organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: hakima_chicha@yahoo.fr

(Received 24 July 2013; accepted 20 August 2013; online 23 August 2013)

In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl­benzene­sulfonamide moiety. In the crystal, mol­ecules are ­connected through N—H⋯N hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network parallel to (001).

Related literature

For the pharmacological activity of sulfonamide derivatives, see: Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]); Mustafa et al. (2012[Mustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535-2539.]); Lopez et al. (2010[Lopez, M., Bornaghi, L. F., Innocenti, A., Vullo, D., Charman, S. A., Supuran, C. T. & Poulsen, S.-A. (2010). J. Med. Chem. 53, 2913-2926.]). For similar compounds, see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O2S

  • Mr = 301.36

  • Monoclinic, P 21 /c

  • a = 8.0026 (3) Å

  • b = 12.8195 (4) Å

  • c = 14.1321 (4) Å

  • β = 91.602 (2)°

  • V = 1449.24 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.43 × 0.36 × 0.28 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.992

  • 17896 measured reflections

  • 4048 independent reflections

  • 2703 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.02

  • 4048 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 2.21 3.065 (2) 166
C3—H3⋯O2ii 0.93 2.53 3.277 (2) 137
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamide derivatives are well known pharmaceutical agents since this group has been the main functional part of many drug structures, due to stability and tolerance in human beings. These compounds exhibit a wide range of biological activities, such as anticancer, anti-inflammatory, and antiviral functions (Bouissane et al., 2006; Mustafa et al., 2012; Lopez et al., 2010). The present work is a continuation of the investigation on sulfonamide derivatives published recently by our team (Abbassi et al., 2012, 2013).

The molecule of 4-methyl-N-(1-methyl-1H-indazol-5-yl)-benzenesulfonamide is built up from two fused five- and six-membered rings (N2/N3/C1 to C7) linked to the benzenesulfonamide group, as shown in Fig. 1. The fused rings system is almost planar, with the maximum deviation of 0.030 (2) Å arising from atom C1. Moreover, the dihedral angle between the indazole system and the plan through the atoms forming the benzene ring (C9 to C14) is 48.84 (9)°.

In the crystal, the molecules are interconnected through C3—H3···O2ii weak contacts and N1—H1···N2i hydrogen bonds, forming a two-dimensional network (Fig. 2 and Table 2; symmetry codes: (i) -x + 1, y + 1/2, -z + 1/2; (ii) x + 1, y, z).

Related literature top

For the pharmacological activity of sulfonamide derivatives, see: Bouissane et al. (2006); Mustafa et al. (2012); Lopez et al. (2010). For similar compounds, see: Abbassi et al. (2012, 2013).

Experimental top

A mixture of 1-methyl-5-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methylbenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate/hexane 1:9). The title compound was recrystallized from acetone.

Refinement top

H atoms were located in a difference map, but C-bound H atoms were placed in idealized positions and treated as riding, with C—H = 0.96 Å, and C—H = 0.93 Å for methyl and aromatic CH, respectively. Atom H1 was first refined freely, and then fixed (N1—H1 = 0.8759 Å). All H atoms were refined with isotropic displacement parameters fixed as Uiso(H) = 1.2Ueq(C-aromatic, NH) or Uiso(H) = 1.5Ueq(C-methyl).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Partial crystal packing for the title compound showing C3—H3···O2 and N1—H1···N2 hydrogen bonds as blue dashed lines.
4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzenesulfonamide top
Crystal data top
C15H15N3O2SF(000) = 632
Mr = 301.36Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4048 reflections
a = 8.0026 (3) Åθ = 2.9–29.6°
b = 12.8195 (4) ŵ = 0.23 mm1
c = 14.1321 (4) ÅT = 296 K
β = 91.602 (2)°Block, colourless
V = 1449.24 (8) Å30.43 × 0.36 × 0.28 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
4048 independent reflections
Radiation source: fine-focus sealed tube2703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 29.6°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.960, Tmax = 0.992k = 1717
17896 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.2552P]
where P = (Fo2 + 2Fc2)/3
4048 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.32 e Å3
0 constraints
Crystal data top
C15H15N3O2SV = 1449.24 (8) Å3
Mr = 301.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0026 (3) ŵ = 0.23 mm1
b = 12.8195 (4) ÅT = 296 K
c = 14.1321 (4) Å0.43 × 0.36 × 0.28 mm
β = 91.602 (2)°
Data collection top
Bruker X8 APEX
diffractometer
4048 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2703 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.992Rint = 0.047
17896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
4048 reflectionsΔρmin = 0.32 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31920 (19)0.13913 (14)0.21183 (12)0.0348 (4)
C20.4588 (2)0.18535 (14)0.16945 (13)0.0386 (4)
H20.46930.25760.17060.046*
C30.5789 (2)0.12762 (14)0.12688 (13)0.0381 (4)
H30.67090.15870.09970.046*
C40.55641 (19)0.01961 (13)0.12629 (12)0.0336 (4)
C50.4161 (2)0.02812 (13)0.16553 (12)0.0352 (4)
C60.2952 (2)0.03317 (13)0.20985 (13)0.0361 (4)
H60.20220.00290.23680.043*
C70.4424 (2)0.13606 (15)0.15117 (14)0.0448 (4)
H70.36850.18800.16900.054*
C80.8127 (2)0.04980 (17)0.04713 (14)0.0486 (5)
H8A0.89530.09120.08030.073*
H8B0.84770.02180.04700.073*
H8C0.80000.07430.01690.073*
C90.1242 (2)0.36208 (14)0.13664 (13)0.0392 (4)
C100.1538 (3)0.35014 (17)0.04145 (16)0.0561 (5)
H100.13150.28680.01160.067*
C110.2163 (3)0.43217 (19)0.00880 (16)0.0616 (6)
H110.23560.42340.07290.074*
C120.2515 (3)0.52718 (17)0.03268 (16)0.0523 (5)
C130.2195 (3)0.53815 (18)0.12835 (17)0.0617 (6)
H130.24150.60160.15800.074*
C140.1560 (3)0.45732 (16)0.17998 (15)0.0518 (5)
H140.13450.46640.24380.062*
C150.3195 (3)0.6169 (2)0.0239 (2)0.0802 (8)
H15A0.33390.59510.08810.120*
H15B0.42530.63830.00320.120*
H15C0.24250.67420.02270.120*
N10.20248 (17)0.20314 (12)0.26172 (11)0.0393 (3)
H10.24680.24580.30380.047*
N20.5857 (2)0.15374 (12)0.10917 (12)0.0471 (4)
N30.65480 (18)0.05848 (12)0.09380 (11)0.0391 (3)
O10.05599 (17)0.30214 (12)0.27498 (12)0.0624 (4)
O20.02085 (16)0.18164 (11)0.13971 (11)0.0572 (4)
S10.04597 (5)0.25800 (4)0.20396 (4)0.04273 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0324 (7)0.0340 (9)0.0381 (9)0.0007 (6)0.0028 (6)0.0028 (7)
C20.0387 (8)0.0284 (9)0.0491 (11)0.0039 (7)0.0045 (7)0.0023 (8)
C30.0336 (8)0.0340 (10)0.0469 (10)0.0041 (7)0.0073 (7)0.0040 (8)
C40.0314 (7)0.0335 (9)0.0358 (9)0.0026 (6)0.0003 (6)0.0017 (7)
C50.0345 (8)0.0307 (9)0.0404 (10)0.0014 (6)0.0010 (7)0.0040 (7)
C60.0312 (7)0.0330 (9)0.0441 (10)0.0039 (6)0.0041 (7)0.0060 (8)
C70.0462 (10)0.0309 (10)0.0574 (12)0.0021 (7)0.0041 (8)0.0041 (9)
C80.0448 (10)0.0532 (13)0.0483 (11)0.0088 (8)0.0113 (8)0.0031 (10)
C90.0359 (8)0.0353 (10)0.0461 (10)0.0035 (7)0.0006 (7)0.0016 (8)
C100.0714 (13)0.0429 (12)0.0544 (13)0.0043 (10)0.0093 (10)0.0120 (10)
C110.0802 (16)0.0564 (15)0.0488 (13)0.0019 (12)0.0119 (11)0.0001 (11)
C120.0515 (11)0.0466 (13)0.0586 (14)0.0009 (9)0.0033 (9)0.0106 (10)
C130.0813 (16)0.0415 (13)0.0619 (15)0.0138 (11)0.0080 (12)0.0026 (11)
C140.0674 (13)0.0420 (12)0.0456 (11)0.0050 (9)0.0026 (9)0.0027 (9)
C150.0803 (17)0.0709 (18)0.0893 (19)0.0147 (14)0.0032 (14)0.0316 (16)
N10.0382 (7)0.0352 (8)0.0448 (9)0.0009 (6)0.0081 (6)0.0017 (7)
N20.0510 (9)0.0323 (9)0.0582 (10)0.0030 (7)0.0029 (7)0.0006 (8)
N30.0386 (7)0.0352 (9)0.0436 (9)0.0038 (6)0.0033 (6)0.0012 (7)
O10.0494 (8)0.0546 (10)0.0848 (11)0.0102 (6)0.0318 (8)0.0029 (8)
O20.0403 (7)0.0446 (8)0.0862 (11)0.0080 (6)0.0079 (7)0.0064 (8)
S10.0311 (2)0.0361 (3)0.0614 (3)0.00089 (16)0.00821 (18)0.0010 (2)
Geometric parameters (Å, º) top
C1—C61.372 (2)C9—C141.387 (3)
C1—C21.412 (2)C9—S11.7635 (19)
C1—N11.442 (2)C10—C111.371 (3)
C2—C31.366 (2)C10—H100.9300
C2—H20.9300C11—C121.377 (3)
C3—C41.396 (2)C11—H110.9300
C3—H30.9300C12—C131.390 (3)
C4—N31.361 (2)C12—C151.510 (3)
C4—C51.406 (2)C13—C141.373 (3)
C5—C61.407 (2)C13—H130.9300
C5—C71.415 (3)C14—H140.9300
C6—H60.9300C15—H15A0.9600
C7—N21.325 (2)C15—H15B0.9600
C7—H70.9300C15—H15C0.9600
C8—N31.446 (2)N1—S11.6348 (15)
C8—H8A0.9600N1—H10.8759
C8—H8B0.9600N2—N31.361 (2)
C8—H8C0.9600O1—S11.4280 (14)
C9—C101.381 (3)O2—S11.4288 (15)
C6—C1—C2121.25 (15)C9—C10—H10120.2
C6—C1—N1118.75 (14)C10—C11—C12122.1 (2)
C2—C1—N1119.96 (15)C10—C11—H11119.0
C3—C2—C1122.27 (16)C12—C11—H11119.0
C3—C2—H2118.9C11—C12—C13117.5 (2)
C1—C2—H2118.9C11—C12—C15121.4 (2)
C2—C3—C4116.61 (15)C13—C12—C15121.1 (2)
C2—C3—H3121.7C14—C13—C12121.4 (2)
C4—C3—H3121.7C14—C13—H13119.3
N3—C4—C3130.97 (16)C12—C13—H13119.3
N3—C4—C5106.78 (15)C13—C14—C9119.7 (2)
C3—C4—C5122.23 (15)C13—C14—H14120.1
C4—C5—C6119.96 (16)C9—C14—H14120.1
C4—C5—C7104.22 (15)C12—C15—H15A109.5
C6—C5—C7135.76 (16)C12—C15—H15B109.5
C1—C6—C5117.65 (15)H15A—C15—H15B109.5
C1—C6—H6121.2C12—C15—H15C109.5
C5—C6—H6121.2H15A—C15—H15C109.5
N2—C7—C5111.41 (16)H15B—C15—H15C109.5
N2—C7—H7124.3C1—N1—S1119.89 (12)
C5—C7—H7124.3C1—N1—H1115.6
N3—C8—H8A109.5S1—N1—H1111.2
N3—C8—H8B109.5C7—N2—N3106.19 (15)
H8A—C8—H8B109.5N2—N3—C4111.38 (14)
N3—C8—H8C109.5N2—N3—C8120.41 (15)
H8A—C8—H8C109.5C4—N3—C8128.20 (16)
H8B—C8—H8C109.5O1—S1—O2120.46 (9)
C10—C9—C14119.56 (19)O1—S1—N1105.33 (9)
C10—C9—S1120.99 (15)O2—S1—N1106.88 (8)
C14—C9—S1119.44 (15)O1—S1—C9107.32 (9)
C11—C10—C9119.6 (2)O2—S1—C9107.92 (9)
C11—C10—H10120.2N1—S1—C9108.45 (8)
C6—C1—C2—C31.9 (3)C12—C13—C14—C90.6 (4)
N1—C1—C2—C3175.55 (16)C10—C9—C14—C131.2 (3)
C1—C2—C3—C40.6 (3)S1—C9—C14—C13178.93 (17)
C2—C3—C4—N3176.89 (18)C6—C1—N1—S195.37 (17)
C2—C3—C4—C51.3 (3)C2—C1—N1—S187.17 (18)
N3—C4—C5—C6176.56 (15)C5—C7—N2—N30.9 (2)
C3—C4—C5—C62.0 (3)C7—N2—N3—C40.3 (2)
N3—C4—C5—C70.94 (19)C7—N2—N3—C8179.02 (17)
C3—C4—C5—C7179.50 (16)C3—C4—N3—N2178.82 (18)
C2—C1—C6—C51.1 (3)C5—C4—N3—N20.4 (2)
N1—C1—C6—C5176.33 (15)C3—C4—N3—C81.9 (3)
C4—C5—C6—C10.7 (3)C5—C4—N3—C8179.70 (17)
C7—C5—C6—C1177.3 (2)C1—N1—S1—O1171.99 (13)
C4—C5—C7—N21.2 (2)C1—N1—S1—O242.75 (15)
C6—C5—C7—N2175.7 (2)C1—N1—S1—C973.37 (14)
C14—C9—C10—C110.8 (3)C10—C9—S1—O1147.78 (17)
S1—C9—C10—C11179.30 (18)C14—C9—S1—O132.12 (18)
C9—C10—C11—C120.2 (4)C10—C9—S1—O216.55 (18)
C10—C11—C12—C130.8 (4)C14—C9—S1—O2163.35 (15)
C10—C11—C12—C15179.7 (2)C10—C9—S1—N198.89 (17)
C11—C12—C13—C140.4 (4)C14—C9—S1—N181.21 (17)
C15—C12—C13—C14179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.213.065 (2)166
C3—H3···O2ii0.932.533.277 (2)137
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.213.065 (2)166.0
C3—H3···O2ii0.932.533.277 (2)137.3
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLopez, M., Bornaghi, L. F., Innocenti, A., Vullo, D., Charman, S. A., Supuran, C. T. & Poulsen, S.-A. (2010). J. Med. Chem. 53, 2913–2926.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds