inorganic compounds
Zinc mercury(II) tetrakis(selenocyanate)
aSchool of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, People's Republic of China, and bState Key Laboratory of Crystal Materials (Shandong University), Jinan 250100, People's Republic of China
*Correspondence e-mail: sunhaiqing@sina.com
The title crystal, [HgZn(NCSe)4]n, a coordination polymer, has a diamond-like network. In the crystal, the metal ions, Zn2+ and Hg2+, are both located on fourfold inversion axes and mimic the role of C atoms in the structure of diamond, and the linear selenocyanate bridges replace the C—C bonds. The C—N—Zn unit is almost linear and the C—Se—Hg unit is nearly a right angle. Thus, the HgZn4 (or ZnHg4) arrangement is midway between a tetrahedron and a square plane, with two types of Hg—Zn—Hg (or Zn—Hg—Zn) angles of 92.38 (6) and 156.45 (6)°.
Related literature
For background to coordination polymers, see: Batten et al. (2009). For diamond-like networks, see: Sun et al. (2006); Evans et al. (1999). For similar structures, see: Wang et al. (2001, 2007); Sun et al. (2005, 2006); Tian et al. (1999); Xu et al. (1999); Yan et al. (1999); Yuan et al. (1997).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813022502/br2230sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813022502/br2230Isup2.hkl
Sodium metasilicate nonahydrate (Na2SiO3.9H2O), ZnCl2 and KSeCN solution were mixed together with stirring for 1 h. Then the sol is put into a test tube. Glacial acetic acid was added to adjust pH to 3.1. The above solution was sealed and gelled on standing for 72 h. Then some HgCl2 solution was added on top of the gel. Within 20 d the ZMSC crystal grew in the gel medium.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. Packing diagram of [ZnHg(NCSe)4]n (viewed down the c axis), with displacement ellipsoids drawn at the 50% probability level. |
[HgZn(NCSe)4] | Dx = 3.816 Mg m−3 |
Mr = 685.88 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4 | Cell parameters from 1556 reflections |
Hall symbol: I -4 | θ = 2.6–34.8° |
a = 11.2716 (1) Å | µ = 27.02 mm−1 |
c = 4.6981 (1) Å | T = 293 K |
V = 596.89 (2) Å3 | Prism, colourless |
Z = 2 | 0.13 × 0.12 × 0.10 mm |
F(000) = 596 |
Bruker APEXII CCD area-detector diffractometer | 1244 independent reflections |
Radiation source: fine-focus sealed tube | 1113 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 38.1°, θmin = 2.6° |
Absorption correction: multi-scan (APEX2; Bruker, 2005) | h = −16→19 |
Tmin = 0.127, Tmax = 0.173 | k = −17→11 |
2476 measured reflections | l = −6→7 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2)] |
R[F2 > 2σ(F2)] = 0.026 | (Δ/σ)max < 0.001 |
wR(F2) = 0.053 | Δρmax = 1.35 e Å−3 |
S = 0.86 | Δρmin = −0.81 e Å−3 |
1244 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
33 parameters | Extinction coefficient: 0.0047 (3) |
0 restraints | Absolute structure: Flack (1983), 467 Friedel pairs |
Primary atom site location: isomorphous structure methods | Absolute structure parameter: 0.026 (10) |
[HgZn(NCSe)4] | Z = 2 |
Mr = 685.88 | Mo Kα radiation |
Tetragonal, I4 | µ = 27.02 mm−1 |
a = 11.2716 (1) Å | T = 293 K |
c = 4.6981 (1) Å | 0.13 × 0.12 × 0.10 mm |
V = 596.89 (2) Å3 |
Bruker APEXII CCD area-detector diffractometer | 1244 independent reflections |
Absorption correction: multi-scan (APEX2; Bruker, 2005) | 1113 reflections with I > 2σ(I) |
Tmin = 0.127, Tmax = 0.173 | Rint = 0.029 |
2476 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.053 | Δρmax = 1.35 e Å−3 |
S = 0.86 | Δρmin = −0.81 e Å−3 |
1244 reflections | Absolute structure: Flack (1983), 467 Friedel pairs |
33 parameters | Absolute structure parameter: 0.026 (10) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.0000 | 0.0000 | 0.0000 | 0.02909 (11) | |
Se1 | 0.12160 (4) | 0.15390 (4) | 0.31572 (11) | 0.03115 (13) | |
Zn1 | 0.0000 | 0.5000 | −0.2500 | 0.0289 (2) | |
N1 | 0.0462 (4) | 0.3643 (3) | −0.0118 (16) | 0.0374 (9) | |
C1 | 0.0756 (4) | 0.2818 (4) | 0.1106 (10) | 0.0280 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.02405 (11) | 0.02405 (11) | 0.0392 (2) | 0.000 | 0.000 | 0.000 |
Se1 | 0.0322 (2) | 0.0250 (2) | 0.0363 (3) | −0.00208 (18) | −0.0073 (2) | 0.00031 (19) |
Zn1 | 0.0242 (3) | 0.0242 (3) | 0.0382 (6) | 0.000 | 0.000 | 0.000 |
N1 | 0.040 (2) | 0.0242 (16) | 0.048 (2) | 0.0011 (14) | −0.004 (3) | −0.004 (2) |
C1 | 0.0241 (19) | 0.0219 (18) | 0.038 (2) | −0.0019 (15) | 0.0023 (17) | −0.0046 (17) |
Hg1—Se1 | 2.6623 (5) | Zn1—N1iv | 1.966 (6) |
Hg1—Se1i | 2.6623 (5) | Zn1—N1v | 1.966 (6) |
Hg1—Se1ii | 2.6623 (5) | Zn1—N1vi | 1.966 (6) |
Hg1—Se1iii | 2.6623 (5) | Zn1—N1 | 1.966 (6) |
Se1—C1 | 1.810 (5) | N1—C1 | 1.141 (7) |
Se1—Hg1—Se1i | 108.084 (11) | N1iv—Zn1—N1vi | 110.6 (4) |
Se1—Hg1—Se1ii | 112.28 (2) | N1v—Zn1—N1vi | 108.91 (18) |
Se1i—Hg1—Se1ii | 108.084 (11) | N1iv—Zn1—N1 | 108.91 (18) |
Se1—Hg1—Se1iii | 108.084 (11) | N1v—Zn1—N1 | 110.6 (4) |
Se1i—Hg1—Se1iii | 112.28 (2) | N1vi—Zn1—N1 | 108.91 (18) |
Se1ii—Hg1—Se1iii | 108.084 (11) | C1—N1—Zn1 | 175.5 (6) |
C1—Se1—Hg1 | 94.29 (14) | N1—C1—Se1 | 178.1 (5) |
N1iv—Zn1—N1v | 108.91 (18) | ||
Se1i—Hg1—Se1—C1 | −14.76 (14) | N1iv—Zn1—N1—C1 | 69 (5) |
Se1ii—Hg1—Se1—C1 | −133.89 (14) | N1vi—Zn1—N1—C1 | −52 (5) |
Se1iii—Hg1—Se1—C1 | 106.99 (14) | Hg1—Se1—C1—N1 | 140 (12) |
Symmetry codes: (i) −y, x, −z; (ii) −x, −y, z; (iii) y, −x, −z; (iv) y−1/2, −x+1/2, −z−1/2; (v) −x, −y+1, z; (vi) −y+1/2, x+1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [HgZn(NCSe)4] |
Mr | 685.88 |
Crystal system, space group | Tetragonal, I4 |
Temperature (K) | 293 |
a, c (Å) | 11.2716 (1), 4.6981 (1) |
V (Å3) | 596.89 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 27.02 |
Crystal size (mm) | 0.13 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (APEX2; Bruker, 2005) |
Tmin, Tmax | 0.127, 0.173 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2476, 1244, 1113 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.868 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.053, 0.86 |
No. of reflections | 1244 |
No. of parameters | 33 |
Δρmax, Δρmin (e Å−3) | 1.35, −0.81 |
Absolute structure | Flack (1983), 467 Friedel pairs |
Absolute structure parameter | 0.026 (10) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012).
Acknowledgements
The authors thank the Open Project of the State Key Laboratory of Crystal Materials (grant No. KF0804) and the Excellent Mid-youthful Scientist Encouraging Foundation of Shandong province (grant No. BS2010CL037) for financial support.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Batten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Application. Cambridge: Royal Society of Chemistry. Google Scholar
Bruker (2005). APEX2and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Evans, O. R., Xiong, R.-G., Wang, Z.-Y., Wong, G.-K. & Lin, W.-B. (1999). Angew. Chem. Int. Ed. 38, 536–538. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Liu, L.-Q. (2006). Acta Cryst. E62, i88–i90. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Xue, G. (2005). Acta Cryst. E61, i111–i112. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, Y.-P., Yu, W.-T., Fang, Q., Wang, X.-Q., Yuan, D.-R., Xu, D. & Jiang, M.-H. (1999). Acta Cryst. C55, 1393–1395. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X.-Q., Xu, D., Lu, M.-K., Yuan, D.-R., Zhang, G.-H., Meng, F.-Q., Guo, S.-Y., Zhou, M., Liu, J.-R. & Li, X.-R. (2001). Cryst. Res. Technol. 36, 73–84. Web of Science CrossRef Google Scholar
Wang, X.-Q., Yu, W.-T., Xu, D., Sun, H.-Q. & Liu, W.-L. (2007). Acta Cryst. E63, i45–i46. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Xu, D., Yu, W.-T., Wang, X.-Q., Yuan, D.-R., Lu, M.-K., Yang, P., Guo, S.-Y., Meng, F.-Q. & Jiang, M.-H. (1999). Acta Cryst. C55, 1203–1205. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yan, Y.-X., Fang, Q., Yuan, D.-R., Tian, Y.-P., Liu, Z., Wang, X.-M., Jiang, M.-H., Williams, D., Siu, A. & Cai, Z.-G. (1999). Chin. Chem. Lett. 10, 257–260. CAS Google Scholar
Yuan, D.-R., Xu, D., Fang, Q., Yu, W.-T. & Jiang, M.-H. (1997). Appl. Phys. Lett. 70, 544–546. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination polymers, which contain ions linked by coordinated ligands into an infinite array, have extensive applications such as porosity, magnetism, non-linear optical activity, reactive networks, heterogenous catalysis and luminescence (Batten et al. 2009). [AB(SCN)4]n and [AB(SeCN)4]n (where A and B = Zn, Cd, Hg or Mn) are coordination polymers that have non-linear optical property (Wang et al., 2007, 2001; Sun et al., 2006, 2005; Yuan et al. 1997). [ZnHg(SeCN)4]n is a new member of this group.
All the [AB(SCN)4]n and [AB(SeCN)4]n have similar structure. The [ZnHg(SeCN)4]n is of no exception. The Zn and Hg atoms are connected by SeCN- ions, forming an infinite three-dimensional network (see Fig. 1). Each Zn or Hg node is 4-coordinated with Zn—N or Hg—Se bond. The ZnN4 and HgSe4 tetrahedra are slightly distorted from an ideal one. The Zn—N—C—Se is nearly linear, but the C—Se—Hg is bent. The whole structure might be defined as a diamond-like network with Zn and Hg nodes and bent bonds. The HgZn4 (or ZnHg4) tetrahedra have a significant distortion from an ideal one, with two types of Hg—Zn—Hg (or Zn—Hg—Zn) angles, 92.38 (6)° and 156.45 (6)°. Along the c-direction there are irregular octagon channels.