.083*
C150.47921 (17)0.3327 (11)0.8438 (2)0.0565 (12)
H150.49860.44260.87280.068*
C160.49924 (15)0.2344 (8)0.7868 (2)0.0384 (10)
C170.55391 (15)0.3165 (9)0.7665 (2)0.0401 (10)
C180.57349 (13)0.1124 (8)0.63301 (19)0.0356 (8)
H18A0.60820.04420.62530.043*
C190.54850 (14)0.3293 (8)0.5909 (2)0.0352 (9)
C200.57460 (14)0.4371 (8)0.53871 (18)0.0390 (9)
C210.54954 (18)0.6404 (9)0.4982 (2)0.0497 (10)
H21A0.56780.70940.46360.060*
C220.49814 (19)0.7381 (9)0.5093 (3)0.0558 (14)
H22A0.48110.87100.48230.067*
C230.47194 (17)0.6338 (10)0.5620 (2)0.0523 (11)
H23A0.43730.70060.57050.063*
C240.49638 (16)0.4368 (9)0.6010 (2)0.0441 (10)
H24A0.47790.37060.63550.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0423 (5)0.0769 (8)0.0665 (8)0.0039 (6)0.0064 (5)0.0024 (7)
O10.0488 (15)0.0610 (17)0.0427 (17)0.0089 (14)0.0008 (13)0.0127 (15)
N10.0348 (18)0.0425 (19)0.047 (3)0.0051 (15)0.0052 (18)0.0039 (16)
N20.0339 (15)0.0370 (17)0.0382 (19)0.0004 (13)0.0010 (14)0.0001 (15)
Cl10.0465 (6)0.0949 (9)0.0576 (9)0.0116 (6)0.0170 (6)0.0179 (7)
C10.039 (2)0.073 (3)0.067 (4)0.004 (2)0.014 (2)0.008 (3)
C20.056 (3)0.080 (4)0.070 (5)0.017 (3)0.026 (3)0.006 (3)
C30.038 (2)0.058 (2)0.055 (3)0.0039 (18)0.014 (2)0.003 (2)
C40.038 (2)0.043 (2)0.043 (3)0.0051 (16)0.0018 (19)0.0027 (19)
C50.0393 (19)0.042 (2)0.031 (2)0.0044 (17)0.0010 (16)0.0014 (19)
C60.0319 (17)0.039 (2)0.042 (2)0.0008 (16)0.0034 (16)0.0036 (18)
C70.035 (2)0.0319 (19)0.040 (3)0.0033 (14)0.0008 (17)0.0033 (17)
C80.0385 (19)0.042 (2)0.048 (3)0.0041 (17)0.0052 (17)0.001 (2)
C90.064 (3)0.052 (3)0.042 (3)0.003 (2)0.001 (2)0.011 (2)
C100.061 (3)0.053 (3)0.059 (4)0.007 (2)0.010 (3)0.015 (3)
C110.041 (2)0.058 (3)0.067 (3)0.010 (2)0.008 (2)0.006 (3)
C120.040 (2)0.049 (2)0.046 (3)0.0008 (18)0.0025 (18)0.003 (2)
S20.0419 (5)0.0785 (8)0.0590 (7)0.0063 (5)0.0047 (5)0.0152 (7)
O20.0478 (15)0.0633 (17)0.0407 (17)0.0165 (13)0.0013 (14)0.0141 (15)
N30.0345 (17)0.0403 (17)0.035 (2)0.0015 (14)0.0038 (16)0.0036 (16)
N40.0341 (15)0.0363 (16)0.039 (2)0.0009 (13)0.0017 (14)0.0008 (15)
Cl20.0472 (6)0.0745 (7)0.0574 (9)0.0028 (5)0.0165 (6)0.0058 (7)
C130.040 (2)0.081 (3)0.076 (4)0.006 (2)0.009 (2)0.019 (3)
C140.067 (3)0.088 (4)0.053 (4)0.006 (3)0.026 (3)0.024 (3)
C150.042 (2)0.072 (3)0.056 (3)0.008 (2)0.015 (2)0.006 (3)
C160.041 (2)0.039 (2)0.035 (3)0.0035 (16)0.0003 (19)0.0010 (17)
C170.0366 (19)0.040 (2)0.044 (3)0.0036 (17)0.0027 (17)0.0040 (19)
C180.0311 (16)0.0359 (19)0.040 (2)0.0023 (15)0.0006 (16)0.0043 (18)
C190.037 (2)0.0332 (19)0.035 (3)0.0094 (16)0.0012 (17)0.0077 (17)
C200.0425 (19)0.038 (2)0.037 (2)0.0054 (16)0.0015 (16)0.0065 (18)
C210.070 (3)0.044 (2)0.036 (2)0.010 (2)0.002 (2)0.005 (2)
C220.066 (3)0.044 (2)0.058 (4)0.005 (2)0.020 (3)0.003 (2)
C230.044 (2)0.050 (2)0.062 (3)0.004 (2)0.005 (2)0.003 (2)
C240.041 (2)0.041 (2)0.050 (3)0.0003 (17)0.0006 (17)0.003 (2)
Geometric parameters (Å, º) top
S1—C11.701 (5)S2—C131.686 (5)
S1—C41.720 (5)S2—C161.723 (4)
O1—C51.240 (4)O2—C171.229 (5)
N1—C51.350 (5)N3—C171.347 (6)
N1—N21.359 (5)N3—N41.373 (4)
N1—H1A0.77 (4)N3—H3A0.84 (4)
N2—C61.282 (5)N4—C181.260 (5)
Cl1—C81.743 (4)Cl2—C201.733 (4)
C1—C21.314 (8)C13—C141.342 (7)
C1—H10.9300C13—H130.9300
C2—C31.453 (6)C14—C151.427 (6)
C2—H2B0.9300C14—H14A0.9300
C3—C41.445 (7)C15—C161.407 (7)
C3—H30.9300C15—H150.9300
C4—C51.479 (5)C16—C171.478 (5)
C6—C71.454 (6)C18—C191.459 (6)
C6—H6A0.9300C18—H18A0.9300
C7—C81.393 (6)C19—C201.394 (6)
C7—C121.396 (5)C19—C241.400 (5)
C8—C91.395 (6)C20—C211.401 (6)
C9—C101.371 (6)C21—C221.373 (6)
C9—H9A0.9300C21—H21A0.9300
C10—C111.358 (7)C22—C231.399 (7)
C10—H10A0.9300C22—H22A0.9300
C11—C121.390 (6)C23—C241.354 (6)
C11—H11A0.9300C23—H23A0.9300
C12—H12A0.9300C24—H24A0.9300
C1—S1—C490.9 (3)C13—S2—C1691.2 (2)
C5—N1—N2123.0 (4)C17—N3—N4123.1 (3)
C5—N1—H1A120 (4)C17—N3—H3A117 (3)
N2—N1—H1A115 (4)N4—N3—H3A120 (3)
C6—N2—N1115.9 (3)C18—N4—N3116.5 (3)
C2—C1—S1113.6 (4)C14—C13—S2113.8 (4)
C2—C1—H1123.2C14—C13—H13123.1
S1—C1—H1123.2S2—C13—H13123.1
C1—C2—C3116.2 (5)C13—C14—C15113.3 (5)
C1—C2—H2B121.9C13—C14—H14A123.3
C3—C2—H2B121.9C15—C14—H14A123.3
C4—C3—C2105.8 (4)C16—C15—C14109.8 (4)
C4—C3—H3127.1C16—C15—H15125.1
C2—C3—H3127.1C14—C15—H15125.1
C3—C4—C5120.0 (4)C15—C16—C17121.2 (4)
C3—C4—S1113.4 (3)C15—C16—S2111.8 (3)
C5—C4—S1126.6 (4)C17—C16—S2126.9 (4)
O1—C5—N1119.6 (3)O2—C17—N3119.6 (4)
O1—C5—C4119.5 (4)O2—C17—C16119.4 (4)
N1—C5—C4120.9 (4)N3—C17—C16121.1 (4)
N2—C6—C7120.4 (3)N4—C18—C19121.0 (3)
N2—C6—H6A119.8N4—C18—H18A119.5
C7—C6—H6A119.8C19—C18—H18A119.5
C8—C7—C12116.7 (4)C20—C19—C24116.6 (4)
C8—C7—C6122.0 (3)C20—C19—C18122.3 (3)
C12—C7—C6121.2 (4)C24—C19—C18121.1 (4)
C7—C8—C9122.5 (4)C19—C20—C21121.5 (4)
C7—C8—Cl1120.5 (3)C19—C20—Cl2120.8 (3)
C9—C8—Cl1117.0 (3)C21—C20—Cl2117.6 (3)
C10—C9—C8118.3 (4)C22—C21—C20120.1 (4)
C10—C9—H9A120.8C22—C21—H21A119.9
C8—C9—H9A120.8C20—C21—H21A119.9
C11—C10—C9121.2 (4)C21—C22—C23118.7 (4)
C11—C10—H10A119.4C21—C22—H22A120.6
C9—C10—H10A119.4C23—C22—H22A120.6
C10—C11—C12120.4 (4)C24—C23—C22120.8 (4)
C10—C11—H11A119.8C24—C23—H23A119.6
C12—C11—H11A119.8C22—C23—H23A119.6
C11—C12—C7120.9 (4)C23—C24—C19122.3 (4)
C11—C12—H12A119.6C23—C24—H24A118.9
C7—C12—H12A119.6C19—C24—H24A118.9
C5—N1—N2—C6178.9 (4)C17—N3—N4—C18179.7 (4)
C4—S1—C1—C21.1 (4)C16—S2—C13—C140.5 (5)
S1—C1—C2—C30.2 (6)S2—C13—C14—C150.3 (7)
C1—C2—C3—C41.1 (6)C13—C14—C15—C161.1 (7)
C2—C3—C4—C5176.0 (4)C14—C15—C16—C17176.5 (4)
C2—C3—C4—S11.9 (5)C14—C15—C16—S21.5 (5)
C1—S1—C4—C31.8 (3)C13—S2—C16—C151.2 (4)
C1—S1—C4—C5176.0 (4)C13—S2—C16—C17176.7 (4)
N2—N1—C5—O1179.1 (3)N4—N3—C17—O2179.6 (3)
N2—N1—C5—C40.7 (6)N4—N3—C17—C161.6 (6)
C3—C4—C5—O15.1 (6)C15—C16—C17—O28.7 (6)
S1—C4—C5—O1172.5 (3)S2—C16—C17—O2168.9 (3)
C3—C4—C5—N1174.7 (4)C15—C16—C17—N3172.5 (4)
S1—C4—C5—N17.6 (6)S2—C16—C17—N39.9 (6)
N1—N2—C6—C7177.5 (3)N3—N4—C18—C19178.0 (3)
N2—C6—C7—C8179.1 (3)N4—C18—C19—C20179.3 (3)
N2—C6—C7—C120.2 (6)N4—C18—C19—C240.1 (5)
C12—C7—C8—C91.3 (6)C24—C19—C20—C210.6 (5)
C6—C7—C8—C9177.6 (4)C18—C19—C20—C21178.7 (3)
C12—C7—C8—Cl1179.4 (3)C24—C19—C20—Cl2177.9 (3)
C6—C7—C8—Cl11.7 (5)C18—C19—C20—Cl21.3 (5)
C7—C8—C9—C100.5 (6)C19—C20—C21—C220.0 (6)
Cl1—C8—C9—C10179.9 (4)Cl2—C20—C21—C22177.4 (3)
C8—C9—C10—C110.2 (7)C20—C21—C22—C230.8 (6)
C9—C10—C11—C120.7 (7)C21—C22—C23—C241.0 (7)
C10—C11—C12—C71.5 (6)C22—C23—C24—C190.3 (6)
C8—C7—C12—C111.7 (6)C20—C19—C24—C230.5 (6)
C6—C7—C12—C11177.2 (4)C18—C19—C24—C23178.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.84 (4)2.02 (5)2.856 (4)175 (4)
N1—H1A···O2ii0.77 (4)2.09 (4)2.845 (5)166 (5)
C10—H10A···Cl2iii0.932.933.758 (5)149
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z; (iii) x+1, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.84 (4)2.02 (5)2.856 (4)175 (4)
N1—H1A···O2ii0.77 (4)2.09 (4)2.845 (5)166 (5)
C10—H10A···Cl2iii0.932.933.758 (5)149.1
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z; (iii) x+1, y+2, z+1/2.
 

Acknowledgements

The project was supported by AN-Najah National University. The X-ray structural work was done at Hamdi Mango Center for Scientific Research at The University of Jordan, Amman 11942, Jordan.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationJiang, J.-H. (2010). Acta Cryst. E66, o923.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, J.-H. (2011). Acta Cryst. E67, o50.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarad, I., Al-Nuri, M., Al-Resayes, S., Al-Farhan, K. & Ghazzali, M. (2009). Acta Cryst. E65, o1597.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds