organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, bDepartment of Pharmaceutical Chemistry, Institute of Pharmacy, University of Hamburg, Hamburg, Germany, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: hakima_chicha@yahoo.fr

(Received 1 August 2013; accepted 2 August 2013; online 7 August 2013)

The indazole ring system [maximum deviation = 0.013 (2) Å] of the title compound, C15H15N3O3S, makes a dihedral angle of 50.11 (7)° with the benzene ring. In the crystal, cohesion is provided by C—H⋯O and N—H⋯N hydrogen bonds, which link the molecules into chains propagating along the b-axis direction.

Related literature

For the pharmacological activity of sulfonamide derivatives, see: Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Leonce, S., Pfeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]); El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Mustafa et al. (2012[Mustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535-2539.]). For similar compounds, see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2013[Chicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O3S

  • Mr = 317.36

  • Monoclinic, P 21 /n

  • a = 10.1069 (3) Å

  • b = 13.6178 (3) Å

  • c = 10.8530 (2) Å

  • β = 90.777 (2)°

  • V = 1493.60 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.39 × 0.33 × 0.23 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.651, Tmax = 0.747

  • 19007 measured reflections

  • 4178 independent reflections

  • 3232 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 1.02

  • 4178 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.89 2.25 3.1335 (19) 176
C8—H8A⋯O1ii 0.96 2.49 3.391 (2) 157
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamide derivatives are well known pharmaceutical agents since this group has been the main functional part of the most of the drug structures due to stability and tolerance in human beings. These compounds exhibit a wide range of biological activities such as anticancer, anti-inflammatory, and antiviral functions (Abbassi et al., 2012; Bouissane et al., 2006; El-Sayed et al., 2011; Mustafa et al., 2012). The present work is a continuation of the investigation of the sulfonamide derivatives published recently by our team (Abbassi et al., 2013; Chicha et al., 2013).

The molecule of 4-Methoxy-N-(1-methyl-1H-indazol-5-yl)-benzenesulfonamide is built up from the fused five- and six-membered rings (N2 N3 C1—C7) linked to the benzenesulfonamide group as shown in Fig. 1. The fused rings system is planar, with the maximum deviation of -0.013 (2) Å for N2 atom. Moreover, the dihedral angle between the indazole system and the plan through the atoms forming the benzene ring (C9—C14) is of 50.11 (7)°.

In the crystal, the molecules are interconnected by C8–H8A···O1 and N1–H1···N2 hydrogen bonds forming a one-dimensional chain running along the b axis as shown in Fig.2 and Table 2.

Related literature top

For the pharmacological activity of sulfonamide derivatives, see: Bouissane et al. (2006); El-Sayed et al. (2011); Mustafa et al. (2012). For similar compounds, see: Abbassi et al. (2012, 2013); Chicha et al. (2013).

Experimental top

A mixture of 1-methyl-5-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 1:9). The title compound was recrystallized from acetone.

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.93 Å, and N–H = 0.89 Å for methyl, aromatic CH and NH respectively. All hydrogen with Uiso(H) = 1.2 Ueq (aromatic, NH) and Uiso(H) = 1.5 Ueq for methyl.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Partial crystal packing for the title compound showing C8–H8A···O1 and N1–H1···N2 hydrogen bonds as dashed lines.
4-Methoxy-N-(1-methyl-1H-indazol-5-yl)benzenesulfonamide top
Crystal data top
C15H15N3O3SF(000) = 664
Mr = 317.36Dx = 1.411 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4178 reflections
a = 10.1069 (3) Åθ = 2.4–29.6°
b = 13.6178 (3) ŵ = 0.23 mm1
c = 10.8530 (2) ÅT = 296 K
β = 90.777 (2)°Block, colourless
V = 1493.60 (6) Å30.39 × 0.33 × 0.23 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
4178 independent reflections
Radiation source: fine-focus sealed tube3232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 29.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1413
Tmin = 0.651, Tmax = 0.747k = 1818
19007 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.2788P]
where P = (Fo2 + 2Fc2)/3
4178 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H15N3O3SV = 1493.60 (6) Å3
Mr = 317.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1069 (3) ŵ = 0.23 mm1
b = 13.6178 (3) ÅT = 296 K
c = 10.8530 (2) Å0.39 × 0.33 × 0.23 mm
β = 90.777 (2)°
Data collection top
Bruker X8 APEXII
diffractometer
4178 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3232 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.747Rint = 0.029
19007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
4178 reflectionsΔρmin = 0.28 e Å3
199 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35240 (14)0.12964 (10)0.31509 (12)0.0369 (3)
C20.32504 (16)0.16841 (11)0.19599 (14)0.0411 (3)
H20.30910.23530.18750.049*
C30.32149 (15)0.11009 (11)0.09337 (13)0.0395 (3)
H30.30250.13560.01560.047*
C40.34782 (13)0.01018 (10)0.11104 (12)0.0341 (3)
C50.37682 (14)0.02927 (10)0.22857 (13)0.0364 (3)
C60.37813 (15)0.03159 (10)0.33265 (13)0.0379 (3)
H60.39580.00650.41080.045*
C70.39589 (17)0.13088 (11)0.20596 (14)0.0452 (4)
H70.41740.17660.26660.054*
C80.32417 (16)0.06444 (13)0.10173 (13)0.0479 (4)
H8A0.24020.09490.11850.072*
H8B0.39250.09960.14370.072*
H8C0.32210.00230.13010.072*
C90.53540 (14)0.33142 (10)0.36119 (13)0.0379 (3)
C100.46991 (15)0.42076 (11)0.35614 (15)0.0437 (3)
H100.40510.43470.41360.052*
C110.49956 (17)0.48930 (11)0.26688 (15)0.0472 (4)
H110.45410.54860.26320.057*
C120.59753 (18)0.46877 (13)0.18314 (15)0.0494 (4)
C130.6648 (2)0.37995 (15)0.18895 (16)0.0586 (5)
H130.73130.36670.13290.070*
C140.63377 (17)0.31130 (12)0.27713 (15)0.0498 (4)
H140.67860.25170.28030.060*
C150.5734 (3)0.62492 (16)0.0850 (2)0.0806 (7)
H15A0.61000.66150.01790.121*
H15B0.58740.66030.16050.121*
H15C0.48020.61590.07090.121*
N10.35058 (13)0.19331 (9)0.42115 (11)0.0409 (3)
H10.28380.23550.42240.049*
N20.37938 (15)0.15242 (9)0.08822 (12)0.0469 (3)
N30.35107 (12)0.06604 (9)0.03012 (11)0.0395 (3)
O10.45149 (14)0.29493 (9)0.58123 (10)0.0567 (3)
O20.58740 (13)0.16972 (9)0.47644 (12)0.0579 (3)
O30.63640 (17)0.53163 (11)0.09322 (13)0.0755 (4)
S10.48793 (4)0.24415 (3)0.47110 (3)0.04197 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0415 (7)0.0326 (7)0.0365 (7)0.0015 (5)0.0014 (5)0.0031 (5)
C20.0483 (8)0.0321 (7)0.0429 (7)0.0028 (6)0.0013 (6)0.0080 (6)
C30.0421 (8)0.0392 (7)0.0370 (7)0.0019 (6)0.0040 (6)0.0099 (6)
C40.0306 (6)0.0362 (7)0.0356 (6)0.0032 (5)0.0025 (5)0.0033 (5)
C50.0394 (7)0.0314 (6)0.0382 (7)0.0036 (5)0.0061 (5)0.0062 (5)
C60.0459 (8)0.0325 (7)0.0352 (6)0.0043 (6)0.0044 (5)0.0061 (5)
C70.0576 (10)0.0321 (7)0.0455 (8)0.0008 (6)0.0100 (7)0.0048 (6)
C80.0482 (9)0.0578 (10)0.0375 (7)0.0042 (7)0.0038 (6)0.0005 (7)
C90.0381 (7)0.0349 (7)0.0404 (7)0.0012 (6)0.0068 (5)0.0049 (5)
C100.0387 (8)0.0394 (8)0.0530 (8)0.0038 (6)0.0047 (6)0.0003 (6)
C110.0449 (8)0.0376 (8)0.0589 (9)0.0007 (6)0.0006 (7)0.0026 (7)
C120.0552 (10)0.0494 (9)0.0438 (8)0.0136 (8)0.0020 (7)0.0036 (6)
C130.0637 (11)0.0624 (11)0.0502 (9)0.0011 (9)0.0174 (8)0.0140 (8)
C140.0531 (9)0.0452 (9)0.0511 (9)0.0092 (7)0.0017 (7)0.0142 (7)
C150.114 (2)0.0596 (12)0.0682 (13)0.0229 (13)0.0051 (12)0.0189 (10)
N10.0482 (7)0.0341 (6)0.0403 (6)0.0021 (5)0.0011 (5)0.0004 (5)
N20.0566 (8)0.0359 (6)0.0480 (7)0.0003 (6)0.0074 (6)0.0004 (5)
N30.0433 (7)0.0386 (6)0.0366 (6)0.0015 (5)0.0047 (5)0.0004 (5)
O10.0813 (9)0.0532 (7)0.0355 (5)0.0041 (6)0.0057 (5)0.0049 (5)
O20.0621 (8)0.0473 (7)0.0638 (7)0.0159 (6)0.0164 (6)0.0051 (6)
O30.0955 (11)0.0686 (9)0.0631 (8)0.0169 (8)0.0209 (8)0.0082 (7)
S10.0531 (2)0.0361 (2)0.03648 (19)0.00611 (15)0.00831 (15)0.00026 (13)
Geometric parameters (Å, º) top
C1—C61.3731 (19)C9—S11.7553 (15)
C1—C21.4199 (19)C10—C111.381 (2)
C1—N11.4415 (18)C10—H100.9300
C2—C31.368 (2)C11—C121.382 (2)
C2—H20.9300C11—H110.9300
C3—C41.3990 (19)C12—O31.360 (2)
C3—H30.9300C12—C131.388 (3)
C4—N31.3603 (18)C13—C141.377 (3)
C4—C51.4111 (18)C13—H130.9300
C5—C61.401 (2)C14—H140.9300
C5—C71.419 (2)C15—O31.423 (3)
C6—H60.9300C15—H15A0.9600
C7—N21.320 (2)C15—H15B0.9600
C7—H70.9300C15—H15C0.9600
C8—N31.4530 (19)N1—S11.6370 (14)
C8—H8A0.9600N1—H10.8867
C8—H8B0.9600N2—N31.3633 (18)
C8—H8C0.9600O1—S11.4332 (12)
C9—C101.386 (2)O2—S11.4283 (12)
C9—C141.386 (2)
C6—C1—C2121.47 (13)C10—C11—C12119.26 (15)
C6—C1—N1118.59 (12)C10—C11—H11120.4
C2—C1—N1119.92 (12)C12—C11—H11120.4
C3—C2—C1121.86 (13)O3—C12—C11124.13 (17)
C3—C2—H2119.1O3—C12—C13115.78 (16)
C1—C2—H2119.1C11—C12—C13120.08 (15)
C2—C3—C4116.75 (12)C14—C13—C12120.46 (15)
C2—C3—H3121.6C14—C13—H13119.8
C4—C3—H3121.6C12—C13—H13119.8
N3—C4—C3131.28 (13)C13—C14—C9119.70 (15)
N3—C4—C5106.65 (12)C13—C14—H14120.2
C3—C4—C5122.07 (13)C9—C14—H14120.2
C6—C5—C4120.21 (13)O3—C15—H15A109.5
C6—C5—C7135.76 (13)O3—C15—H15B109.5
C4—C5—C7104.01 (12)H15A—C15—H15B109.5
C1—C6—C5117.62 (12)O3—C15—H15C109.5
C1—C6—H6121.2H15A—C15—H15C109.5
C5—C6—H6121.2H15B—C15—H15C109.5
N2—C7—C5111.63 (13)C1—N1—S1119.93 (10)
N2—C7—H7124.2C1—N1—H1114.8
C5—C7—H7124.2S1—N1—H1111.3
N3—C8—H8A109.5C7—N2—N3106.21 (12)
N3—C8—H8B109.5C4—N3—N2111.50 (11)
H8A—C8—H8B109.5C4—N3—C8128.21 (13)
N3—C8—H8C109.5N2—N3—C8120.24 (13)
H8A—C8—H8C109.5C12—O3—C15118.25 (16)
H8B—C8—H8C109.5O2—S1—O1119.82 (7)
C10—C9—C14119.61 (15)O2—S1—N1107.85 (7)
C10—C9—S1119.11 (12)O1—S1—N1104.71 (8)
C14—C9—S1121.24 (12)O2—S1—C9108.02 (8)
C11—C10—C9120.87 (14)O1—S1—C9108.41 (7)
C11—C10—H10119.6N1—S1—C9107.44 (6)
C9—C10—H10119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.892.253.1335 (19)176
C8—H8A···O1ii0.962.493.391 (2)157
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.892.253.1335 (19)175.5
C8—H8A···O1ii0.962.493.391 (2)156.7
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouissane, L., El Kazzouli, S., Leonce, S., Pfeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds